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Abstract—Deep learning techniques are able to process and
learn from data (e.g., images, video, audio) without explicit
feature extraction. As a result, not only is the manual work-
load to build such models reduced, but the performance and
accuracy of these models can often outperform those in which
the preprocessing phase embeds human intuition.

In the light of these advancements this study aims to examine
if current, often manual, practices and techniques for modeling
tactical behavior can be improved using deep reinforcement
learning (DRL). We compare three state-of-the-art DRL algo-
rithms according to their ability to control computer generated
forces in simulated ground combat scenarios. The algorithms
are empirically evaluated by comparing learning curves and
behavioral performance using four basic maneuverability tasks.
Our results show that at least one algorithm solved all tasks
without hyperparameter search.

I. INTRODUCTION

Military training and decision support applications often
rely on simulation to manage and maintain realism in war-
fare scenarios. Commercial tools supporting such applications
often ship with mature features to support military end-users
in preparation, execution, visualization and analysis of scenar-
ios and simulation runs. However, there is a capability gap
concerning the artificial intelligence (AI) features embedded
in these tools. Specifically, intelligent agents or non-player
characters, which in military terms are known as computer
generated forces (CGFs), that populate the scenarios often lack
realistic decision making skills. As a result, military training
facilities depend on expensive and often scarce human-role
players to ensure credibility and realism in exercises. Although
CGFs are used in training, they are often scripted and limited
to carry out relatively simple tasks that are triggered by
predefined events in the scenario.

Recent advancements in AI and specifically deep learning
(DL) [1], [2] has revolutionized the performance of a wide
range of traditional AI applications (e.g., face recognition
and identification [3], lip-reading [4], autonomous driving
[5], image description synthesis [6], Q&A systems [7]). The
performance gain observed in some of these applications were
not expected to be seen until 10 years from today [8].

Although the modeling of truly intelligent CGFs, that can
reason and act at a human level for general purposes, remains

an open research question we believe that DL has the potential
to significantly improve the state-of-the-art of current CGF de-
velopment practices and applications. For instance, adopting a
DL approach has the following potential advantages compared
to the traditional, explicit programming, approach:

• Efficiency: Developing behavior models for CGFs is
a time-consuming and expensive endeavor where the
knowledge of military domain experts has to be manually
interpreted, programmed and integrated into the simu-
lation tool used by the end-users. Implementing CGFs
capable of interacting and team-working with other actors
(e.g., trainees, other CGFs) may take several years to
complete. Using a DL approach the manual process of
interpreting and programming the CGF is replaced by a
semi-automatic process in which the computer’s learning
algorithm extracts knowledge from data to identify the
behavioral rules of the CGF.

• Realism: Typically, CGFs are developed using a combina-
tion of knowledge extracted from subject matter experts,
doctrines and rules of engagement. This approach is by
definition subjective and will most likely also produce
subjective CGFs. In previous works we demonstrated
that a data-driven approach [9] towards modeling CGF
behaviors can be used to imitate/clone behaviors as they
are expressed in data to, ultimately, model more objective
CGF behaviors [10].

• Complexity: Developing CGFs manually may limit the
creativity and problem solving skills of the CGF. Domain
experts and programmers are limited by human intuition
and prior experience whereas a computer, using machine
learning, is able to explore larger solution spaces to find
more optimized, or even superhuman, CGF behavior [11].

The true potential for CGFs in military training and decision
support applications is yet to be unlocked. In this work
we provide insight into the potential of DL applied in the
context of CGFs in ground combat environments. We present
results from a preliminary study, based on the results of [12],
where state-of-the-art Deep Reinforcement Learning (DRL)
algorithms are compared and evaluated given four different
learning tasks of increasing complexity.
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II. RELATED WORKS

In [13], Mnih et al. experiment with the approach of training
Atari-playing agents [14] using a DRL variant of Q-Learning
[15] referred to as Deep Q-Learning (DQL). In DQL, the agent
learns which actions to perform using only images and the
score from the game as inputs. DQL approximates the Q-
function using a deep convolutional neural network [2], [16].

Asynchronous Advantage Actor-Critic (A3C) is a more
recent DRL algorithm [17]. A3C asynchronously trains the
agent by executing multiple agents in parallel each exploring
and learning from different parts of the environment. The
A3C algorithm can be applied using standard CPUs whereas
the computationally heavy DQL approach, in addition, relies
on expensive GPUs or massively distributed architectures to
facilitate learning.

In [18], Rijken et al. develop CGFs to model the behavior
of Unmanned Aerial Vehicles (UAVs) in air-combat scenarios.
Their results indicate that DRL can be applied to learn air
combat behavior, but that this area needs more research prior
to real-world application.

Unlike the abovementioned works this paper focus on the
ground combat domain. CGFs in ground combat exercises
must in addition to fundamental skills such as aiming, shooting
and moving in the environment also manage to collaborate,
interact and coordinate their actions with other CGFs, trainees
or role-players.

III. METHOD

To evaluate DRL in the context of ground combat simulation
we have applied three state-of-the-art DRL algorithms on four
simulated ground combat tasks as described in Section III-A
and Section III-B respectively. The experimental setup (i.e.
hyperparameters, reward functions, simulator settings and per-
formance evaluation metrics) is presented in Section III-C.

A. Learning algorithms

1) Deep Q-Learning (DQL): The DQL algorithm is imple-
mented as described in [19], however, we will briefly discuss
some of its features, which are required to understand the
meaning of the hyperparameters given in Section III-C.

The algorithm is a modification of the standard Q-learning
method [15], which is widely used in reinforcement learning
[20]. A convolutional neural network (henceforth referred to
as Q-network) is used to approximate the optimal action-
value function (Q-function), which provides the maximum
sum of accumulated rewards at each time-step given a policy.
Convolutional neural networks belong to a special class of
artificial neural networks with multiple hidden layers, which
have shown high performance in visual recognition.

Like other Q-learning methods, the algorithm is model-
free, meaning that the CGF learns the task directly using
samples from the simulator without having knowledge about
the dynamics of the environment and the received rewards.

To ensure a balanced exploration rate of the state space, the
algorithm follows a greedy policy with probability 1 − ε and
selects a random action with probability ε, where 0 ≤ ε ≤ 1

has a higher value at the beginning of the learning process,
when more exploration is required, and decreases successively.
During the training, ε starts at εstart and decreases linearly to
εend over a number of simulation ticks, tannealing, and is fixed
at εend thereafter.

To mitigate instability in the training process, the DQL
algorithm relies on two techniques. The first one is using
a replay memory, which stores previous experiences (i.e. a
set of 4-tuples containing state, action, reward and following
state) in the memory and reuses them for training by randomly
sampling from the memory. The size of this memory, Dsize,
affects both the training time and efficiency of the Q-network,
and should be chosen carefully.

The second technique used to further improve the stability
of weights of the Q-network is to employ a target network.
The target network is a clone of the Q-network, which is used
to select actions at each tick. However, it is not updated as
frequently as the Q-network but rather after a number of ticks
defined by a parameter, C. This adds a delay between the time
the Q-network is updated and the time that the update affects
the selection of actions, making divergence or oscillations of
weights much more unlikely [13].

2) Asynchronous Advantage Actor-Critic with a Feed-
Forward Network (A3C-FF): Asynchronous deep reinforce-
ment learning algorithms suggested by [17], execute P num-
ber of CGFs in parallel on the same number of separate
instances of the environment, training one global network
asynchronously. This paradigm removes the need for a replay
memory as used in DQL, since each parallel CGF is likely
experiencing a different part of the environment at the same
time. This has a similar decorrelating effect on the data as
randomly sampling from earlier experiences. This parallelism
presumably leads to more robust and effective solutions.

Apart from the parallelism nature of the A3C method, we
do not attempt to describe it further here, and refer the reader
to [17] for a description of the algorithm.

3) Asynchronous Advantage Actor-Critic with an LSTM
Network (A3C-LSTM): This method is algorithmically similar
to A3C-FF, but differs in the sense that the network includes
an additional layer of Long Short-Term Memory (LSTM)
cells. LSTM networks are an extension of the recurrent neural
network architecture, where the network holds an internal
state, which allows it to have temporal behavior. By adding an
additional hidden layer of LSTM cells between the fully con-
nected neurons and the output layer, the CGF can potentially
learn from a sequence of tmax simulation ticks, which could
improve its performance in tactical maneuvers that span over
a longer period of time.

B. Learning tasks

Figure 1 provides an overview of the learning tasks used
in this study. In the first task (see Figure 1a), the goal of the
CGF is to rendezvous at random positions in an environment.
The second task (see Figure 1b) extends the first task by
adding obstacles to the environment. In the third task (see
Figure 1c), the goal of the CGF is to protect a high value
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(a) Task 1: Rendezvous (×= CGF, ◦= Position). (b) Task 2: Rendezvous with obstacle avoidance (×= CGF,
◦= Position, += Obstacle).

(c) Task 3: Protect high value individual (HVI) (×= CGF,
�= CGFmanual, ©= Guard area, ◦= HVI, M= Threat).

(d) Task 4: Bounding overwatch movement tactics (×= CGF,
�= CGFmanual, ©= Guard area, 7 = Goal).

Fig. 1: Learning tasks used to evaluate DRL in the context of CGF behaviors for ground combat simulation.

individual (HVI) from threats. In this task, the CGF must
learn to collaborate or adapt its behavior, given the behavior
of another, manually implemented, CGF. Finally, in the fourth
learning task (see Figure 1d), the goal is to learn the bounding
overwatch movement tactic [21]. In bounding overwatch two
entities collaboratively move towards a shared destination by
alternating their movements. When the first entity is moving
the other is overwatching and vice versa. This tactic is used to
move safely in high-risk areas where enemy presence is likely.

In this work an in-house developed simulator is used to
evaluate the DRL algorithms. The simulator provides an inter-
face from which the DRL algorithms can inject CGF actions,
retrieve a reward signal and, finally, extract image sequences
representing the CGF’s perception of the environment. The
simulator implements a basic action set that allows the CGFs
to move in four directions within the simulated environment
(aeast, awest, anorth and asouth). The action set also includes
an overwatch action, aoverwatch, which is used in the bounding
overwatch learning task as illustrated in Figure 1d. The sim-
ulator also embeds explicitly programmed CGFs representing
own, enemy and neutral forces as required by the learning
tasks.

C. Experimental setup

1) Neural network: The convolutional neural network used
by the three DRL algorithms in this paper is configured as
illustrated in Figure 2. The input layer takes as input 4 images
from the 4 latest simulation ticks. Each image consists of 80×
80 pixels. That is, the input layer consists of 4 × 80 × 80 =
25600 neurons each representing a gray scale pixel value. The
first hidden layer consists of 16 feature maps generated by
8 × 8 kernels. The second hidden layer consist of 32 feature
maps generated by 4 × 4 kernels. The third hidden layer is
fully connected using 256 neurons. Finally, the output layer
consists of one neuron per available action, so 4 or 5 neurons

depending on the learning task. The neural network structure
in Figure 2 illustrates the architecture used in DQL and A3C-
FF. The A3C-LSTM network has an additional hidden layer
of 256 LSTM cells between the 256 fully connected neurons
and the output layer.

Neurons
256

OutputConvolution
16 x 8x8

Convolution
32 x 4x4

Fig. 2: Network structure used in the DQL and A3C-FF
algorithms.

2) Hyperparameters: The hyperparameters for the DRL
algorithms discussed in Section III-A are listed in Table I.
The training of each CGF was set to a maximum number of
simulation ticks as specified in [19] (DQL) and [17] (A3C),
but was also constrained to maximum running time of 24h.

3) Reward functions: The reward function in the first task
rewards the CGF when reaching within dmin = 10 pixels
of any Oi positions in the environment. If the CGF attempts
to move outside the simulated environment, it is negatively
rewarded. The second task shares the same reward function as
the first task, with the exception that dmin = 5, to make the
task more difficult. The reward function for the reward, r, in
learning tasks 1 and 2 can be viewed in Equation 1.
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DQL
Variable Hyperparameter Value
C Target network update freq. 10 000
εstart Initial exploration rate 1.0
εend Final exploration rate 0.1
tannealing Annealing period 1 000 000
Dsize Replay memory size 1 000 000

A3C-FF
Variable Hyperparameter Value
P Parallel CGFs 16

A3C-LSTM
Variable Hyperparameter Value
P Parallel CGFs 16
tmax LSTM sequence length 5

TABLE I: A subset of the hyperparameters for the DQL and
A3C algorithms. All other hyperparameters were set according
to [19] and [17] respectively.

r =

 1 d(Oi, CGF ) < dmin

−1 moving outside the environment
0 otherwise,

(1)

In the third learning task, the CGF is rewarded when it
eliminates threats. However, eliminating threats while at the
same time leaving the HVI unguarded returns only a small
reward, since the HVI will be at risk for being approached by
the remaining threats. Thus, the task of the CGF is to learn to
collaborate with the manually implemented CGF, CGFmanual.
If the HVI is in the intersection of the guarding areas of the
CGF and CGFmanual, both CGFs will be able to eliminate
threats, ultimately returning a higher reward calculated based
on how much area the CGFs covered collaboratively. Since
the guarding area of each CGF has a radius of 10 pixels, their
Euclidean distance need to be less than dmax = 20 to protect
the HVI. The reward function for the reward, r, in learning
task 3 can be viewed in Equation 2.

r =


rd d(threati, CGF ) < 10 ∧HV I is guarded
0.1 d(threati, CGF ) < 10 ∧HV I is unguarded
−1 d(threati, HV I) < 5
−1 moving outside the environment
0 otherwise,

where

rd = d(CGFmanual,CGF )
dmax

(2)
In the fourth learning task, the CGF is rewarded based

on successful overwatch triggers and reaching the goal. The
CGF can trigger the overwatch only if it is within the other
CGF’s guarded area, resulting in a reward based on the
squared Euclidean distance of the advanced distance, dadv , of
CGFmanual. Limited by the radius guarding area, this distance
can at max reach dmax = 20. The reward function for the
reward, r, in learning task 4 can be viewed in Equation 3.

r =

 rd if action = aoverwatch ∧ CGFmanual is guarded
1 if d(goal, CGFmanual) < 10
0 otherwise,

where

rd =
(

dadv

dmax

)2
(3)

4) Performance evaluation metric: To evaluate the perfor-
mance of the trained CGFs, the reward signal from 1000
randomly initiated simulation runs is measured for each learn-
ing task. For each simulation run the maximum number of
simulation ticks was set to 2000.

IV. RESULTS

In this section we provide results from our experiments. The
line-plots in Figure 3 illustrate how the average reward changes
over time, t, for each algorithm and task during training. In
this plot, t = 0% and t = 100% represents start and end
of training respectively. The line-plots provide insight into the
algorithms’ ability to learn each task. The box-plots in Figure 4
represent the reward statistic (median, min, max, lower quartile
and upper quartile) after training, i.e. t = 100%, from 1000
randomly initiated simulation runs. The box-plots provide
insight into how well the algorithms are able to generalize.
High variance, represented by large boxes in the plot, generally
indicates poor generalization capabilities whereas low variance
and small boxes represent good generalization capabilities.

Experiment 1: In the first experiment, where the algorithms
are applied to learn the rendezvous task, there is a distinct
learning performance difference between the DQL algorithm
and the two A3C algorithms. In Figure 3a we observe that
A3C-FF and A3C-LSTM averaged a reward of 500 at t = 10%
and then improved to approximately 550 at the end of training.
The DQL algorithm averaged a reward value of approximately
250 at t = 20% and maintained this value, with some variation
due to exploration annealing, to the end of training. The box-
plots in Figure 4a indicate that the A3C variants are able to
generalize whereas DQL struggles to adapt to new, randomly
initiated, environments.

Experiment 2: In the second experiment the algorithms are
applied to learn how to rendezvous while at the same time
avoiding obstacles. In this case the A3C-LSTM algorithm
outperformed A3C-FF as illustrated in Figure 3b. A3C-LSTM
averaged a reward of approximately 300 at the end of training
whereas A3C-FF only managed to average a reward value
of 150. The DQL algorithm, although slowly increasing its
reward throughout training, failed to learn this task. DQL only
averaged a reward of 20 at the end of training. From the
box-plots in Figure 4b we observe that A3C-LSTM is able
to generalize well whereas A3C-FF struggles to perform in
randomly initiated environments.
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(c) Experiment 3: Protect HVI
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(d) Experiment 4: Bounding overwatch

Fig. 3: Line-plots representing the average reward over time, where t = 0% and t = 100% represents the start and end of
training respectively, for each learning algorithm and experiment.

Experiment 3: In the third experiment the learning task is
to collaboratively protect an HVI from threats. From Figure
3c we can observe that the averaged reward of A3C-FF and
DQL at the end of training are relatively low compared to
A3C-LSTM. From Figure 4c we also observe that A3C-LSTM
is the only approach that is able to generalize.

In this experiment positive rewards are given when threats
are eliminated and negative rewards are given when threats
manages to move too close to the HVI. A3C-LSTM learned to,
at all times, stay close to the HVI whereas DQL and A3C-FF
at times moved away, leaving the HVI vulnerable to threats.

Experiment 4: In the fourth experiment the task is to
learn bounding overwatch. In this experiment DQL failed,
see Figure 3d, to learn the bounding overwatch movement
tactic. DQL ended up with an averaged reward near 0 after
training. The learning curves of A3C-FF and A3C-LSTM
diverge slightly since A3C-FF converged faster. The box-
plots also indicate that they perform similarly with respect
to generalization capabilities.

V. DISCUSSION

Experiments show that A3C-LSTM successfully learned all
tasks within reasonable training time. The temporal ability
(enabled by the LSTM part of the algorithm) increased the
overall reward for learning tasks 2-3 over A3C-FF. The DQL
approach could not match the performance of A3C-LSTM in
any of the tasks. We hypothesize that the DQL algorithm needs
more training time to converge to valid solutions.

Here the algorithms learn the simulated tasks directly from
raw images and feedback (i.e. reward) provided by the simu-
lator. Even though these tasks are scriptable by a human we
argue that the algorithms can potentially learn more complex
tasks. The advantage with self-learning algorithms is therefore
two-fold: the ability to efficiently come up with solutions to
a given task without involving human intervention, and in an
online setting where new situations arrive which cannot be
pre-scripted.

VI. CONCLUSIONS

In this work we have evaluated three DRL algorithms and
their ability to learn basic maneuverability tasks in simulated
ground combat scenarios. For each task we designed and
implemented a simulator capable of providing: image data
representing the state of the environment; an action repertoire
that allows for the CGF to move in the environment; and, a
reward function to signal good or bad decision making. Our
evaluation shows that A3C-LSTM was able to successfully
learn all tasks. DQL did worst and was unable to learn any of
the tasks to the level of A3C-LSTM. A3C-FF performed well
but was unable to match A3C-LSTM in tasks 2-3.

We conclude that DRL techniques has the potential to
improve current CGF behavior modeling practices. In future
works we intend to evaluate A3C-LSTM using a real-world
ground combat simulator.
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Fig. 4: Box-plots representing reward statistics from 1000 simulation runs. The plots were generated using the model found
after training, t = 100%, for each learning algorithm and experiment.
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