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Abstract—In military simulations, software agents are used to
represent individuals, weapon platforms or aggregates thereof.
Modeling the behavioral capabilities and limitations of such
agents may be time-consuming, requiring extensive interaction
with subject matter experts and complicated scripts, but never-
theless resulting in rigid, predictable performance. Autonomous
agents that learn desired behaviors themselves using Machine
Learning (ML) techniques can overcome these shortcomings.
However, such techniques are not yet widely used and perhaps
underappreciated. In this context, the latin expression “multum
in parvo” (“much in little”) denotes that ML agents are able
to yield a large variety of behavior, despite their compactness in
terms of code and usage of physical memory. This paper attempts
to provide some background on applicable Machine Learning
solutions and their potential military application. The paper is
based on the work of the NATO Research Task Group IST-
121 Machine Learning Techniques for Autonomous Computer
Generated Entities.

I. INTRODUCTION

Software agents are used in a variety of military simulation-
based applications. These agents are similar to non-player
characters (NPCs) in computer games and are able to au-
tonomously sense, reason and act in a virtual environment.
They are used in military training to reduce role-playing, and
also in decision support applications such as planning and
acquisition.

End users such as scenario developers, operators or exercise
leaders at military training facilities often complain about the
autonomous agents acting unrealistically or that the agent’s
decision making skills are too primitive and cannot be used
effectively [1]. As a result, instead of using autonomous agents
and to guarantee that the learning objectives are met, they
rely heavily on human role-players to do the most important
or critical reasoning. This approach may work well in small
exercises, but it is a limiting factor in large scale exercises
where many role-players are needed to stimulate the trainees,
or when the task requires role-players with complex, special-
ized competence like fighter pilots emulating opposing forces.

Machine learning algorithms are the key enabler in a wide
variety of applications today. For instance, Q&A-systems, lan-
guage translation engines, search engines and recommendation
systems all rely on machine learning to identify patterns in data
that could not be identified using any other method. Given this

background, the objective of this paper is to provide insight
into, and suggest solutions for, the use of machine learning
techniques to improve behavior modeling in software agents
in military simulations and to facilitate end users. The insights
and recommendations we provide primarily originate from our
own research endeavors and experiences, but are also based
on our earlier work in the NATO Research Task Group [2],
[3]. For instance, in this paper we provide experimental results
that indicate that machine learning techniques can be used to
imitate the behavior of human role-players, learn collabora-
tive behaviors, generate behaviors that are both creative and
innovative, generate elements of surprise by making the agents
learn on the fly, and learn from not only pre-processed data
but also from raw video and pixels.

In Section II we provide and overview of different types of
machine learning. Section III provides illustrative examples,
from the NATO group’s members, of solutions for behavorial
modeling of software agents using these techniques. Our
experiences are discussed in Section IV.

II. MACHINE LEARNING TECHNIQUES

In general, machine learning techniques can be divided
in three ways. The first division is between supervised,
unsupervised and reinforcement learning methods [4], [5]
(Section II-A). The second division is between techniques
capable of online and/or offline learning (Section II-B). The
third division is between the amount of preprocessing of the
data required to uncover features (Section II-C).

A. Supervised, unsupervised and reinforcement learning

Supervised methods are fed pre-labeled data, e.g. situations
labeled with ”correct” actions. The machine learning algorithm
tries to discover the correct mapping between the situations
and the labels, so that unseen situations can be acted upon.
Unsupervised learning algorithms are fed unlabeled data and
are for example used to find hidden patterns in data. Clustering
methods, for example, excel at dividing data into categories
that may not be obvious to human experts.

Reinforcement learning methods are based on ”learning by
doing”. These methods do not learn from existing examples
of ”correct” actions as in supervised learning, but create their
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own examples while interacting with the environment. Actions
that cause a change in the environment may produce a reward
which indicate whether taking a certain action was good (or
bad) in a certain state of the environment [6]. This reward is
usually calculated by some predefined evaluation function.

In Section III we provide examples of applying both super-
vised and reinforcement learning methods, including evolu-
tionary algorithms, to generate agent behavior. Unsupervised
learning is not covered explicitly since it is often not suited for
learning behavior models in military simulations. The specific
behavior to learn is generally known beforehand and can be
learned in a supervised manner using expert knowledge (as
labeled data or rewards). Without any learning supervision this
can easily lead to unwanted behavior models.

B. On- and offline learning

The second division of machine learning techniques is
between techniques that can be used in an online and/or offline
fashion [7]. In the context of machine learning for software
agents in simulations, agents learn to map observed situations
to particular actions. Online learning means that observation-
action mapping is learned during operation. In turn, offline
learning means this mapping is learned before the agents are
deployed for their actual purpose.

Both online and offline learning have their advantages and
disadvantages. Online learning methods have time constraints
since learning is done during the operation of a system.
However, they are also capable of learning from new, un-
seen situations as they arise. Though the danger of online
learning is that newly learned behavior cannot be validated
prior to deployment. Offline learning methods have no time
constraints, as they do the learning before operation. This also
allows testing the properties of the learned behavior models
beforehand. Some methods are flexible and can be used both
offline and online, providing the best of both worlds.

C. Features of data

In the applications we are discussing, agents learn to map
observed situations to particular actions. An important issue
is how to recognize the situation itself. Traditional methods
require knowledge of features that identifies the situation and
these features need to be extracted from the observed data.
Deep learning is a family of machine learning methods based
on learning representations of data. An observation, such as
an image or video frame, can be represented in many ways
such as an array of pixels, a set of edges, or shapes. Some
of these representations may be easier to learn than others by
traditional methods. Deep learning is a relatively new area
in machine learning that refers to the use of deep neural
networks that can learn directly (e.g. face recognition) from
raw data examples/representations. Deep learning may be able
to replace handcrafted features with efficient algorithms [8].
In Section III-C we include examples of our experiences
with deep reinforcement learning (DRL) for software agents,
a variant of deep learning that incorporates a reinforcement
learning component.

Fig. 1. Schematic view of the
learning process with the DS tech-
nique. A script is generated with
rules from rulebase. The script is
used to control an agent. Success
or failure of the controlled agent
is fed back to the rules that were
used.

III. CASE STUDIES

In this section we look at different examples of machine
learning applications for agent behavior. We discuss the spe-
cific techniques that are used, and how they are applied to
address the needs of end users.

A. Dynamic Scripting

Dynamic Scripting (DS) is a reinforcement learning tech-
nique [9] which was developed to automatically generate
behavior for non-player characters (NPCs) in video games.
At NLR, we are investigating the use of DS for generating air
combat behavior models for military training simulations.

DS works in with a rule base of predefined if-then rules
that map situations to actions. Each rule is assigned a weight
value. DS attempts to find the optimal combination of rules
by which an agent can be controlled. It does so by repeatedly
drawing rules from the rule base, based on their weight value.
If the agent, controlled by the drawn rules, is successful in
some way (i.e., it has completed some task), the rules that
led to the success receive a higher weight. This increases
the probability that those rules will be drawn in follow-on
attempts. The learning process is shown in Figure 1.

In the context of military simulations, software agents often
exist in a simulated environment that they can observe. In
essence, these observations are the data that the agents can
learn from, using DS. The observations typically consist of,
e.g., the coordinates of the agent, the physical state of the agent
(e.g., moving, airborne, damaged), and similar properties of
agents that have been detected with the agent’s sensors. The
observations of an agent are used to check whether the if-then
rules from the rulebase should fire. To keep the rules maintain-
able by humans, it is advisable to create higher level features
from the observations. For example, an agent’s position and
speed vector may, when combined, indicate that an agent is
about to attack. In this case, the creation of a new is-about-to-
attack feature will allow subject matter experts to more easily
write rules, compared to letting them write complicated if -
statements checking many low-level observations.

DS can be applied both offline and online. In this context,
an offline setting entails letting software agents learn to defeat
other software agents (rather than human opponents). A benefit
of offline learning is that many simulations can be run in a
faster than real-time manner. However, not all situations that
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an agent might encounter can be prepared for with offline
learning. In an online learning setting agents would be able
to dynamically adapt their behavior to that of their human
opponents, who might try to outsmart the agents in new,
unforeseen ways.

At NLR we have successfully used DS to generate air
combat behavior in an offline fashion. Using DS, agents are
able to quickly find tactics (in the form of combinations of
rules) with which other agents (using scripted behavior), could
be defeated [10]. The next step is bringing these agents to
human-in-the-loop simulations. In the future, DS might be
applied online in these simulations, such that the agents can
directly learn to counter the tactics of human participants. This
way, machine learning can create challenging personalized
simulations, based on the human’s actions.

B. Data driven behavior modeling

Traditionally, behavior models for autonomous agents in
military simulations are generated manually by interviewing
subject matter experts and translating the information into
code. This is time consuming and expensive. FFI and FOI
are cooperating on investigating the use of machine learning
to generate behavior models from examples, i.e. using offline,
supervised learning. This is called data driven behavior mod-
eling (DDBM).

Training data can be generated by recording behavior of
virtual characters in example situations within an existing
simulation environment. The behavior can be scripted or
controlled by humans in first person shooter modus. Relevant
features must be extracted from the recorded data and machine
learning is used to generate behavior models that can be reused
in new, similar situations.

FOI used machine learning to create autonomous agents
that learn bounding overwatch for dismounted infantry, which
is a military tactical movement used to improve the security
of units when they are moving towards a target. In bounding
overwatch, two units have different roles; while the bounding
unit moves towards the target, it is overwatched (protected)
by the halted overwatch unit. There are two types of bounding
overwatch: (i) alternating bounding, and (2) successive bounds,
which differ in whether the two roles are swapped or not.
While in the alternate bounding the roles are swapped when
the bounding unit has reached the overwatch unit’s protec-
tion range, in successive bounds, the roles of bounding and
overwatch unit remain the same throughout the movement.

In the FOI project, the DDBM approach is used to create
autonomous agents for VBS3 (Virtual Battle Space), a game-
based military simulation system [11]. The agents learn the
behaviors from earlier recorded and labeled data. The labeled
data is generated using scripted units in VBS3. The raw
data (together with labels) are preprocessed and a dataset
consisting of relevant features and corresponding labels are
produced, which are used to train the behavior models by
applying standard supervised ML algorithms (ID3 for decision
trees and back-propagation for neural networks). The results
of the study show that the agents are able to learn both

bounding overwatch behaviors correctly and generalize the
learned method to new unseen paths. The results from this
example are presented in [12]. The main contribution of the
work is that it successfully applies the DDBM concept in a
real-world simulation environment as VBS3.

FFI has started experimenting with learning behavior mod-
els from data that are commonly available in different military
simulation systems. The idea is that when generating behavior
models based on common data, these models can be used
in different simulation systems. One commonly supported
standard for data models in distributed simulations is the
High level architecture (HLA) [13]. Using HLA requires a
Federation Object Model (FOM) that describes the data that is
exchanged between the simulations systems, called federates,
during execution. It is common to use standardized FOMs,
known as reference FOMs, and then extend them to meet
the requirements of a particular project or program. One
such reference FOM that is often used in military simulation
systems is the Real-Time Platform Reference FOM (RPR
FOM) [14], [15].

At FFI we plan to use the RPR FOM to generate train-
ing data from recordings from human-like entities in VBS3
being manually controlled by humans and try to apply those
models to entities in another simulation system called Virtual
Reality Forces (VR-Forces) [16]. A federate independent of
the simulation system is used to apply the learned models and
command the entities in the simulation system. For controlling
the entities we use low level battle management language
(LLBML) as a FOM module extension to the RPR FOM.
Previous publications explain the use of LLBML to control
entities in military simulation systems [17], [18].

C. Deep Reinforcement Learning

Reinforcement learning (RL) is a method to solve sequential
decision making problems, where an RL agent interacts with
an environment over time. At each time step, the agent selects
an action depending on its state and following a policy (a
function that maps each state to an action). By performing
the action, the agent moves to the next state and receives a
scalar reward. As opposed to supervised learning, this reward
may not be the consequence of a single action, but rather
the consequence of a sequence of actions. Hence, there may
be a latency between receiving a rewards and performing the
actions that led to that reward.

The goal of the agent is to maximize the accumulated
reward (discounted over time by a discount factor) from each
state. The discounted accumulated reward (i.e. return) is a
representation of the long-term objective of the agent. One
common approach to find an optimal policy for any given
state is to learn the Q-function (i.e. an action-value function
that gives the expected return of taking a given action in a
given state and following the optimal policy thereafter) [19].

Below we discuss two case studies for DRL, namely learn-
ing a military tactic, the Bounding Overwatch (introduced in
sectionIII-B), and a serious game application for aviators.
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1) Bounding Overwatch: In [20], we have evaluated the
feasibility of three different deep reinforcement learning al-
gorithms: (1) Deep Q-Learning (DQL), (2) Asynchronous
Advantage Actor-Critic with a Feed Forward Network (A3C-
FF), and (3) Asynchronous Advantage Actor-Critic with a
Long Short-Term Memory (A3C-LSTM) to create autonomous
agents for different scenarios, among others, the bounding
overwatch tactic (discussed in sectionIII-B), using a simple
2D simulator, which simulates the agents and environment.

All the three algorithms (similar to other Q-learning) are
model-free, that is, the autonomous agent learns the task
directly using samples from the simulator, without having
knowledge about the dynamics of the environment. Moreover,
the visual inputs of the game are directly consumed by the
algorithms and no feature extraction method is used to pre-
process the input.

Fig. 2. From left to right and top to down; a sequence of bounding overwatch
movement tactic. The orange hexagon is the target, the blue square is a
programmed agent, and the green cross is the autonomous agent.

The simulator provides an interface from which the DRL
algorithms can inject agent actions, retrieve a reward signal,
and finally, extract image sequences representing the agents’
perception of the environment. The simulator implements
a basic action set consisting of five actions. Four actions
that allow the agents to move in four directions within the
simulated environment (east, west, north and south) and an
overwatch action, which is used, when the agent halts and
perform overwatch as illustrated in Figure 2. The results of
the experiments for bounding overwatch (with the settings as
described in [20]), shows while the DQL fails to learn the task,
the A3C-FF and A3C-LSTM algorithm perform well, where
the latter algorithm converges slightly faster (see Figure 3).

Fig. 3. Line plots representing reward over time for the bounding overwatch
learning task where 0% and 100% represents the start and end of training
respectively, for each learning algorithm.

2) Serious games: In this case study performed at NLR we
assessed Deep Reinforcement Learning (DRL) in its ability to
learn certain cognitive tasks by playing serious games. The
motivation behind this study is to verify if DRL can be used
to simulate a representative model for human learning for
these tasks [21]. Such a model could consecutively be used
for identifying training requirements, selection criteria or task
design for trainees. Practical examples would be in predicting
ease of human learning in case of task alterations, defining
cut-off benchmarks or identifying optimal transfer-of-training
for progressive part-task training. The application domain that
is considered is that of Sensor Operators (SOs) for Remotely
Piloted Aircraft Systems (RPAS). As a relatively new job
function, new training and selection methods are required
to address human factor challenges in order to improve job
performance and safety [22]. A serious game in this domain
focuses on (1) relevant SO tasks which include controlling
sensors and detecting, identifying and tracking targets and
(2) relevant cognitive abilities which include amongst others
visual scanning, tracking and discrimination, spatial memory,
and divided attention and vigilance to multiple sources [23].

As a candidate serious game we considered Space Fortress
(SF) [24] which addresses some of the described abilities.
SF is a well-researched serious game that was developed
by psychologists for studying complex skill acquisition [24].
It has demonstrated positive transfer of training for fighter
pilots[25]. SF is a challenging example for DRL. It has
relatively complicated maneuvering (space dynamics); has
game-rules which are difficult to infer when merely playing
the game; and it includes a number of procedural tasks such as
’resource management’ and ’identification friend or foe’ based
on a Sternberg task [26].

We assessed the performance of DRL algorithms on learning
Space Fortress. Two DRL algorithms were tried, namely
the DQN algorithm introduced in [27], and the A3C-LSTM
[28]. Both algorithms did not perform well though the latter
showed slightly better scorings. The poor performance can be
attributed to the complicated navigation tasks in combination
with sparse rewards that can be only obtained by following
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procedural tasks as part of the game rules.
As an alternative to learning SF, we designed a set of mini-

games to represent part-task games for as SO. Three task-
oriented game types were designed which are roughly illus-
trative for SO tasks such as navigating and orienting, aiming
and shooting, and identifying and tracking targets. Each task
had multiple variations to address relevant cognitive abilities,
including (1) a dynamic target (requiring spatial processing
abilities), (2) multiple targets (requiring divided attention), and
(3) differentiating between enemies and friendlies (requiring
visual discrimination). DRL was applied to these SO-mini
games using the DQN algorithm. Results showed that super- or
par-human performance could be achieved in all tasks for the
dynamic target variation. The other variations displayed sub-
human performance. To address variations that were difficult
to learn, we attempted progressive part-task training (using
pre-trained networks to learn new tasks). Positive transfer of
training was observed, reaching up to 20% higher scores in
equal total training time. Figure 4 illustrates learning curves
for a task with (left) and without (right) pre-training.

Fig. 4. Progressive part-task training comparison

Considering that DRL research on games is relatively new,
it seems promising for learning tasks in relevant environments.
Currently, learning complex, high-dimensional, games such as
Space Fortress is still problematic. However, considering the
pace at which improved algorithms appear in research, it can
be expected that improvements will soon be made in learning
the more complex, multi-dimensional serious games.

D. Evolutionary Computing

Evolutionary computing refers to a set of machine learning
techniques which draw inspiration from the process of natural
evolution. The four major evolutionary algorithm paradigms
are evolutionary strategies, genetic programming, evolutionary
programming and genetic algorithms [29].

1) Using Genetic Programming to Generate Creative Au-
tonomous Agents: Genetic programming (GP) is an evolu-
tionary method, inspired by biological evolution, that applies
Darwin’s Natural Selection Theory on a population of com-
puter programs. In GP, each program is typically represented
using a tree-structure that consists of terminal and function
nodes. The initial population of the programs is randomly
generated using a set of valid functions. While variation of
the population is maintained by simulated reproduction and

mutation, in each generation those individual programs that
show a higher performance against a designed fitness criterion
will survive [30], [31]. In [32], we provide an example of using
GP for generating autonomous agents that show a creative
behavior. The work provides experimental results using a
predator/prey game and show that predator behavior created
by GP surpasses predator behavior manually programmed by
humans and argues that the automatically generated agent is
unlikely to be generated by a human.

2) Learning Classifier Systems: Learning Classifier Sys-
tems (LCSs) are a family of genetic-based machine learn-
ing methods [33]. In general, an LCS attempts to optimize
classification or action selection through evolution of rules
in a rulebase. As they are evolutionary systems, one of the
strengths of LCSs is their ability to come up with creative
solutions to problems. Therefore, an agent using an LCS to
learn to defeat other agents should be able to come up with
clever new tactics that counter the tactics of its opponents.
Furthermore, because of their rule-based foundation, LCSs can
produce tactics that should be readable by human experts.

In comparison to dynamic scripting (DS) (introduced in
section III-A), both LCSs and DS operate on rules, yet in
different ways. An LCS works by mutating rules, while a
DS system works by finding optimal combinations of given
rules. Because of their compatible paradigms, the NLR has
investigated a combination of an LCS with DS to generate air
combat tactics. We envisioned a complete solution wherein
an LCS would generate many high quality behavior rules in
an offline fashion. These rules would be the constituent parts
of tactics that are discovered to be effective against a set of
opposing agents. These rules could then be put into a rulebase
and given to DS. DS would then be able to form new tactics by
recombining rules, thereby providing challenging opposition to
e.g. human trainees in an air combat simulator.

IV. DISCUSSION AND CONCLUSION

In this paper we have presented various cases in which
machine learning (ML) was used to generate behavior for
autonomous agents in military simulation systems.

• Dynamic Scripting, a relatively simple and transparent
rule-based reinforcement learning technique, was applied
to Air-to-Air combat. This method requires domain ex-
pertise to start with (i.e. is not model-free), but knowledge
can straightforwardly be added in the form of if-then
rules. It is suitable for off- and online learning, the latter
form enabling personalized simulation.

• Data Driven Behavior Modeling is a supervised learning
technique that was applied to tactical maneuvering of
soldiers. It generalizes well to unseen examples. More-
over, example data for DDBM collected in one simulation
package (e.g., VBS) could be used to train entities in a
second simulation package (e.g., VR-Forces), using HLA.

• Deep Reinforcement Learning is a neural network-based,
model free, reinforcement learning technique, and has
been applied to tactical maneuvering of soldiers. It has
also been applied to model the learning process and
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task performance of RPAS crew in various settings.
It works well on raw data. More advanced versions
than the baseline version (DQN) are needed from more
complex high-dimensional environments. Unfortunately,
neural networks are not easy readable, hence remain
somewhat of a black box to the end user.

• Different evolutionary computing algorithms have been
investigated. Genetic programming has been applied to
learning a predator the tactical task of devouring a flock
of prey. Eventually, the predator is able to implement
a superior tactic that will not be easily implemented
by human experts. Another form of an evolutionary
algorithm is called a Learning Classifier System and
has been applied to a air-to-air combat. This rule-based
evolutionary technique allows creation of new rules using
mutation and cross-over, while evaluating their fitness in
combat situations. The clever behavioral solutions these
techniques come up with, are generally readable, but may
not always seem logical to the end user.

This paper supports the hypothesis that incorporating ML
in autonomous software agents allows for richer behaviors
in complex environments. Such agents are better tailored to
the knowledge and skills of the trainee. Moreover, these ML
agents enable automatization of the scenario development
process and are relatively compact in terms of code and usage
of physical memory, therewith facilitating the end user.
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