2016 IEEE International Conference on Systems, Man, and Cybernetics « SMC 2016 | October 9-12, 2016 « Budapest, Hungary

Evolved Creative Intelligence for Computer
Generated Forces

Linus J. Luotsinen, Farzad Kamrani,
Peter Hammar and Magnus Jindel
FOI - Swedish Defence Research Agency
SE-164 90 Stockholm, Sweden
Email: {linluo, farkam, petham}@foi.se

Abstract—This paper provides an example of using genetic
programming for engendering computational creativity in com-
puter generated forces, i.e. simulated entities used to represent
own, opponent and neutral forces in military training or decision
support applications. We envision that applying computational
creativity in the development of computer generated forces may
not only reduce development costs but also offer more interesting
and challenging training environments.

In this work we provide experimental results to strengthen our
arguments using a predator/prey game. We show that predator
behavior created by a computer, using genetic programming,
surpasses predator behavior manually programmed by humans
and argue that the sparse automatically generated code is unlikely
to be generated by a human and therefore can be considered as
a good example of computational creativity. Although the exper-
iments are not conducted in a real-world training simulator they
provide valuable insight that exemplifies the opportunities and
the challenges of computational creativity applied to computer
generated forces.

I. INTRODUCTION

Computer Generated Forces (CGF) are automated actors
within simulations of military scenarios. Such simulations are
used for the purpose of guiding military operations, as a
virtual testing ground for military equipment, and for training
military personnel and civilian relief workers [1]. CGFs are
often used in large-scale military staff exercises that are
otherwise too expensive to populate using human role-players.
CGFs with intelligent behavior are useful for making exercises
more realistic, thereby enhancing the value of training as
preparation for real-life action. Smart CGFs can also help
commanding officers to prepare for expecting the unexpected
and gracefully handling the collapse of well-prepared plans
in confrontation with intelligent opposition. A CFG could
represent an individual soldier, a unit, a vehicle, or any other
congregation of military units and logistic resources.

Despite the many applications and uses of CGFs they rarely
exhibit realistic behavior [2], [3]. This is particularly true in
tactical military training applications where CGFs often repre-
sent individual soldiers or vehicles that autonomously have to
reason, act, interact and even collaborate with players/trainees
and other CGFs.

T Deceased

978-1-5090-1897-0/16/$31.00 ©2016 IEEE

Rikke Amilde Lgvlid
FFI - Norwegian Defence Research Establishment
NO-2007 Kjeller, Norway
Email: rikke-amilde.lovlid@ffi.no

In this work we introduce, apply and evaluate techniques
used within the computational creativity research field to
gain insight into how such techniques can be used to reduce
CGF development efforts/costs and to improve the behavioral
aspects of CGFs.

II. BACKGROUND
A. Darwinian Evolution and Memes

Quantum computation luminary David Deutsch asserts [4]
that the only true source of creativity is Darwinian Evolution
(DE). The creativity of biological DE is obvious in the
many forms and variations of living creatures that doubtless
have come about by DE (doubtless according to the authors
and the dominating and evidentially well-supported school of
Darwinism in biology).

DE means that selectable items (the genotype) are replicated
by a mechanism including some randomness and that selection
for replication includes evaluation (of phenotypes) according
to a fitness criterion corresponding to the performance of
the phenotype in a test environment. The genotype can be
viewed as a code containing instructions for how to build the
phenotype, although it is known that environmental factors
also are important for the structure of biological phenotypes.
The phenotype represents the physical properties and behavior
of an individual [5]. It is interesting to note that all DE depend
on the presence of some machinery for decoding the genotype
and based on that build the phenotype. The brilliant invention
of biological life is that this translation machinery is part of
the phenotype and that the phenotype archives the genotype.

Memes are pieces of information that replicate by spreading
between communicating members of a society [6]. Humans
carry memes such as gestures (waving), religious ideas (cre-
ationism), scientific ideas (DE), cultural ideas (music, sports)
etc. Deutsch argues [4] that evolution of human cultures can be
explained as DE of human-created memes eventually resulting
in endless streams of innovation.

B. Genetic Programming

Genetic programming (GP) [7], [8] is DE applied to a pop-
ulation of computer programs. Variation is engendered by ap-
plying simulated reproduction and mutation to the population
of programs. Evaluation is done by testing the performance

SMC_2016 003063

2016 IEEE International Conference on Systems, Man, and Cybernetics « SMC 2016 | October 9-12, 2016 « Budapest, Hungary

of each individual program against a fitness criterion designed
by a human.

In our case fitness is performance with respect to controlling
a CGF in a simulated environment. Snippets of code (genes)
from high-performing programs propagate to the next gener-
ation of programs in the GP reproduction process. The code
of each individual controls the corresponding CGF behavior
in the test environment. The program code in GP is hence the
genotype and behavior in the simulation is the phenotype.

The GP algorithm needs some human input. A human
must design input and output formats and provide a library
of functions that can be used by the GP algorithm to build
computer programs. A human also must design the fitness
function so that it encapsulates all requirements on a solution.

C. Computational Creativity

Computational Creativity (CC) is an emerging branch of
computer science focusing on making creative computer pro-
grams and on understanding how creativity can be automated
[9]. There is no universally accepted definition of CC and no
hard criterion against which an ostensibly creative program
can be tested. We apply a human-centric definition of CC,
which means that a program is creative if a human observes
or experiences that the program contributes or outputs creative
ideas and solutions to the task at hand. It is generally agreed
that creativity, or more precisely the products of creativity,
must be novel and useful. Creativity can hence not be achieved
by repeating ideas that previously have been found to be useful
and it can also not be completely random, since random ideas
are unlikely to be of use in a practical context.

III. METHODS

In this paper, we study two different approaches used for
behavior modeling in simulations:

« the traditional approach, in which a domain expert pro-
vides suitable tactics and doctrine for the CGF to be
modeled by a programmer and,

o the computational creativity or machine learning ap-
proach, in which a generic algorithm such as GP is used
to automatically generate a behavior model from observed
behavior or self-play [10], [11].

In the results section, we compare the approaches with
respect to implementation effort and behavioral performance.
The remainder of this section lays out the general rules of the
simulation, the method used to acquire hand-written programs,
and the implementation of the genetic programming approach.

A. General Rules of the Hunting Game

The CGF behavior is implemented in the setting of a sim-
ulated hunting game, where a wolf preys on sheep. The game
is played on a board of 800*800 positions, each represented
by a pixel. Distances are Euclidean in units of pixels. Time is
measured in units of game ticks. A game tick is one internal
cycle of the game during which all participants make a move
and after which the screen is refreshed. The objective of the
wolf is to kill all of the sheep in as few time steps (game

ticks) as possible. The game ends when the wolf has killed all
the sheep or after a preset time.

1) Wolf Behavior: The wolf kills a sheep based on a
proximity condition. It will kill sheep within a distance of
less than 10 units. Note that the wolf can kill several sheep
within one tick, meaning wholesale destruction of all sheep
caught within a radius of 10 units from the wolf. The speed
of the wolf is constant at 6 pixels per tick, and its constant
angular velocity when turning is 0.08 radians per tick. The
wolf-control algorithms discussed here have no means for
adapting the speed or angular velocity.

The wolf’s sensors pinpoint the center of the herd. Its
turning behavior is controlled by a program. The inputs to the
program are the coordinates of the center of gravity of the herd.
The output is one of three actions: GO_STRAIGHT _AHEAD,
TURN_RIGHT and TURN_LEFT. TURN_RIGHT means that
the wolf turns right with the maximum allowed angular veloc-
ity. In the next tick the control algorithm decides if the turn
will continue or not. While pursuing the herd, the wolf will
kill the sheep that happens to fall within its strike radius. The
wolf will, however, not hunt isolated sheep unless an isolated
sheep falls in its killing zone while the wolf heads for the herd
center. This is because no information about individual sheep
coordinates is available to the wolf control algorithm.

2) Sheep Behavior: Sheep behavior is a variant of flocking
behavior [12] in which each flocking individual displays auto-
mated behavior controlled by few simple rules, including short
range repulsion to avoid collisions with immediate neighbors,
and cohesive behaviors causing each individual to follow
companions in the direct neighborhood. Applying the flocking
rules result in a herd that moves collectively as expected from
a believable herd of sheep. Note that individual sheep do not
avoid the wolf in an optimal or very intelligent way. Flocking
in nature as well as in games offers safety in numbers rather
than optimal predator-avoidance for each individual member
of the herd.

The algorithm in [12] has been updated in [13] for the
purpose of taking into account that sheep in contrast to birds
and fish move in a 2D geometry and that sheep avoid predators
which means that a fourth behavior “escape” has been added
to the three basic behaviors of Reynolds’ model [12]. Sheep
behavior in the present model is represented by the total
velocity of the sheep as given by,

Vs = keon(1 + 0 () kweon)coh(s) + ksepsep(s)
Fkatig(1 4+ 0(r)kwatig)alig(s) + kescesc(s),
in which bold symbols are vectors, all vectors are velocities,
and the four vectors on the right-hand side are due to cohesion,
separation, alignment and escape behaviors respectively. The

variable r is the distance between the sheep at hand and the
wolf, while o(r) is a sigmoid function according to:

1 _
o(r) = ;tanfl (3020 T) +0.5. 2)

This term ensures that sheep behavior is influenced by
the distance to the wolf in a reasonable way so that escape

ey

SMC_2016 003064

2016 IEEE International Conference on Systems, Man, and Cybernetics « SMC 2016 | October 9-12, 2016 « Budapest, Hungary

behavior dominates when the wolf comes very close and the
herd behaves as a normal herd of grazing sheep when the
wolf is farther away than 300 pixels. Consider that the escape
behavior component, esc, intrinsically depends strongly on the
relative position between the sheep and the wolf and hence is
not multiplied by the sigmoid function.

The constants kcon, kwcohs Kseps Katigs Kwalig and kese in
Equation 1 are used for tuning sheep behavior and are given
in Table I. When o(r) takes a large value because the wolf
is close, cohesion and alignment behavior is strengthened so
that the sheep at hand will mimic the behavior of neighboring
sheep more than if o(r) is small which is the case when
the wolf is far away. Note that we are not experts on sheep
behavior so we do not know if this is correct from an ethology
point of view.

TABLE I: Constants used in Equation 1.

Parameter Setting Parameter Setting
kcon 0.4 kwecoh 40.0
kalig 0.3 kwalig 2.0
kesc 900 ksep 1100

Flock cohesion means that all sheep are attracted to the
center of the flock according to,

Pcentroid Ps : (3)
|pcentr0id - ps|
where pcentroiq and ps are the vector positions of the flock
centroid and the sheep at hand, respectively.

Collision avoidance between sheep is guaranteed by the
separation term in Equation 1, calculated by

sep(s Z

i#S
where s is the index of the sheep for which the velocity is
computed, n is the total number of sheep, and ¢ is a small
number to avoid division with zero. All sheep in the herd
contribute to the sum in Equation 4. An explicit separation
term with the inverse quadratic form is necessary to avoid too
cohesive herds in which case the wolf could exterminate the
entire herd in one fell swoop.

Neighboring sheep adapt their speed to each other via the
alignment mechanism,
= > i ®)

i€ Ny (8)

coh(s) =

(Ips — pi| +¢)72,)
Ips z|

alig(s

in which all sheep in the neighbor group N,;(s) contribute,
v; is the velocity of the i*” member of the neighbor group.
The neighbor group comprises all sheep within a radius of
50 pixels from the sheep, s, for which we are refreshing the
velocity.

In the presence of a predator, a strong repulsive component
is added to the sheep behavior before calculating the velocity
of each individual sheep, resulting in the flock avoiding the
wolf [13] according to,

Ps — Pwolf <ps_pwolf| +5)2’ (6)
|ps _pwolf‘ 10

esc(s) =

in which p.;y is the position of the wolf, p, and ¢ are defined
as before.

B. Manual Programming

For the human-written programs we have asked several
experienced programmers to develop the most efficient and
intuitive wolf-behavior they could think of. The programmers
were first introduced to the game and its objectives. Next, we
provided a template program to describe how to read/interpret
wolf sensor data and how to invoke wolf actions. Implemen-
tation time was limited to 2 hours, which is also the stopping
criteria for our GP implementation.

C. Genetic Programming

In this study we used the ECJ-toolkit! which implements
GP algorithms described by [7]. Unless otherwise stated, the
GP algorithm used in this work follows the default parameter
settings as defined by the ECJ-toolkit.

1) Program Representation: In GP a program is typically
represented using a tree-structure that consists of terminal
and function nodes. Terminal nodes represent leaves in the
program tree and consist of either constants or variables such
as the location and orientation of the wolf. Function nodes
take as input one or more nodes, such as a leaf or the result
of another function, and return a single value that in turn can
be fed into another function node. In this work we have used a
strongly typed GP algorithm in which the nodes in the program
tree have constraints associated to their inputs and output. The
nodes available to the GP are presented in Table II.

TABLE II: List of all terminal (T) and function (F) nodes used
by the GP algorithm.

Name Node Description

T T x-coordinate of wolf.

Yw T y-coordinate of wolf.

Qw T Orientation of wolf in degrees.

Th T x-coordinate of herd centroid.

Yn T y-coordinate of herd centroid.

T T The constant 7 in radians.

— F Subtraction.

atan2(z,y) F Calculates the radian angle 6 from
the conversion of rectangular coordi-
nates (z, y) to polar coordinates (r,
0).

deg2rad(a) F Converts a from degrees to radians.

rad2deg(a) F Converts a from radians to degrees.

dist(a,b) F Calculates the shortest angular dis-
tance in range [—, 7| between ra-
dian angles a and b.

norm(a) F Normalizes radian angle a to range
between [—r, 7).

An example program tree, manually implemented by one
of our programmers, is illustrated in Figure 1. This program
translates to a behavior where the wolf always turns and strikes
towards the center of the herd.

Thttps://cs.gmu.edu/~eclab/projects/ecj/

SMC_2016 003065

2016 IEEE International Conference on Systems, Man, and Cybernetics « SMC 2016 | October 9-12, 2016 « Budapest, Hungary

@
@) (@)

RRE

ololola

Fig. 1: Program, developed by a human programmer, repre-
senting an intuitive behavior where the wolf turns and strikes
towards the center of the herd. A GP tree-structure is used to
visualize the program. Leaf nodes, at the bottom of the tree,
represent input variables from the wolf’s sensors and the root
node, at the top of the tree, represents the return value used to
determine the wolf’s desired direction. Table II explains the
meaning of each node in the tree.

2) Fitness Function: The fitness function used in our
experiment evaluates the performance of each program by
calculating a weighted sum of the average distance between
the wolf and the centroid of the herd, ¢;, and the number of
living sheep at the end of the simulation, c¢;, as follows:

fitness = ¢; x w; + ¢ * wj, @)

in which, w; and w; are parameters (weights) for tuning the
fitness function,

Tend
¢ = Z o = 2n) + Gu® =0 o
' part Tena * mazxDistance ’
d
. numLivingSheep(Tenq)
% = : ©)
numdSheep

In Equations 8 and 9, maxDistance is the maximum
distance between two points on the game board, T, is the
number of game ticks processed by the end of the simulation,
and numLivingSheep(Tenq) is the number of living sheep
by the end of the simulation. (z, ¥,,) and (zp, yn) are the
x-y coordinates of the wolf and the herd centroid, respectively.
Fitness is a value that varies between 0 and 1. Lower fitness
value represents a more efficient hunter than a higher fitness
value.

3) Experimental Setup: The GP algorithm used here was
configured to use a population of 1000 programs and to stop
its search after 10 generations. The GP algorithm uses an
elitist approach which means that the most fit program of
a generation is always included in the next generation. The
aforementioned fitness function was initialized as defined in
Table III. For each fitness evaluation the simulator executed
at most 600 ticks. The weights w; and w; were set to
reward programs, or wolf behaviors, capable of killing sheep
as opposed to herding them. We empirically selected these
configuration values to ensure that the GP algorithm would be

able to finish within 2 hours, which is also the implementation
time given to the human programmers.

TABLE III: Parameter settings for the fitness function.

Parameter Setting Description

Tmax 600 Maximum simulation ticks to
execute.

numsSheep 46 Number of sheep at start of
simulation.

mazxDistance V2 % 800 Maximum distance between
two objects on the game board.

w; 0.1 Weight of average distance fit-
ness component.

w; 0.9 Weight of killed sheep fitness
component.

IV. RESULTS

Let us now compare the wolf behavior developed by skilled
human programmers with the wolf behavior developed by the
computer using GP.

The code or program of the GP-evolved wolf behavior is
shown in Figure 2. In contrast to the best human-generated
program in Figure 1, in which the wolf goes for the center of
the herd, we have not found any easy, intuitive, explanation
for the GP-evolved behavior. Most programmers that we have
asked to review the GP-evolved program consider it to be
poorly programmed. Yet, as we shall discuss next, it performs
better than the human-generated program in simulations.

The fitness plot in Figure 3 shows the fitness value of the
best GP-program, that is, the one with the lowest fitness value,
for each generation. From the figure we observe that the best
program (i.e. Figure 2) was found in the 7*" generation. We
also observe major improvements in fitness, or innovation, in
generation 3 as well as in generation 6 and 7. Note also, as
a result of the elitist GP approach, that the fitness value from
one generation to the next never worsens. It either improves
or remains constant.

A. Comparing Human and GP-generated Code

We tested both variants of wolf-behavior code in the sim-
ulator using identical starting conditions, finding that the best
human-programmed code, see Figure 1, killed all the sheep in
1717 game ticks while the machine-generated code in Figure 2
required only 953 cycles to kill all sheep, thus outperforming
the human-generated code. Figure 4 plots the performance
with respect to number of living sheep for all implementations
over time. In this plot we observe that the GP-program,
unlike the human-generated code, is able to efficiently and
consistently kill sheep no matter the size of the herd.

Since the code of Figure 2 is incomprehensible in its
strategy and outshines the code of Figure 1, which implements
the simple strategy of turning towards the center of the herd,
the former code could be construed as being creative in that it
is both novel (incomprehensible and breaks implicit rules for
quality in programming) and provides value (kills sheep faster
than the competition).

SMC_2016 003066

2016 IEEE International Conference on Systems, Man, and Cybernetics « SMC 2016 | October 9-12, 2016 « Budapest, Hungary

dist

alojolialo

Fig. 2: Wolf behavior as evolved by GP. Refer to Table II for an explanation each node in the tree.

1 2 3 4 5 6 7 8 9 10
Generation

Fig. 3: Fitness of the best GP-program within each generation.

B. Emergent Intelligence

In Figure 5 we use trace-plots to render the behavior of the
best human-programmed code and the GP-code. The trace-
plots where generated using the same starting positions of the
wolf and the sheep. Figure 5b shows that the GP-wolf herds
the sheep towards the corner while occasionally raiding the
concentrated flock. The best GP-wolf is a curious combination
of white-fanged killer and placid herding dog. It herds the
sheep to concentrate near the corner and intermittently strikes
thereby finding many sheep within its killing zone. This deadly
combination has emerged spontaneously from the evolutionary

Programmer-1
— — - Programmer-2
=== Programmer-3
'''''''''' Programmer-4
= GP-program

Living sheep

3000 3500

1500
Time (game ticks)

0 500 1000 2000 2500

Fig. 4: Performance plot of all implementations over time.

process and we think that this is a good example of emergent
creativity.

We admit that the trace plot of the manually programmed
wolf in Figure 5a also displays herding behavior. The GP-wolf
is, however, much faster in driving the herd into a corner and
can as a result exterminate the sheep within a shorter time.

C. Generalization

The results presented so far were created using the same
starting positions of the wolf and the sheep. That is, although
these experiments provide valuable insight, they do not mea-
sure how well the different implementations generalize and

SMC_2016 003067

2016 IEEE International Conference on Systems, Man, and Cybernetics « SMC 2016 | October 9-12, 2016 « Budapest, Hungary

100 200 300 400 500 700 800

Wolf
Herd

rvil W

1001

200}

300

400 ¢

500

600

7001

800 . .

(a) Trace plot of best manually programmed wolf.

0 100 200 300 400 500 600 700 800

Wolf

Herd
100+ 8

200} 1

300 1

400 ¢

500

600

7001

800 1 1 1 1 1 1
(b) Trace plot of GP-evolved wolf.

Fig. 5: Trace plots illustrating the wolf’s and herd’s (centroid) movement behavior. Circles and diamonds indicate starting and

ending positions respectively.

perform using different starting conditions. In this section
we measure and compare the generalization capabilities of
each implementation by randomly initiating the wolf’s starting
position in the simulator. We then execute each implementation
in the simulator 100 times and measure the number of game
ticks each program requires to kill all sheep. We limited the
simulator to execute at most 7200 game ticks. Results from
this experiment are summarized using descriptive statistics as
presented in Table IV and using a box plot as illustrated in
Figure 6.

From Table IV it is clear that the GP-program on average
performs better than any other implementation. Furthermore,
looking at the standard deviation (Std) and the confidence
interval (CI 95%) we can conclude that the GP-program is
also the most robust and stable implementation. Noteworthy
is also that the GP-program, at least once, were able to kill
all sheep in 438 game ticks at a rate of 0.11 kills/tick. In the
worst case, the GP-wolf killed all sheep in 2664 game ticks
which is similar to the average performance of Programmer-
3 and Programmer-4 and significantly better than the average
performance of Programmer-2.

Looking at the box plot in Figure 6 we can also con-
clude with 95% confidence that (since the notch of the GP-
program does not overlap with any other notches) the true
median of the GP-program differs from the medians of the
manual implementations. From the box plot we can also ob-
serve that the worst performing wolf-behavior was written by
Programmer-2. Programmer-3 and Programmer-4 performed

similarly. The best human program (see Figure 1) was written
by Programmer-1.

TABLE 1V: Descriptive statistics measuring the number of
game ticks each program requires to kill all sheep using data
collected from 100 simulations per implementation. CI 95%
represents the confidence interval using a 95% confidence
level.

Program Mean Std Min Max | CI 95%
Programmer-1 1934.28| 500.94 | 1098 | 3811 | £99.40
Programmer-2 | 4281.12| 2114.09| 1246 | 7200 | +419.48
Programmer-3 | 2641.48| 688.67 | 1121 | 4783 | +136.65
Programmer-4 | 2735.54| 799.07 | 826 6401 | £158.55
GP-program 1444.71| 369.14 | 438 2664 | £73.24

V. DISCUSSION

Our choice of rules for sheep behavior is based on experi-
mentation and on selecting rules and parameters to fulfill our
intuitions about likely sheep flocking behavior.

We confess that our intuition about sheep could be wrong,
since all of the authors are city boys/girl and not professional
sheepherders/shepherdess. We have not attempted to include
the latest scientific research with respect to sheep and wolf
behavior in this paper. We are well aware that the game is
quite crude from an ethology point of view and is hence
not an accurate description of naturalistic sheep’s and wolf’s
behavior.

SMC_2016 003068

2016 IEEE International Conference on Systems, Man, and Cybernetics « SMC 2016 | October 9-12, 2016 « Budapest, Hungary

7000 7

6000 - b

o 5000 b

4000 —_

3000+ 1

Time (game tick

2000

1000 - -+ _{_ .

Programmer-1Programmer-2Programmer-3Programmer-4 GP-program

Fig. 6: Box plot comparing all implementations with respect
to medians (50th percentile), 25th and 75th percentiles, min,
max, outliers (4) as well as comparison intervals (notch).

We consider that individually smarter sheep with better sen-
sors would be much more difficult to prey. Sheep avoid being
caught only by the logic of the selfish herd [14] according to
the collective flocking rules described above in which all sheep
share the same behavior algorithm. The present simulation
assumes that sheep lack accurate sensors, knowledge about
the predator capabilities, and tactical shrewdness. Since prey
animals have evolved under the dominating selection pressure
of predation, these seem to be rash and perhaps unwarranted
assumptions. We should give more credit to sheep intelligence
in future work, perhaps by co-evolving sheep and wolf intel-
ligence. This could well result in a much smarter wolf with
a much higher capacity for hunting smart as well as stupid
sheep.

Furthermore, based on our observations from running the
simulation many times, we observe that the herd is quickly
exterminated once it is driven into a corner of the field. One of
the advantages of the GP-wolf is that it seems to herd escaping
sheep back into the corner by running back and forth imitating
the behavior of a herding dog.

The reason for the rapid demise of a cornered herd is
that Equation 1 to Equation 5 include no information on the
positions of the corners, which makes it possible for the sheep
to accumulate in significantly large groups within the wolf
striking distance of 10 pixels, so that the wolf can kill many
sheep in one move once the herd is cornered. It would be
possible to modify the flocking model to make the herd avoid
corners and even by include a scatter mechanism if the sheep
are packed too tightly.

Finally, we want to clarify that we do not claim that wolves
in the wild behave as in our simulation that is indiscriminately
killing all prey animals within reach. We do not want to add
to unnecessary vilifying of predators.

VI. CONCLUSIONS

Based on Deutsch’s conjecture that all creativity is based
on Darwinian evolution we have demonstrated emergent com-
putational creativity by using genetic programming for de-
veloping intelligent behaviors in a simple game simulating a
wolf hunting flocking sheep. We found that the wolf hunting
behavior evolved by genetic programming is not only more
efficient but also able to generalize better than the correspond-
ing behavior programmed by proficient humans, and that it
is unlikely that a human would develop the same code as
the genetically programmed one. Perhaps, the most interesting
finding in this work is that the results indicate that a computer,
running a GP algorithm, can generate CGF behaviors that
appears to be too complex to model or implement using the
manual programming approach.

Even though the results in this work were acquired using a
toy-problem they provide valuable insight into the opportuni-
ties as well as the challenges of our computational creativity
method and, ultimately, its real-world application. In future
works we intend to apply the approach to generate CGFs in the
context of the Virtual Battlespace 3 (VBS3) warfare simulator
(developed by Bohemia Interactive Simulations?). VBS3 is a
simulator used for tactical training within the armed forces of
Sweden, Norway and many other nations worldwide. Major
challenges, identified in this work, related to the planned VBS3
experiment include:

1) Real-time simulation: VBS3 is a simulator where ac-
tions, performed by CGFs or human players, are exe-
cuted in real-time. Hence, unlike the toy-problem pre-
sented here, fitness evaluation using VBS3 will also
execute in real-time, ultimately, limiting number of eval-
uations that can be performed in the search for a creative
and intelligent CGF behavior. The most commonly used
approach to resolve this issue is to distribute fitness eval-
uation using high-performance computing and clusters.
Another interesting approach that we are investigating in
parallel [10], [11] to this work is to use a hybrid learning
approach where the initial population of CGFs are
initiated, not by random, but with CGFs that first have
been trained using observational learning (implemented
using supervised machine learning techniques) [15].

2) Fitness function: The fitness function is critical to the
successful application of GP. The purpose of the fitness
function is to define the desired behavior of the CGF.
However, defining the desired behavior in a single
function is difficult and requires careful consideration.
To the best of our knowledge there is no silver bullet
that can be applied to this issue. Hence, developing a
fitness function to generate intelligent CGF behaviors in
VBS3 will most likely be a painstaking, iterative trial-
and-error, process. The goal would be to create a fitness
function that, similar to the fitness function presented in
this work, is modular and easily modified by the end-
user using weights.

Zhttps://bisimulations.com/

SMC_2016 003069

2016 IEEE International Conference on Systems, Man, and Cybernetics « SMC 2016 | October 9-12, 2016 « Budapest, Hungary

3) Complexity: The complexity with respect to the syn-
thetic environment, physics, level of details, model fi-
delity, sensors and available actions in a warfare simu-
lator such as VBS3 will significantly impact the search
space of the GP algorithm. In a tactical warfare simulator
the CGF must be able to realistically interact with the
synthetic environment, as well as with both human role-
players and other CGFs. The input variables (leaf nodes
in the GP tree) must provide in addition to the position of
the CGF itself, the positioning of (relative to the CGF’s
perception) visible teammates, opponents, environmental
objects, etc. Also, the list of function nodes have to be
extended to ensure that the inputs can be transformed
into a meaningful behavior through the GP’s mutation
and crossover operators.

Needless to say the above challenges are indeed intimidat-
ing. However, the potential payoff of successfully applying
the computational creativity approach to model better, more
creative and intelligent CGFs for military training applications
is significant. It would improve training efficiency and lower
costs. It would reduce the number of human role-players
required to support and stimulate the trainees. Ultimately,
it is our belief that it could also better prepare military
commanders, staffs and soldiers for surprising, unexpected and
high-impact events.

ACKNOWLEDGMENT

This paper is the result of a collaborative effort by the
Swedish Defence Research Agency (FOI) and the Norwegian
Defence Research Establishment (FFI).

The work was supported by the FOI research project “Syn-
thetic Actors”, which is funded by the R&D programme of
the Swedish Armed Forces, and by the FFI research project
“Cost efficient training for the Norwegian Armed Forces”.

This paper would not have been possible without knowl-
edge accumulated in the project “Computational Creativity”
commissioned by FMV, the Swedish Defence Materiel Ad-
ministration.

(1]

[2

—

(3]

[4

=

(31
(6]
(7]
(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

M. Tambe, W. L. Johnson, R. M. Jones, F. V. Koss, J. E. Laird,
P. S. Rosenbloom, and K. Schwamb, “Intelligent agents for interactive
simulation environments,” AI Magazine, vol. 16, no. 1, pp. 15-39, 1995.
N. Abdellaoui, A. Taylor, and G. Parkinson, “Comparative analysis
of computer generated forces’ artificial intelligence,” RTO-MP-MSG-
069 - Current uses of M&S Covering Support to Operations, Human
Behaviour Representation, Irregular Warfare, Defence against Terrorism
and Coalition Tactical Force Integration, 2009.

A. Toubman, G. Poppinga, J. J. Roessingh, M. Hou, L. Luotsinen,
R. A. Lgvlid, C. Meyer, R. Rijken, and M. Turcanik, “Modeling CGF
Behavior with Machine Learning Techniques: Requirements and Future
Directions,” in Proceedings of the 2015 Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC), Orlando, Florida,
2015.

D. Deutsch, The beginning of infinity: explanations that transform the
world. Penguin Books, 2012.

F. B. Churchill, “William johannsen and the genotype concept,” Journal
of the History of Biology, vol. 7, no. 1, pp. 5-30, 1974.

R. Dawkins, The selfish gene. New York: Oxford university press,
1976.

J. R. Koza, Genetic programming II: automatic discovery of reusable
programs. Cambridge, MA, USA: MIT Press, 1994.

, Genetic programming: on the programming of computers by
means of natural selection. Cambridge, MA, USA: MIT Press, 1992.
J. McCormack and M. d’Inverno, Computers and creativity. Springer,
2012.

L. J. Luotsinen and R. A. Lgvlid, “Data-driven behavior modeling for
computer generated forces,” in NATO modelling and simulation group
symp. M&S support to operational tasks including war gaming, logistics,
cyber defence (MSG-133). NATO, 2015, pp. 1-13.

F. Kamrani, L. Luotsinen, and R. A. Lgvlid, “Learning objective agent
behavior using a data-driven modeling approach,” IEEE International
Conference on Systems, Man, and Cybernetics, 2016.

C. W. Reynolds, “Flocks, herds and schools: a distributed behavioral
model,” SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 25-34, Aug.
1987.

M. Barksten and D. Rydberg, “Extending Reynolds’ flocking model to
a simulation of sheep in the presence of a predator (bachelor’s thesis),”
2013.

W. Hamilton, “Geometry for the selfish herd,” J. of Theo. Biology,
vol. 31, no. 2, pp. 295-311, 1971.

G. Stein and A. J. Gonzalez, “Building high-performing human-like tac-
tical agents through observation and experience,” in IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, pp. 792—
804.

SMC_2016 003070

