
Learning Objective Agent Behavior using a
Data-driven Modeling Approach

Farzad Kamrani and Linus J. Luotsinen
FOI - Swedish Defence Research Agency

SE-164 90 Stockholm, Sweden
Email: {farkam, linluo}@foi.se

Rikke Amilde Løvlid
FFI - Norwegian Defence Research Establishment

NO-2007 Kjeller, Norway
Email: rikke-amilde.lovlid@ffi.no

Abstract—This paper presents a data-driven approach towards
the modeling of agent behaviors in a full-fledged, commercial
off-the-shelf simulation milieu for tactical military training.
The modeling approach employs machine learning to identify
behavioral rules and patterns in data. Potential advantages of
this approach are that it may improve modeling efficiency and,
perhaps more importantly, increase the realism of the training
simulator.

In this work, we present an architecture outlining the main
components of the data-driven behavior modeling approach.
Using a prototype that implements the approach, we conduct
and present results from an experiment targeting the learning
of cooperative military movement tactics. It is shown that the
prototype is capable of identifying the rules of the tactics.
Moreover, it is shown that the agents are able to generalize such
that the learned behavior can be applied in a new setting different
from the one observed in the training data.

I. INTRODUCTION

Autonomous agents, which in the context of military simula-
tions are often called Computer Generated Forces (CGFs), are
frequently used to populate simulation models. Development
of CGFs is influenced, to a great extent, by computer games
programming, and as such, adopts a wide range of methods
from ad hoc solutions and heuristics to modern Artificial
Intelligence (AI) and Machine Learning (ML) techniques (e.g.
see [1], [2]).

We are especially interested in applying ML to gener-
ate rules “automatically” for CGFs using observations and
recorded data, which henceforth we refer to as Data-Driven
Behavior Modeling (DDBM). The main goals of this approach
are to improve the efficiency of the modeling process and
to increase the creditability of the agents’ behavior. The
ambition is to replace (the main part of) the manual work of
extracting behavioral rules from doctrines with a method based
on acquiring, editing and labeling datasets that are processed
by machine learning algorithms. This may not only improve
the efficiency of the modeling process, but may also enhance
the realism of the agent by creating objective and more human-
like agent behaviors.

In earlier work, we have used toy problems to show the
potential of the approach (e.g. see [3]). In the current work,
we apply DDBM in real-world military applications to fur-

ther investigate and gain insights into the following research
questions:

• Is DDBM more efficient, with respect to cost and time,
compared to the traditional modeling approach? That is,
what can be gained by shifting the modeling work from
manually hand-crafting behavioral rules to acquiring,
creating, editing, and labeling or pre-processing datasets?

• Can DDBM be used to create more objective behavior
models that imitate the behavior of their real-world coun-
terparts? Can DDBM create behavioral models for agents
that are more credible than those that are created using
traditional methods?

To shed light on the stated research questions, we have
developed a platform that integrates the main components
of the DDBM approach. The platform is intended as an
intuitive behavior modeling tool that can interact with a
simulator and use recorded data and ML methods to create
models for computer agents. For this study, we have chosen
Virtual Battle Space 3 (VBS3)1, which is a widespread military
simulation application. The solution and platform, however,
are not restricted to any specific simulator and VBS3 can
be substituted by other simulation tools without any major
modifications of the platform.

This paper is organized as follows. In Section II, we
present background and related works. In Section III, we
introduce DDBM and its main components. In Section IV, we
briefly describe the implementation of our DDBM platform. In
Section V, we present experimental results using the DDBM-
prototype. Finally, conclusions and future works are presented
in Section VI.

II. BACKGROUND AND RELATED WORKS

The promise of DDBM is that by using machine learning
algorithms, a computer agent (target agent) can learn from
the gathered data to act in a manner similar to a human or
simulated agent (original agent) from which the data were
collected. In this context, the learning strategies can be divided
into three different categories; experiential, observational, and
a hybrid approach that combines the first two methods. In
experiential learning, the desired target agent learns and opti-
mizes its behavior using a trial-and-error approach (similar to

1https://bisimulations.com/

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

978-1-5090-1897-0/16/$31.00 ©2016 IEEE SMC_2016 002175

human learning through practice). The target agent, usually in
a simulator, executes a sequence of actions in different settings
and learns from the outcome of taken actions. The learning is
an iterative process, starting from a random solution. In each
iteration, the performance of the agent is measured accord-
ing to how well the task is performed. Some reinforcement
mechanism ensures that those behaviors that show higher
performance are strengthened, and finally, the one with the
highest performance is presented as the agent’s behavior [4].

It is important to bear in mind that in experiential learning,
the performance rating cannot determine the correctness of the
action or its similarity with human behavior at any given time,
and only the result of the overall behavior of the agent for the
entire activity is graded. Consequently, the agent may learn
optimal behavior that is inappropriate. That is, the performance
criteria are met, but the agent may act in a different way than
what is expected or considered “natural”. Some authors relate
this phenomenon with computational creativity [5] and suggest
that experiential learning might find creative solutions that are
not found by humans [6].

Examples of published research outputs that discuss expe-
riential learning can be found in [7], [8], [9], [10], however,
not all of these references use the term experiential learning
explicitly.

Observational learning takes another approach. Here, the
idea is to extract the behavior model of the target agent by
observing the behavior of another (possibly human) agent (so
called original agent). The data collected from the original
agent performing an activity, either in a simulation or in the
real world, are used to train the target agent to act similarly
when attempting to perform the same activity [11]. The terms
learning from demonstration and learning by imitation are
also used in literature, largely synonymous to observational
learning.

In learning from demonstration, a human purposely demon-
strates how to perform a given task in order to make the
agent perform the same task, whereas in observational learning
in general, the original agent does not have to be a willing
or knowing participant [12]. The term learning from demon-
stration is often used in robotics [13], [14]. Learning from
imitation (mimicking) can also be viewed as a special case
of observational learning where the purpose of learning is to
reproduce exactly the same actions.

In the machine learning community, the term learning by
observation has a broader meaning and refers to the fact that
in supervised learning, the training data is a set of collected
observations. However, although in supervised learning the
observed data are used to learn (e.g. in handwritten character
recognition), in general, the data do not demonstrate how to
perform a task, or teach any behavioral skills [15]. In this
paper, observational learning is used in a more specific context,
which refers to learning the behavior of an observed agent
performing some activity.

In observational learning, the data used for training the
target agent are collected by registering the state of a human
(or another agent) performing an activity over time, and it is

not necessarily clear where the activity starts and ends. Fur-
thermore, the labels are not explicitly known as in traditional
supervised learning, where the input data, their features and
labels are explicitly defined [11].

Observational learning has been used in different domains
using a variety of techniques (e.g. see [15], [16], [12], [17]).
Learning team behavior from observation is discussed in [16],
[17], where the presented method is semi-autonomous, and
the collected data are manually processed to identify domain
specific contexts representing different states of the observed
behavior. This is necessary to suppress the amount of the
training data to only those significant within the context.

In order to prove the concept and verify the applicability
of the methods, in previous works, we have used DDBM
approach to solve different small-scale problems. In [3], ob-
servational learning approach was used to imitate the behavior
of multiple collaborative agents performing tasks of increasing
complexity. In this work, the goal was to learn the behavior
of a team of players, which exercised passing a puck in a
hockey-player simulator environment. In the first experiment,
four players located at the corners of a square, passed the
puck in a clockwise manner with no opponent player present.
In the second exercise, with the same setting, one of the
players randomly passed the puck diagonally approximately
50% of the time. In the third exercise, five players kept the
puck within the team by avoiding passing to team members
who were covered or intercepted by an opponent player.
For each exercise, synthetic datasets that were consistent
with the specified behavior were created. The datasets were
applied to our DDBM prototype to learn the positioning and
passing behavior of each agent using the back-propagation
algorithm [18] for standard neural networks and the ID3 al-
gorithm [19] for decision trees, respectively. Presented results
showed that it was possible to learn the desired behaviors for
all exercises using relatively small training datasets and in
short time interval (less than 10 minutes). The behavior of each
agent was verified by visualizing the rules embedded in the
generated decision trees. Collaborative behavior of all agents
was verified using the hockey-simulator capable of visualizing
the movement of the players and the puck given the learned
behavior model.

In [6], we used a predator-prey simulation to test the
ideas presented in the experiential learning strategy. In this
simulation, the predator was represented by a wolf, which was
hunting a herd of sheep controlled by a modified version [20]
of a flocking algorithm [21]. The goal was to optimize the
behavior of the predator agent so that it annihilated the herd of
sheep as efficiently as possible. Unlike observational learning,
in experiential learning, the simulator was integrated within the
learning or evaluation phase. In this experiment, the DDBM
prototype used Genetic Programming (GP) [22] to generate
the wolf behavior. The GP was configured to use a population
size of 1000 individuals (programs) and terminated its search
after 10 generations. The result of the GP was compared with
a human-programmed code, representing an intuitive behavior
where the wolf continuously turned and struck towards the

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016 002176

center of the herd. While the human-programmed solution
killed all the sheep in 1700 game ticks, the DDBM generated
code required only 1000 cycles for killing all sheep, thus
outperforming the human-generated code [6].

Although the findings of the aforementioned literature show
that the DDBM approach can be used for modeling the
behavior of agents, most of the available results involve only
toy problems, and to the best of our knowledge, there is no
previous work applying the DDBM approach in real-world
military settings. The main contribution of this paper is that we
have applied the DDBM method to generate behavior models
for Computer Generated Forces for practical use in a full-
fledged training simulator such as VBS3.

III. DATA-DRIVEN BEHAVIOR MODELING

In a broad categorization, the learning component of DDBM
can be divided into the following three types:

• Observational learning, in which a target agent learns
from data collected over how an original agent behaves
in a similar situation (in live or simulated scenarios).

• Experiential learning, in which the target agent learns
without having any role model to learn from and learns in
a trial-and-error manner, starting usually from a random
behavior.

• Hybrid approach, which is a combination of the first
two approaches, i.e. the target agent first learns from
observing an original agent and then improves the learned
model by experiential learning.

Since the focus of this paper is observational learning, we will
briefly explain different components of this method.

A. Observational Learning

In observational learning, the goal is to develop the behavior
model of an agent by observing the behavior of another
agent whose behavior should be learned while it performs the
same activity under similar condition [11], [3]. However, we
interpret the term “observation” in a less literal sense and use
it to describe all relevant data that are collected and saved
in a persistent database, while the original agent performs
the desired task. The data can be collected from real-world
exercises or while executing the scenario in a simulator, where
agents are controlled by human players (or by scripts).

Fig. 1, illustrates the entire process of observational learning
and how it is employed. The left part of the figure illustrates
the learning steps of the observational learning DDBM, which
starts with gathering data in a persistent database. The data
include changes of various states of all agents involved in the
scenario including their time stamps. Moreover, environment
parameters that might change during the scenario execution
are recorded. A feature extraction module then extracts the set
of relevant features and corresponding labels for each agent.
An appropriate machine learning algorithm deduces a model
(e.g. a decision tree) using each feature and the corresponding
label. The collection of these models constitutes the behavior
model of each CGF and is the input to the target simulator.
Theoretically, the learning simulator and the target simulator

do not need to be the same, but using the same simulator on
both sides, considerably facilitates the process.

The right part of Fig. 1 depicts how the behavior models
are employed in a simulator. As the simulator starts, the states
of the CGFs over a predefined time span (so called sliding
window) are collected in an in-memory database. It is required
that the data over a sufficient duration of time (sliding window)
are available, since some states may depend not only on the
current state of the agent and other agents, but also on the
history of the events.

A feature extraction module, which corresponds exactly to
the feature extraction module used during the learning phase,
extracts the relevant features for each CGF. In each tick of the
simulator, or at predefined decision points, a decision maker
module uses the behavior models to deduce the desired state
for each feature of the CGFs. If required, a command is issued
to the simulator to establish the desired state.

IV. IMPLEMENTATION

We have developed a software platform that includes all re-
quired elements to develop behavior models using the DDBM
approach, necessary modules to apply the models to CGFs
inside a target simulator (e.g. VBS3), and interfaces to interact
with the target simulator. The platform is a highly modular-
ized, loosely coupled and plug-in based application that inte-
grates different components for data-acquisition, visualization,
feature extraction, machine learning algorithms, and interfaces
to communicate with and control the target simulator. It is
intended to be an intuitive and easy to use tool, with the
ultimate goal of functioning and creating behavior models for
CGFs without involvement of any software engineers, so that
it can readily be operated by subject matter experts.

The platform is a further development and refinement of
the software presented in [3]. Added capabilities in the new
version include, but are not limited to, interfaces to the target
simulator and extending the feature extraction to a large
number of new features.

V. EXPERIMENTS

We have used our platform to apply the DDBM approach for
modeling the behavior of CGFs in VBS3, which is a simulation
tool widely used within defense sector across many countries.

A. Virtual Battlespace 3

VBS3 (developed by Bohemia Interactive Simulations)is
a computer game-based software system, which is used for
soldier training by a majority of NATO partners. It is a tactical
first-person military training simulation program and provides
a three-dimensional visually rich environment with flexible
scenario and terrain options. VBS3 supports more than 100
combined arms training tasks, from the individual soldier
to company level. Examples of tasks in VBS3 are entering
and clearing a building, conducting an attack, conducting a
defense, conducting an artillery raid, and conducting route
reconnaissance.

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016 002177

Modeler

Training

Raw data

Simulation

Simulator

Persistent
database

Feature extraction

Machine Learning

Feature + lableFeature extraction

Machine Learning

Feature + lable

Behavior model
Decision maker

Feature
extraction

Machine
Learning

Feature-Label

Simulator

In-memory
database

Feature extraction

Machine Learning

Feature + lableFeature extraction

Machine Learning

Feature + lableFeature
extraction

Apply

Feature

Interface

Decision

VBS3 command

Decision makerDecision maker

Decision maker

Decision maker

Decision maker

Behavior model

Behavior model

Fig. 1. An overview of the main components of the observational learning DDBM approach and its interaction with the target simulator. In the left part of
the figure, three CGFs each having four decision maker modules are trained. For each CGF, four different models are derived (from which only one is shown
to avoid cluttering). In the right hand part of the figure, the CGFs use the derived models in the target simulator.

Apart from the player and playable entities (i.e. entities
controlled by possibly other players connected over a net-
work), other units and entities are CGFs that act autonomously
according to some predefined rules. The CGFs give the
possibility to configure and train larger scenarios that would
otherwise be impossible if all units had to be controlled by
human players. VBS3 provides several means and tools, such
as scripting tools, Real-time editor (RTE) to influence the
scenario during training, and VBS TACTICS that enables
users to configure doctrine-based orders of battle and planning
mission.

In the following, we outline a case scenario, bounding
overwatch, for which we have applied the DDBM approach
to learn collaborative CGF behaviors from observations using
the VBS3 simulator.

B. Bounding Overwatch

Bounding overwatch is a military movement tactic of
coordinated units used when enemy contact is likely. The
characteristic of this tactic is prioritizing security over speed
by giving an overwatch unit the possibility of suppressing
enemy fire if required. In bounding overwatch, two units have
different roles; while the bounding unit takes the lead towards

the target point and moves forward, it is protected by the
overwatch unit (see Fig. 2). There are two types of bounding
overwatch: (i) alternating bounding, in which the bounding
unit is protected by the halted overwatch unit, and the two
swap their roles when the bounding unit has moved forward
to the overwatch unit’s protection range, and (ii) successive
bounds, in which the roles of bounding unit and overwatch
unit remain the same throughout the movement [23].

In order to be credible, CGFs that perform the bounding
overwatch tactic should consider a wide range of factors, in-
cluding distance to the enemy, distance to own units, direction
and intensity of the enemy fire, own weapon type, and the
amount of ammunition. Writing a program that considers all
these features in an appropriate way is a time-consuming and
non-trivial endeavor.

Fig. 3 illustrates a model of the bounding overwatch tactic
represented graphically by a behavior tree (BT). A behavior
tree is a graphical representation for execution of actions used
in computer game industry for modeling the behavior of non-
player characters (NPCs) [24], [25]. In recent years, BTs have
also been used in robotics and control systems for multi-robot
systems [26], [27]. The strengths of BTs are in their modularity
and ability to compose complex behaviors by using simple

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016 002178

Fig. 2. Two entities in VBS3 performing bounding overwatch. While the
entity on the left is overwatching, the entity on the right is moving forward
towards the target.

tasks.
BT is a directed tree consisting of a single root, control

flow nodes and execution leaves. Control flow nodes are
either sequences or selectors and execution leaves are either
conditions or tasks. In Fig. 3, the root is marked by “φ”,
sequence nodes are marked by “→”, selector nodes are marked
by “?”, condition leaves are the ovals and tasks are rectangles.

The execution of the BT starts from the root, which sends
ticks at fixed intervals to its only child. Ticks are discrete
signals that traverse through the tree in a depth-first manner
(from left to right), changing the state of a node. Each node is
in one of the states not executed, running, success or failure.
A node’s type determines how its children are traversed and
how its state is changed. A sequence node executes its children
sequentially from left to right by sending ticks to them, until all

Move

Not reached
target?

Stand upHalt Kneel

Suppress
enemy

j

?

?

Overwatch

Overwatch?

Enemy
observed?

Fig. 3. Example of a behavior tree model for a unit conducting the bounding
overwatch task.

its children succeed. If one of the children returns with failure
or running state, the sequence node will return immediately
with the same state, otherwise after all children have returned
with success state, the sequence node will also return with
success state.

A selector attempts to execute its children sequentially from
left to right by sending ticks to them. If all children return
with failure state, then the selector node will also return
with a failure state, otherwise if any of the children returns
with success or running state, the selector node will return
immediately with the same state.

A condition node returns with success if the predication is
true, otherwise it returns with failure.

A task node is the interface of the BT with the environment
and triggers actions such as movements and reading sensors.
Execution of a task node means that its state sets to running
and the corresponding action is scheduled to be performed
asynchronously. The node stays in the running state until the
activity is finished. The state changes to success or failure
depending on the result of the activity.

There are some additional node types, which are extension
or modification of the four types of nodes described here.
However, they are considered to be out of the scope of this
paper, and are not discussed.

C. Experiment Model and Settings

We make some assumptions and create a simplified model
of the bounding overwatch problem. First, we assume that
the group consists of only two CGFs; one bounding and one
overwatch entity. Moreover, to keep the model simple, we
ignore the suppress enemy behavior (represented by the sub-
tree in the lower center in Fig. 3) in this paper, and leave it to
future work. It should also be clarified that in this work, the
DDBM is used to derive the models of the low-level behaviors
defined as the leaves of the behavior tree, and the structure of
the tree is hand-crafted.

In the data gathering phase, we use VBS3 and a script
that controls the group according to one of the two types of
bounding overwatch (either alternating bounding or successive
bounds). As a part of the input to this script, we provide a set
of waypoints, which define the path of the entities. Among
others, data over the following states (including timestamps)
for each agent are collected and saved persistently in a file,
periodically.

• The position of the agent (a continuous value).
• The orientation of the agent (a continuous value).
• The velocity of the agent (a continuous value).
• The agent’s stance, which is one of the three values prone,

kneeling, or standing position.
Only this part of the saved data is used by the machine-

learning algorithms, and other fields of data are just collected
to be used when new features and capabilities are added to
the model.

The raw data as it is saved cannot directly be used by
the machine-learning algorithms, and we need to refine and
process the data to extract generalized features of the state of

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016 002179

the agents. This is necessary in order to help the machine-
learning algorithms to learn from even a restricted amount of
data. Using the allegory of learning by observation, the feature
extraction process resembles “teaching” the learner instead of
letting her “discover” a situation by observing it frequently.
For instance, a huge amount of raw data is required for an
agent to discover that it should avoid all positions in which
it is in the gunshot range of an adverse agent. However, by
extracting the distance between the two agents, we can “teach”
the agent the concept of distance, which is a prerequisite for
learning how to avoid hazardous situations.

For the current scenario, the following features for each
agent have been extracted:

• The distance feature, that is, the relative distance of the
agent to the other agent, measured in the number of
waypoints.

• The stance feature, that is, the stance of the agent.
• Speed feature, that is, the velocity of the agent.
• Orientation feature, that is, the angle between direction

of the overwatch agent’s weapon and the line passing
through the agent and the next waypoint.

• Waypoint location feature, that is, which waypoint the
agent is located at, if any.

• Waypoint destination feature, that is, towards which way-
point the agent is heading.

• Moving feature, that is, whether the agent is moving or
not.

• Turning feature, that is, how much the overwatch agent
should turn to hold an appropriate direction.

Based on the features, for each of the two involved agents,
four models are created that are later used to make decision
about the behavior of the agent. It needs to be clarified that
since the gathered data for the two agents are not the same,
the derived models are not identical either (although they are
of the same type). The developed models are as follows:

• The distance and moving features are used to derive a
decision tree model, which is used to make decision about
whether the agent should move or not.

• The distance and stance features are used to derive a
decision tree model, which is used to determine the stance
of the agent.

• The speed, orientation and turning feature are used to
derive an Artificial Neural Network (ANN) model, which
is used to make decision about how much the overwatch
agent should turn to correct the direction of its weapon.

• The speed, location and destination features are used to
derive a decision tree model, which is used to make
decision about the waypoint the agent should move
towards.

Unfortunately, there is no single silver bullet method for
choosing features or type of the models and it is a matter of
trial-and-error experimentation to select adequate features and
find models that work appropriately.

We use the open-source RapidMiner [28] library, which is
incorporated in our platform, to create the decision tree and

ANN models.
In the application phase, the models are used to answer

queries about how each agent should behave according to the
created behavior models; that is whether the agent should
move or not, which stance should it take, towards which
waypoint should it move, and how much should it turn to
correct the direction of its weapon. A series of waypoints
(different from the waypoints used in the training phase) are
provided to the DDBM platform, which define a new path for
the agents. The DDBM platform initiates the agents and in a
similar manner to the data collection phase, gathers data (states
of the agents in the VBS3 simulator) over a predefined time
span (sliding window). Whenever one of the agents arrives
at a waypoint (a so-called decision point), the same feature
extraction functions are used to extract the known features
and make query about the unknown features (moving, stance,
destination and turning).

D. Results

The test scenarios for both alternating bounding and suc-
cessive bounds show that the method works for both tactics,
that is the model learns the behavior from the training data
generated by a single run and is capable to repeat the same
behavior without any errors.

It should be emphasized that the learned behavior is in-
dependent of the path for which the agents have learned the
tactic. Once the agents learn a tactic, they can generalize the
behavior to different paths defined by completely different
waypoints, even in other directions.

Although in this experiment the studied tactics are rather
simple and elementary, the result is very promising and show
that the approach is applicable and can be implemented on
more complex tactics and behavior, which are part of the future
work of this project.

E. Discussion

The training tactics, which our system is tested against,
are rather simple and consist of a set of states that are
clearly distinct, observable and not overlapping (stance, mov-
ing, direction and destination). This is not by accident, but
a deliberate decision to start testing the approach for more
simple tactics on a sophisticated simulator, and incrementally
add features that are more complex. The reason for this
decision has been twofold: first, to prove the concept and show
that the DDBM approach is working even when using real-
world simulation tools, second, to master the difficulties in
interactions with a sophisticated and proprietary software with
no source code available.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a DDBM platform for mod-
eling agent behavior in a commercial off-the-shelf simulation-
based military training software, VBS3. The platform is cus-
tomized to interact with VBS3 and is used both to generate
training data and to develop behavior models. The DDBM
concept is tested for two military movement tactics, alternating

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016 002180

bounding and successive bounds for a group consisting of two
entities. First, data is generated for these two tactics using a
script interacting with VBS3. The generated data is used as
training data. VBS3 is used to determine if a group with the
same configuration as the original scenario can learn from the
observed data and mimic the same behavior. The conducted
experiments clearly demonstrate that the entities show the
same behavior, using the data generated by a single run of
the script.

Although the concept of DDBM has been previously tested
on toy problems and simplistic models, to the best of our
knowledge, this is the first time the concept is successfully
applied on a real-world and sophisticated simulation tool as
VBS3, something that we consider as the main contribution
of this paper.

The DDBM approach appears promising, however, as pre-
viously pointed out, the trained tactics used in this work
are relatively uncomplicated, and there are still much more
interesting and involved problems to be tested and evaluated.

Moreover, in order to use this approach in practice, it is
required to address several challenges, from which we list the
following:

• Complex behavior models, including those with overlap-
ping states.

• Data problems such as insufficient, incomplete and noisy
data.

• Real-time simulation problems caused by advanced fea-
ture extraction functions (e.g. terrain analysis, route plan-
ning).

• Verification and validation problems related to black-box
representations such as neural networks that are difficult
to visualize and analyze by humans experts.

• The need for intuitive and easy-to-use DDBM author-
ing tools capable of visualizing, editing and processing
datasets acquired synthetically or from live exercises.

ACKNOWLEDGMENT

The work presented in this paper is the result of a col-
laborative effort by the Swedish Defence Research Agency
(FOI) and the Norwegian Defence Research Establishment
(FFI). The work was supported by the FOI research project
“Synthetic Actors”, which is funded by the R&D programme
of the Swedish Armed Forces, and by the FFI research project
“LVC simulation for training, exercises and experiments”.

REFERENCES

[1] I. Millington and J. Funge, Artificial Intelligence for Games, 2nd ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009.

[2] B. Geisler, “Integrated machine learning for behavior modeling in video
games,” in Challenges in game artificial intelligence: papers from the
2004 AAAI workshop, D. Fu, S. Henke, and J. Orkin, Eds. Menlo Park,
CA, USA: AAAI Press, 2004, pp. 54–62.

[3] L. J. Luotsinen and R. A. Løvlid, “Data-driven behavior modeling
for computer generated forces,” in NATO Modelling and Simulation
Group Symp. M&S Support to Operational Tasks Including War Gaming,
Logistics, Cyber Defence (MSG-133), 2015, pp. 1–13.

[4] G. Stein and A. J. Gonzalez, “Building high-performing human-like tac-
tical agents through observation and experience,” in IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, pp. 792–
804.

[5] J. McCormack and M. d’Inverno, Computers and creativity. Springer,
2012.

[6] L. J. Luotsinen, F. Kamrani, P. Hammar, M. Jändel, and R. A. Løvlid,
“Evolved creative intelligence for computer generated forces,” in Pro-
ceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, 2016.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA: MIT Press, 1998.

[8] D. Aihe and A. Gonzalez, “Context-driven reinforcement learning,” in
Proceedings of the Second Swedish-American Workshop on Modeling
and Simulation, Cocoa Beach, FL, 2004.

[9] K. Merrick and M. L. Maher, “Motivated reinforcement learning for non-
player characters in persistent computer game worlds,” in Proceedings
of the 2006 ACM SIGCHI International Conference on Advances in
Computer Entertainment Technology, ser. ACE ’06. New York, NY,
USA: ACM, 2006.

[10] T.-H. Teng, A.-H. Tan, and L.-N. Teow, “Adaptive computer-generated
forces for simulator-based training,” Expert Systems with Applications,
vol. 40, no. 18, pp. 7341–7353, 2013.

[11] G. Stein, A. J. Gonzalez, and C. Barham, “Combining NEAT and
PSO for learning tactical human behavior,” Neural Computing and
Applications, pp. 1–18, 2014.

[12] S. Ontanon, J. L. Montana, and A. Gonzalez, “Towards a unified
framework for learning from observation,” in IJCAI Workshop on Agent
Learning Interactively from Human Teachers, 2011.

[13] C. G. Atkeson and S. Schaal, “Learning tasks from a single demon-
stration,” in Proceedings of the 1997 IEEE International Conference on
Robotics and Automation, 1997, pp. 1706–1712.

[14] D. C. Bentivegna and C. G. Atkeson, “Learning from observation using
primitives,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), vol. 2, 2001, pp. 1988–1993.

[15] H. K. G. Fernlund, “Evolving models from observed human perfor-
mance,” Ph.D. dissertation, University of Central Florida, 2004.

[16] C. L. Johnson and A. J. Gonzalez, “Learning collaborative behavior by
observation,” in ICMLA, S. Draghici, T. M. Khoshgoftaar, V. Palade,
W. Pedrycz, M. A. Wani, and X. Zhu, Eds. IEEE Computer Society,
2010, pp. 99–104.

[17] ——, “Learning collaborative team behavior from observation,” Expert
Systems with Applications, vol. 41, no. 5, pp. 2316–2328, 2014.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” in Neurocomputing: Foundations of
Research, J. A. Anderson and E. Rosenfeld, Eds. Cambridge, MA,
USA: MIT Press, 1988, pp. 696–699.

[19] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997.

[20] M. Barksten and D. Rydberg, “Extending Reynolds’ flocking model to
a simulation of sheep in the presence of a predator,” Bachelor’s thesis,
School of computer science and communication, KTH - Royal Institute
of Technology, Stockholm, Sweden, 2013.

[21] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” ACM SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 25–34,
1987.

[22] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[23] L. J. Luotsinen, “Recognizing teamwork activity in observations of
embodied agents,” Ph.D. dissertation, University of Central Florida,
Orlando, FL, USA, 2007.

[24] D. Isla, “Handling complexity in the Halo 2 AI,” in Proceedings of the
Game Developers Conference, 2005.

[25] C. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees
for the commercial game DEFCON,” in Applications of Evolutionary
Computation. Springer, 2010, pp. 100–110.

[26] P. Ögren, “Increasing modularity of UAV control systems using com-
puter game behavior trees,” in AIAA Guidance, Navigation and Control
Conference, 2012.

[27] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren, “Towards a
unified behavior trees framework for robot control,” in Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA).
IEEE Robotics and Automation Society, 2014, pp. 5420–5427.

[28] M. Hofmann and R. Klinkenberg, RapidMiner: Data Mining Use Cases
and Business Analytics Applications, ser. Chapman & Hall/CRC Data
Mining and Knowledge Discovery. CRC Press, 2013.

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016 002181

