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Abstract—In this paper, a feed-forward neural network is
trained on a small dataset of human fighter pilot data, recorded
from maneuvering a fixed-wing fighter aircraft in a flight
simulator. The goal is to model the pilot behavior, using a
technique called behavior cloning. By carefully preprocessing
the training data, it is shown that this simple and intuitive
approach results in a model that can successfully fly the aircraft
at high velocity on flight tracks that demand sharp turns,
and even perform maneuvers not explicitly represented in the
data. Furthermore, it is demonstrated that a pretrained neural
network will adapt to a significant change in flight dynamics
with less training, compared to a previously untrained model.
This transfer learning scenario is important since fine-tuning
pretrained models could simplify the development of a wide
fleet of AI aircraft.

Index Terms—Imitation Learning, Transfer Learning, Behav-
ior Cloning, Deep Learning, Fixed-Wing Aircraft, Unmanned
Aerial System.

I. INTRODUCTION

Air force pilots must continuously practice to be ready for
any possible situation or rapid deployment. Much of the pilots
practice time is spent in advanced flight simulator facilities
designed for human-vs-human and human-vs-computer air
combat. However, the computer generated forces (CGFs)
in these facilities should be human-like in their decision-
making, a characteristic that can be difficult to achieve
[1]. Techniques such as reinforcement learning have shown
performance surpassing human fighter pilots in air combat
[2], which is not always desirable in such practice sessions.
A potential solution is to use imitation learning to model the
complex human pilot behavior needed to achieve realistic
opponents. Imitation learning is the study of methods for
developing models that can imitate demonstrations performed
by an expert in some environment. These demonstrations are
generally a sequence of state-action pairs, i.e., each occurring
situation is labeled with the action taken by the expert. Given
a dataset of state-action pairs recorded from the expert, the
basic approach is to train a model, often called a learner
policy, to predict the correct action at each state encountered
by the expert. This simple and intuitive approach is often
called behavior cloning. However, behavior cloning is not
guaranteed to perform well since states encountered by the
learner policy are not always represented in the training data.
A small action error can lead to an unseen state, which
would cause the learner policy to make a new error and thus
ending up in an even worse state, and so on. To ensure high
performance, the training data must contain a diverse set of
states and actions [3], [4].

In this paper, the learner policy controls the aircraft in the
same way as a human pilot would, i.e., control signals are

sent directly to the cockpit joystick before passing into the
flight simulator. The simulator is treated as a black box from
which it is only possible to extract the current state and input
joystick values.

In addition, it is of interest to investigate to what extent
trained policies can be reused in other flight simulators. Im-
itation learning techniques require a flight simulator adapted
or designed for data collection, training and execution of
AI-models. However, adapting a military flight simulator
designed with human training in mind is time-consuming
and costly. Instead, one could develop learner policies in
separate, more easy-to-use, flight simulators and exploit
transfer learning to integrate them in the desired simulator. It
is assumed that the main dissimilarity between two simulators
are the underlying flight dynamics model (FDM), i.e., the
mathematics and numerical methods used for calculating the
dynamics of the aircraft. To investigate this idea, experiments
are conducted where a policy, capable of flying in one FDM,
is fine-tuned on new expert data originating from a signifi-
cantly different FDM. The contributions of this research are
mainly:

1) It is shown that a good state vector and a well-tuned
training setup can result in satisfactory performance
using behavior cloning, without the need for complex
algorithms such as SMile [5], DAgger [6] or MwDAg-
ger [7].

2) It is shown that a fine-tuned model can adapt to a
different FDM with less training compared to a pre-
viously untrained model. It is thus likely that transfer
learning can be used to more efficiently develop good
performing models.

The assumption is that guidance and navigation remains
unchanged with a change in dynamics, and that the control
must be retrained to compensate for the difference in dynamic
response to input.

II. RELATED WORK

Intelligent CGFs for air-combat have been studied ex-
tensively. Traditionally, CGFs have been scripted, which is
a time-consuming process requiring deep domain-specific
knowledge. Other techniques such as dynamic scripting
[8], [9], and reinforcement learning [10], [11] have shown
promising results, but often using simple two-dimensional
flight dynamics models. In recent work [2], a reinforcement
learning model, based on the maximum-entropy reinforce-
ment algorithm soft actor critic (SAC) [12], managed to win
against a real fighter pilot in a 1-vs-1 dogfight scenario using
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a high-fidelity 6-DOF flight dynamics model - a state-of-the-
art result, but not necessarily desirable for use in basic fighter
pilot training sessions.

Imitation learning has been used in a wide range of
applications such as autonomous driving [13]–[15], first-
person shooter games [16], and autonomous flight [17]–[20],
but less research has focused on air-combat related problems.
Much of the work on autonomous flight use neural networks
to model parts of the full control system. In the 2017
work [21], fourteen separate neural networks were trained to
imitate expert demonstrations on tasks such as controlling the
landing gear, the rudder and maintaining altitude to enable a
fully functional intelligent autopilot system. A behavior tree-
like structure determines when certain networks are deployed
and the full model successfully completes a full simulated
flight, including taxi, take-off and landing.

In a more recent work [22], using a control theory ap-
proach, three neural networks were trained to map a time-
window of states to control input signals. Each neural net-
work was trained on different data to control certain situa-
tions, and a switch mechanism determines how much of each
network to use in each timestep, calculated as a weighted
sum. This approach successfully imitates an autopilot model,
implemented in the high-fidelity flight simulator X-Plane,
where the task was to reach certain headings and altitudes.

In a recent work, one neural network was trained to fly a
fixed-wing aircraft on a square flight track [7]. The authors
trained the model to map inputs containing waypoints, ve-
locities and rotation angles to control inputs on a Skyhunter
aircraft simulated with a non-linear flight dynamics model
with six degrees of freedom (6-DOF). A labeled dataset was
recorded from an autopilot and the authors show that standard
supervised learning is not sufficient for their setup. They
instead develop a sophisticated algorithm called “Moving-
Window DAgger” with successful results.

The work in this paper is related to the work by [7], but
differs in the following ways:

1) The policy was trained on human pilot data and not
data from an autopilot. In this case, the aircraft was
flown by the authors (none of which are pilots). The
focus was not to perform skilled pilot maneuvers, but
rather to capture a human-like flight behavior from
data.

2) A different approach was used regarding training and
data preprocessing. A larger network architecture, dif-
ferent optimizer and data augmentation techniques
were used.

3) The input state vector was engineered to be direction-
invariant, which reduces the amount of data needed to
get satisfactory performance.

III. PRELIMINARIES

Let π∗ denote a deterministic expert policy, and let πθ ∈
Π denote a deterministic learner policy parameterized by θ,
where Π is a policy class. The learner policy is a function
that maps states x ∈ X ⊆ Rd to actions u ∈ U ⊆ Rm. The

goal of imitation learning is often formulated as finding the
optimal policy that minimizes the expected immediate loss,

π̂θ = argmin
πθ∈Π

Ex∼ρπθ
[L(π∗(x), πθ(x))] , (1)

where L : U × U → [0,∞) is a loss function that quantifies
the error in the action taken by the learner policy at state
x. Regularization is omitted for brevity. The distribution
ρπθ

is dependent on the unknown and complex system
dynamics as well as the policy itself. This dependency
violates the independent and identically distributed (i.i.d)
assumption that most statistical learning methods are based
upon [23]. Solving this non-convex optimization problem is
generally difficult and can be approximated by a reduction
to supervised learning. The simplest of such approximations
is behavior cloning.

A. Behavior Cloning

Behavior cloning is an approach that ignores the difficulty
of handling ρπθ

and instead finds a policy that minimizes
the expected immediate loss under the distribution of states
induced by the expert, ρπ∗ . The new optimization problem
can be formulated as

π̂θ = argmin
πθ∈Π

Ex∼ρπ∗ [L(π∗(x), πθ(x))] , (2)

which can be approximated by sampling expert demonstra-
tions and applying a supervised learning algorithm. Note that
in this setting, a low training, validation or test loss does
not necessarily imply good policy performance, only that the
policy can imitate expert actions well for the states close to
those encountered in training. This is due to the mismatch in
distribution when training and testing the model. Optimally,
the model would be tested in the environment during training
to validate the true performance.

The advantage of behavior cloning is that it is simple to
implement and computationally cheap. Other more intricate
methods, such as SMile [5] or DAgger [6], often involve a
supervised learning step as a subroutine in a more complex
algorithm. The disadvantage of behavior cloning is that the
mismatch between distributions can have a negative effect on
performance.

B. Transfer Learning

Transfer learning is a large and active research area
focusing on methods for utilizing experience gained from
a previously solved (source) problem, when considering a
different related (target) problem. If the experience from the
source is leveraged in a good manner, a better performing
model can be obtained using less data and less training on
the target problem [24]. Many transfer learning techniques
exist, such as domain adaptation [25], domain randomization
[26] and meta-learning [27], but the most basic, and widely
used, technique is called fine-tuning [28]. Fine-tuning works
by taking a subset θ̃ ⊆ θ of the trained parameters of the
model and retraining them on the target problem. Selecting an
optimal subset of parameters is not trivial, and the common
approach is to either fine-tune the last few layers or the
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full model. If there is some similarity between the source
and target problem, it is possible achieve high performance
more efficiently. This is standard practice in deep learning
to achieve good performance with small datasets or short
training sessions.

C. Aircraft Motion

Yaw, ψ

Roll, ϕ

Pitch, ϑ

Fig. 1: Illustration showing Tait–Bryan angles on a Jas 39
Gripen. Right hand rule applies to all rotations.

When modelling flight dynamics, it is common to view the
aircraft as a 6-DOF rigid body. This means that the aircraft
can translate and rotate about three perpendicular directions.
These rotations are said to occur around three axes called
the yaw-, pitch- and roll-axes, with the origin placed at the
aircraft’s center of gravity [29], as depicted in Fig. 1. The
roll axis is directed towards the nose and parallel to the line
connecting the nose and the tail of the aircraft. Motion about
this axis is called roll and is controlled primarily by the
ailerons, a control surface on the wings. A positive roll lowers
the right wing and forms the roll angle, ϕ ∈ [−π, π] between
the roll axis and the surface of the earth. The pitch axis is
parallel to the line drawn from wingtip to wingtip. Pitch is
controlled by another control surface called the elevator. A
positive pitch raises the nose of the aircraft and forms the
pitch angle, ϑ ∈ [−π/2, π/2] with respect to the surface of
the earth. Finally, the yaw axis points down perpendicular to
the pitch and roll axes. Motion about this axis is called yaw
and is controlled by the rudder. A positive yaw moves the
nose of the aircraft to the right and the corresponding yaw
angle is the angle between the global y-axis (north) and the
projection of the local x-axis (forward) onto the surface of
the earth. The yaw angle is denoted as ψ ∈ [−π, π]. These
angles are commonly called the Tait-Bryan angles and are a
special case of the well-known Euler angles. The motion of
the aircraft is calculated using a set of parametric equations
modelling lift, drag and thrust in each timestep. Such models
can vary in significant ways depending on the underlying
assumptions of aerodynamic forces, drag coefficient values
at different velocities, et cetera.

D. Transformations

The Tait-Bryan angles can be used to transform any vector
from a global (inertial) reference frame to a local reference
frame [30]. Using the definitions of yaw, pitch and roll from
above, the transformation T : R3 → R3 can be represented
by the orthonormal matrix

T (ϕ, ϑ, ψ) := TϕTϑTψT0, (3)

where

Tϕ =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 , Tϑ =

cosϑ 0 − sinϑ
0 1 0

sinϑ 0 cosϑ

 ,
Tψ =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 , and T0 =

0 1 0
1 0 0
0 0 −1

 .
The last matrix aligns the local reference frame to a north-
east-down (NED) frame, such that the aircraft initially is fly-
ing north (aligning global y-direction with local x-direction)

IV. LEARNING TO FLY

To test behavior cloning in the context of flying a fighter
jet, the first objective is to develop a policy capable of flying a
non-linear 6-DOF Jas 39 Gripen FDM to specified waypoints
on a track (as specified in section IV-A). The simulator is
Virtual BattleSpace 3 (VBS3), a military simulator software
that includes a flight simulator module. A control loop was
developed to enable flight data extraction in real-time and
allow for policy control by injecting control signals into the
simulator.

Fig. 2: Cockpit view from the VBS3 Jas 39 Gripen. The task
is to navigate to the cross which marks the next waypoint.
For the expert, this view is the state at time t. The policy
receives a feature vector as explained below.

The expert receives a state input in the form of visual
graphics, and steers the aircraft via a manual joystick which
is mapped to a virtual joystick software. The cockpit view
is depicted in Fig. 2. The policy receives a feature vector,
ten times per second, which represents the current state. As
a response to each state, a control signal is sent to the same
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virtual joystick software. See Fig. 3 for a schematic view
of the setup. It is important to highlight that, even though
the policy is deterministic, the sampling of flight data from
the simulator is not. This means that two identical starting
positions may result in two different trajectories.

The second objective is to swap the FDM and use fine-
tuning to investigate if a pretrained policy learns the new
setting with less data compared to a randomly instantiated
policy on the same task.

Virtual Joystick

Policy πθ

Simulator

Feature extraction

Joystick Expert π∗

+

Recording expert actions

ut

u∗
t

xt

u∗
t

ut

u∗
t

raw data

screen

D

Fig. 3: Illustration of control and data gathering setup. The
solid region highlights the human part of the control loop
and the dashed region highlights the model part.

A. Tasks

Three tasks are considered:
1) Clockwise: Fig. 4a. The first task is to complete as

many laps as possible of the pentagon shaped track shown
in Fig. 4a. The track runs in a clockwise direction and the
star indicates the starting position. Each cross on the track
marks a waypoint placed at an altitude of 5000 ft (1524m).
The distance between each waypoints is set to d = 15 km
and the angle is α = 72◦.

2) Counter-clockwise: This task is the same as task 1, but
the track is mirrored about the global y-axis such that the
first turn is to the left.

3) Zig-zag: To test a different situation, ten waypoints
are placed in a zig-zag pattern as shown in Fig. 4b. Each
waypoint is placed according to

xj = xj−1 + λj sinαj ,

yj = yj−1 + λj cosαj ,

where αj = 3◦,−6◦, 9◦, . . . ,−30◦ and λj = d·1.1j−1 scales
the distance such that sharper turns are followed by a longer
straight path. This yields a task that increases in difficulty
and alternates between left and right turns. In this task, d =
10 km. To complete the track, the agent must perform turns
of roughly 3◦, 9◦, 15◦, . . . , 60◦, 70◦.

(a) Task 1

(b) Task 3

Fig. 4: Illustrations of the clockwise and zig-zag flight track.
Note that angles of the zig-zag track are exaggerated.

B. State Representation

There are many ways to represent a state to simplify
learning with limited amount of data. Since the policy
should fly the aircraft on a given track, the information
should be invariant to any translation or rotation in planes
perpendicular to the gravitational field (assuming close to
constant atmospheric conditions). This is intuitive as this
policy should consider the same task but translated, for
instance, five kilometers north and rotated by 90 degrees
as identical and not require new training data. Thus, global
quantities are often irrelevant, and only relative changes and
local positions are of interest.

Below, four state features are explained with details about
their construction to ensure the invariance property previously
mentioned. To avoid calculations that treat the motion and
curvature of the earth, it is assumed flat and stationary.

1) Tait-Bryan Angles: The policy must be provided with
a sense of orientation relative to the surface of the earth. This
information is naturally encoded in pitch and roll which are
invariant to north/south, east/west directions. Let ϑ̂t = ϑt

π

and ϕ̂t = ϕt

2π denote normalized pitch and roll and let

Ψt =
[
ϑ̂t, ϕ̂t

]T
, (4)

be the vector that contains these quantities at time t. Note
that yaw is related to the north/south direction and is thus
excluded from the state.

2) Tait-Bryan Velocities: The second quantity are ro-
tational velocities, i.e., time-derivatives of the Tait-Bryan
angles. Since behavior cloning is used, each visited state
is treated as an independent snapshot with a corresponding
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action as a label. Consider two seemingly identical situations
where the aircraft has the same position and angles. If the
aircraft has a fast roll velocity in one of the situations, then
at the next time step, the state of the aircraft will have
changed significantly and thus require a different action at
that time step. If information about the rotational velocity
is not included, then the policy cannot discern these two
situations, and will compensate for this change in roll angle at
a later time step. This would in turn lead to overshooting and
possibly yielding an oscillatory behavior, analogous to the
derivative-part of a PID-controller [31]. The time-derivatives
can be seen as adding a sense of time into the otherwise time-
less snapshot. This quantity is denoted, with a slight abuse
of notation, as

Ψ̇t =
[
ϕ̇t, ϑ̇t, ψ̇t

]T
. (5)

3) Waypoints: The third quantity is two unit vectors point-
ing towards the two next waypoints in the local reference
frame.

Let
pt =

[
xt, yt, zt

]T
, (6)

and
wj =

[
xj , yj , zj

]
T,

denote the aircraft position at time t and the fixed position
of the j’th waypoint, both expressed in the inertial reference
frame. Define the vector from the aircraft to the waypoint at
time t as

∆j,t = wj − pt. (7)

As previously explained, it is important to transform in-
formation to disregard global quantities. Transforming the
waypoint to the local coordinate system can be done using
the transformation matrix from equation (3). Denote the
transformed waypoint as

∆′
j,t = T (ϕt, ϑt, ψt)∆j,t, (8)

where the prime-notation indicates a local reference frame.
Denote the closest transformed and normalized waypoint to
the aircraft in the local forward direction as

∆̂′
i,t =

∆′
i,t∥∥∆′
i,t

∥∥ . (9)

Note the new index i, which is defined as

i = argmin
j

{
∥∥∆′

j,t

∥∥ : ∆′
x,j,t > 0, j ∈ N}, (10)

where ∆′
x,j,t denotes the first component of the vector. This

index changes when the aircraft has passed the plane parallel
to the local xz-plane containing the waypoint. Similarly, one
can define the subsequent waypoint with index i+1. Because
the policy must know how to anticipate the next turn, right
or left, information about the two upcoming waypoints are
included in the state vector.

4) Distance: Since the waypoint vectors are normalized
the distance is lost. To remedy this, the distance to the i’th
(current) waypoint is included, divided by the full distance
between the waypoints, d. Formally,

d̂i,t =

∥∥∆′
i,t

∥∥
d

.

Finally, the full state vector is summarized as

xt =
[
Ψt, Ψ̇t, ∆̂′

i,t, ∆̂′
i+1,t, d̂i,t

]T
∈ R12. (11)

C. Action

The behavior cloning method solves a regression prob-
lem, yielding a continuous function πθ that maps states
to actions. In this setting, the action consists of three
control signals for the aileron, elevator and rudder re-
spectively. Denote the control signal vector at time t as
ut =

[
δa, δe, δr

]T ∈ [−1, 1]3. The neutral position of
the joystick is when all values are zero, and the thrust is
kept constant, resulting in a cruise speed of roughly Mach
1.3.

D. Preprocessing data

The raw data consists of 6 completed laps (13644 dat-
apoints) on the first track (task 1), flown by the authors.
Since this only contains demonstrations of how to fly the
track in a clockwise manner, the dataset is augmented with
mirrored data to enable flight on the counter-clockwise track.
All control signals are shifted as uaug

t =
[
−δa, δe, −δr

]T
and for each state the roll, roll velocity, yaw velocity and
y-components of the waypoints are multiplied by −1. As-
suming that flight dynamic model is perfectly symmetric,
this should result in roughly equal performance on both the
clockwise and counter-clockwise track.

Much of the training data consists of level flight with small
corrections, and less training data with sharp maneuvers. To
balance this fact, all datapoints where ∥ut∥ > 0.6 were
kept, and only 50% of the remaining datapoints were kept by
sampling uniformly. This value was set after an inspection
of joystick distribution.

The full dataset is thus D = {(xt,ut) ∪ (xaug
t ,uaug

t )}Nt=1,
with N = 9506.

Finally, 80% of the dataset was used as a training set
and the remaining 20% was used as a validation set. Note
that the test set was excluded in this case. The loss value
merely indicates that the policy is good at imitating the expert
at states induced by the expert, but cannot guarantee well-
performing behavior when encountering states not seen in
training. Instead, the model is tested in the simulator where
the true performance can be measured and analyzed.

E. Training a Policy

The learning policy is represented by a fully connected
neural network, illustrated in Fig. 5, trained to map states
to actions. The four hidden layers consist of 20 nodes each,

690
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ϑ̇t

ϕ̇t
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x,i,t

∆′
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∆′
x,i+1,t

∆′
y,i+1,t

∆′
z,i+1,t

d̂i,t

δa

δe

δt

Fig. 5: Illustration of neural network architecture. Note that
not all connections are visualized.

using tanh activation functions. The goal is to find the neural
network parameters that satisfy,

θ̂ = min
θ∈Θ

Ex∼ρπ∗ [LMAE(π
∗(x), πθ(x))] ,

where the loss function is the mean absolute error (MAE).
The policy was trained using the Adam optimizer, a stochas-
tic gradient decent based method, using the suggested default
parameters β1 = 0.9, β2 = 0.999 and ϵ = 10−8 [32]. Initial
testing showed a significant improvement when using MAE
compared to mean squared error (MSE), likely due to this
loss function being more robust to outliers [4]. PyTorch [33]
was used for implementation and training. The parameters
were initialized using Xavier initialization [34] and the full
network was trained for 100 epochs with a batch size of
16 and no regularization. The learning rate was a decaying
function of epochs, lr = 0.01 · (0.98)epoch−1.

Furthermore, Gaussian noise was added to the input vector
at training time, a standard data augmentation technique to
reduce overfitting and improve generalization [35]. The noise
was constructed such that if the k’th component of the input
vector xt has a standard deviation of σk (estimated over the
full training dataset), then the new component becomes x̃k =
xk + σk

20 ϵ where ϵ is a random variable from the standard
normal distribution. This greatly improved the performance
as it artificially augmented the dataset. Since each datapoint
was sampled at roughly 10Hz, two neighboring points will
be almost identical. Adding noise will thus create a larger
number of unique datapoints and force the model to be less
sensitive to small perturbations in the state. Naturally, if the
noise is too large, the model will not be able to learn.

The network architecture and all hyperparameter values
were chosen after a quite extensive trial and error investiga-
tion but are not guaranteed to be optimal.

V. RESULTS

The results of the three tasks are presented in this section.
Two evaluation metrics were used to evaluate the perfor-
mance. To capture how well the policy is able to navigate

to the waypoints on average, the average minimum passing
distance to K waypoints is defined as

d =
1

K

K∑
j=1

min
t

∥∆j,t∥ , (12)

where ∆j,t is defined in equation (7). For the expert, this
value was 43.95m. The second evaluation metric is an
average deviation from expert trajectory τ∗, defined as

dτ∗ =
1

T

T∑
t=1

min
s

∥pt − p∗
s∥ , (13)

where p∗
s denotes the expert position at time s, similar to

equation (6). This captures how well the policy is flying, on
average, on the same trajectory as the expert. The diligent
reader can spot a flaw in this metric. If the learner policy
is allowed to randomly visit all states in the near vicinity of
the expert trajectory, the metric will be zero. It is assumed,
therefore, that the policy is attempting to fly close to the
expert trajectory within a finite number of states.

As a performance baseline, the mean deviation was calcu-
lated for each of the six expert laps by removing one lap and
treating the remaining laps as τ∗. On average, the deviation
between each lap was 220.09m, and the max and min was
376.90m, and 149.75m respectively.

A. Task 1

The trained policy successfully completed the track for
nine consecutive laps (K = 45 passed waypoints, 20 minutes
flight) before the recording was terminated. Fig. 6 illustrates
the results by plotting both the policy’s and the human pilot’s
flight trajectories as well as aircraft orientation for one of
these laps. Here, it is seen that the results are qualitatively
similar with small variations. Most significantly is the dip
in pitch after about 125 s. The aircraft overshoots the roll
angle and in order to compensate, the nose must dip to keep
heading towards the waypoints. The policy has also learned
a smoothed out version of the pitch. Instead of making small
noisy corrections often, it makes larger corrections more
seldom. This could probably be improved if the network
had more parameters and was trained for more epochs,
but it could lead to a more sensitive model that cannot
compensate for errors in the same way. It is clear that the
policy encounters states that are not a part of the training
data, (e.g., −15◦ pitch and 130◦ roll) but can correct for
these states and continue on the path to the next waypoint.
Instead of learning the precise actions and certain states, the
policy has extracted something more fundamental about how
to complete flight towards waypoints and found new solutions
to the problem. In addition, the policy starts to turn just before
reaching the waypoint to intercept the next waypoint. This
was performed on some of the waypoints in the expert data.
It is left to the reader to determine if this behavior is desired
or not.

In this task, the average minimum passing distance was

d = 152.49± 8.84m,
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Fig. 6: Flight trajectory (Fig. 6a) and aircraft orientation (Fig. 6b) plots for one lap in task 1. The solid and dashed lines in
each plot represent the behavior of the model and the human pilot respectively.

with an estimated 1σ confidence bound using bootstrapping.
This corresponds to about arcsin

(
152.49
d

)
≈ 0.6◦ deviation

from the straight line connecting two waypoints. The average
deviation from the expert path was

dτ∗ = 414.53m.

B. Task 2

For the counter-clockwise task, the first trajectory is shown
in Fig. 7a and the corresponding yaw, pitch roll and their
derivatives are shown in 7b. The policy completed 9 laps,
same as task 1, before the recording was terminated. In this
task, the average minimum passing distance was

d = 129.21± 4.65m.

The average deviation from the expert path was

dτ∗ = 220.17m,

which is better than in task 1 as can be seen when comparing
Fig. 6a with Fig. 7a. This means that augmenting the data
set with artificial left turn samples enables the model to
complete flight on a track where no expert demonstrations
were recorded.

C. Task 3

The resulting trajectories for three attempts at the third
task are shown in Fig. 9. For all three attempts, the average
minimum passing distance was

d = 215.85± 15.72m,

692



East/West
0 km

10 km

20 km
Nort

h/South

0 km

10 km

20 km

Al
tit

ud
e

1 km
2 km
3 km
4 km

Policy
Human

0 km10 km20 km
East/West

0 km

10 km

20 km

No
rth

/S
ou

th

0 20 40 60 80 100 120 140 160
Time [s]

Sea level

1 km

2 km

3 km

Al
tit

ud
e

(a) Flight trajectories.

−5

0

5

Pi
tc

h 
[D

eg
]

Human
Policy

−100

−50

0

Ro
ll 

[D
eg

]

0

100

200

300

Ya
w 

[D
eg

]
−50

0

50

Pi
tc

h 
ve

lo
cit

y 
[D

eg
/s

]

−50

−25

0

25

50

Ro
ll 

ve
lo

cit
y 

[D
eg

/s
]

0 20 40 60 80 100 120 140 160
Time [s]

−15

−10

−5

0

5

Ya
w 

ve
lo

cit
y 

[D
eg

/s
]

(b) Aircraft orientation and corresponding velocities. Vertical grid
lines indicates the passing of a waypoint.

Fig. 7: Flight trajectory (Fig. 7a) and aircraft orientation (Fig. 7b) plots for one lap on task 2. The solid and dashed lines
in each plot represent the behavior of the model and the human pilot respectively.

which is slighly higher compared to previous tasks. The
policy completes the track in all three attempts, with only
slight increase in altitude variation compared to previous
tasks. By augmenting the dataset with the mirrored track, the
policy was able turn both left and right to complete a flight
track where no expert data was recorded. Since no expert
data exists, the results for the average deviation from expert
trajectory cannot be presented.

VI. TRANSFERRING KNOWLEDGE

Training a neural network means learning a set of param-
eters that work well for the given task. In this part of the
paper, the FDM is changed and the parameters learned on
the original FDM are used as a starting point when fine-

tuning on target data acquired from flying task 1 with the
new FDM. The difference between the two FDMs is difficult
to quantify, but for reference, some amount of practice was
needed before recording sufficiently good target data.

For clarity, the policy acquired by fine-tuning on the
new FDM will be referred to as policy A, and a randomly
instantiated policy, used for reference, is called policy B. A
comparison between the two policies is shown in Fig 8. The
figure shows the average minimum distance (Fig. 8a), the
average deviation from τ∗ (Fig. 8b) and the training and
validation loss (Fig. 8a), each as a function of training epochs.
The average is taken over 3 runs (max 15 waypoints per run)
for epochs 5, 10, 20, . . . , 100, comparing policy A to policy
B.
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Fig. 9: Resulting trajectories for task 3. Three attempts.

Policy A performs better across all but epoch 90 and 100.
At epoch 5, 60 and 100, policy B only completes 14, 29
and 35 waypoints, whereas the remaining epochs, all 45
waypoints were completed. When policy A has not been
fine-tuned at all, it completes 33 waypoints, with a rather
low average minimum distance. It is clear that policy A does
not improve, and actually gets worse, with more training after
epoch 20, even though the loss decreased significantly as seen
in Fig. 8c. This illustrates the well-known fact about behavior
cloning, that a low training loss does not always imply good
performance, since the training and testing distributions are
different. This also holds for the validation loss obtained from
splitting the training data set, since it stems from the expert
distribution ρπ∗ , and not from the learner distribution ρπθ

,
which is dependent on the neural network parameters.

VII. CONCLUSION

In this work, it has been demonstrated that a feed-forward
neural network can be trained using behavior cloning. It
is shown that satisfactory performance can be achieved on
simple flight tasks in a non-linear 6-DOF flight simulator,
given that sufficient care is taken during the training process
and data preprocessing. Though it is difficult to quantify to
what extent the policy is capturing human-like behavior, it is
clearly shown that the resulting flight captures much of the

behavior found in the (sub-optimal) expert demonstrations,
e.g., attempting to roll 90 degrees but overshooting. The
policy is also capable of making decisions in states that are
not explicitly seen in training, a feature that is not guaranteed
by behavior cloning. This is likely due to all state quantities
being in the local reference frame, as described in section
III-D, which simplified learning. With this transformation,
all waypoints seem to be identical from the aircrafts point
of view. Instead of training the policy on five different way-
points, six times each, the training data contains 30 identical
waypoints. The data is also augmented with an additional 30
waypoints in the other direction that enables turns in both
directions. However, due to the limited number of situations
in the training data, the model will, not perform well on tasks
that are completely different. In order to account for more
situations, and produce a more robust policy, one must be
active in collecting training data for a diverse set of situations.
In addition, it was shown that using a pretrained policy when
learning to maneuver the aircraft using a different FDM, leads
to better performance with less training. This is desired since
it would simplify the development of a large fleet of CGFs
that can fly various aircraft.

VIII. FUTURE WORK

The flight simulator used in this work is primarily intended
for other purposes than training and executing machine
learning models. It has been a challenge to develop a setup
than can log data and deploy neural networks able to control
the virtual joystick. A major downside is that the simulations
only operate in real-time, so each test run is time-consuming
and scaling the number of experiments to get statistically
accurate measurements is infeasible. Using a simulator with a
graphics interface that can work in real- and simulation-time
would allow for significant improvement in both training and
execution of the models.

Another extension to this work would be to reproduce the
same experiments using a physical aircraft. This would likely
highlight problems not present in the simulator, such as noise,
latency and wind. It would be of interest to explore transfer
learning scenarios from simulation to reality (sim2real) and
determine if simulated data can improve the performance of
a policy executed into the real world.
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Combining more tasks with a more robust and thorough
analysis method to determine to what extent the models are
actually imitating real human pilot behavior in terms of,
for instance, reaction time, likelihood of making incorrect
decisions etc, are interesting future research directions. Last
but not least, assuming that the models become human-like
in their behavior, it is of interest to transfer these models to
real training facilities and to evaluate the benefit it has for
pilots.
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