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Abstract—In this paper, we expand a methodology for horizon
scanning of scientific literature to discover scientific trends. In this
methodology, scientific articles are automatically clustered within
a broadly defined field of research based on the topic. We develop
a new method to allow an analyst to handle the large number of
clusters that result from the automatic clustering of articles. The
method is based on estimating an information-theoretical distance
between all possible pairs of clusters. Each of the scientific articles
has a probability distribution of affiliation over all possible
clusters arising from the clustering process. Using these, we
investigate possible pairwise mergers between all pairs of existing
clusters and calculate the entropies of the probability distributions
of all articles after each possible merger of two clusters. These
entropies are visualized in a dendritic tree and a cluster graph.
The merger with minimal total entropy is the proposed cluster
pair to be merged.
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I INTRODUCTION

Methods for scanning scientific literature to discover new
scientific trends are important in research. These methods are
designed to discover changes, disruptions, and trends with the
potential to significantly affect the development of a certain area
of interest. For scientific literature, our goal is to discover
emerging or rapidly growing research areas and to identify
technologies that have reached a level of preparedness that is
suitable for industrial applications.

For this purpose, we have developed a methodology and a
computer system called the Horizon Scanning Tool (HSTOOL)
[1]. HSTOOL is a system for scanning scientific literature in
databases to discover scientific trends within a broadly defined
field of research. With search queries specified by subject matter
experts and iteratively tested by studying the results of multiple
scans, we let HSTOOL retrieve titles and abstracts from the Web
of Science (WOS) Core Collection in a format that enables
automatic data processing. We can then automatically group
research articles into clusters by subject content. The focus is on
identifying groups of research articles that together constitute a
research topic, studying the development of the topic over time,
and using the research community’s citation statistics regarding
the included articles to identify the most important contributions
within each research topic.
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Fig. 1. Workflow for horizon scanning of scientific literature [1].

In Fig. 1 we show the workflow of horizon scanning in five
steps. The process facilitates scanning of broad areas defined by
a general topic (step 1). Once a search has been performed and
articles downloaded (step 2), topics are automatically
discovered using a clustering algorithm that groups the scientific
articles based upon textual contents (step 3). Clusters of articles
can then be selected for further studies. To find the key
contributions from a cluster of interest, a ranking method is used
(step 4). Once top-rated contributions for a subject area have
been identified, a manageable subset of articles can be selected
for detailed studies (step 5) [1].

An observation resulting from using HSTOOL has been that
there is a need to be able to handle the number of clusters in
different ways. This problem emerges when several analysts
have to jointly analyze a large number of clusters. The question
becomes who takes which clusters for further analysis. Each
analyst should take clusters of a similar type. In another
situation, an individual analyst may want to merge a large
number of clusters into a smaller number of clusters to manage
the resolution before starting to analyze the documents. In this
situation, the question becomes which clusters should be
merged. That is, which clusters are close to each other in an
information theory sense?

In this article, we develop a mathematical method for
assessing the information theory distance between each pair of
clusters. The method is based on output from the completed
clustering process and uses each article’s probability distribution
that each article has about which cluster it belongs to. This
method tests different mergers and assesses the effects on the
articles’ probability distributions. Thereafter, all assessments are
aggregated. The merging of clusters that provides the best
partitioning of articles is preferable and can be observed in a
cluster graph and a dendritic tree.

Within Horizon Scanning, classes are assumed unknown.
Therefore, unsupervised clustering algorithms are used. In the
framework of unsupervised clustering, Wang [2] and Wang et



al. [3] studied aggregation methods to be used before clustering
to reduce computational complexity. Other authors have
considered the case when classes are pre-specified [4] when
supervised techniques such as Support Vector Machines or
Naive Bayes are used for text mining [5].

In Section 2, we describe the method of clustering articles
[1] using a Dirichlet multinomial mixture model (GSDMM)
algorithm [6, 7] and a method we developed to automatically
determine the numbers of clusters. In Section 3, we develop a
method that allows an analyst to manage the number of clusters
based on visualization of cluster distances in a dendritic tree and
a cluster graph. Finally, conclusions are drawn (Section 4).

IL.

Once a search result has been downloaded from WOS with
HSTOOL, we want to group all articles that touch on the same
subject area into a cluster that will be treated as a separate
subproblem.

CLUSTERING OF SCIENTIFIC ARTICLES

In the following two subsections, we describe how to use a
Gibbs sampling algorithm for a Dirichlet multinomial mixture
model (GSDMM) [6, 7] to organize articles into clusters with
common subject areas and how to determine the optimal number
of clusters.

A. Clustering with GSDMM

To group articles within the same subarea, we use the above-
mentioned GSDMM algorithm. Simply described, this method
starts with a large number of clusters and a random distribution
of articles between clusters. The method then examines each
article to determine if it is a better fit in any other cluster than in
its current placement. This procedure is repeated iteratively for
all articles until no further changes are made.

The method proceeds by comparing all words in each article
title and abstract with the corresponding words in all other
articles. If a word is missing or appears a different number of
times than in another article, then the probability that these
articles belong together is assigned a lower value. These
probabilities are combined for all articles in each cluster. This
results in an evaluation of each cluster regarding how well each
article fits into all the different clusters. Then, the article is
moved to a cluster where it fits well according to these
probabilities. The procedure is applied to all articles and
iteratively repeated until all articles are placed in their best-
matched clusters.

The clustering process is performed by a sequence of Gibbs
sampling iterations. During each iteration, we calculate, for each
article, the probability that it belongs to each cluster &, which
results in the probability that the article will be moved to that
cluster.

We have [6]:
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where on the left-hand side, k, is the cluster position of article
d, k is the kth cluster, k_, is the set of cluster positions of all

other articles excluding d, and d is the set of all articles. In the
first factor on the right-hand side, my _, is the number of
articles in cluster k not including d, « is a cluster parameter set
to 0.1 in our test case, D is the total number of articles under
consideration, and K is the initial number of clusters. In the
second factor on the right-hand side, w is the wth word of article
d, Ny is the number of times word w appears in article d, ny, _,
is the number of times word w appears in cluster £ when article
d has been removed, f is a cluster parameter that will determine
the number of final clusters, N is the number of words in article
d, ny _q is the number of words in cluster £ when article d has
been removed, and ¥ is the number of words in the vocabulary.
We choose i = 14 based on the observation that the algorithm
usually converges in 10-12 iterations. Thus, |[{pgxi}i=14| is
equal to the final number of clusters.

The computational time complexity for each iteration i of
GSDMM was found to be O(KDL') [6] where L is the average
length of the articles, which compares to k-means [8] with a time
complexity of O(KDS), where S is the maximum number of
non-zero elements in the vectors of centroids of the clusters.
When clustering short abstracts L <« S . Thus, GSDMM
outperforms k-mean on short texts.

B. Select the number of clusters

To choose the best number of clusters, we need to evaluate
different options. For this purpose, we evaluate different
numbers of clusters based on the quality of the clustering.

The GSDMM algorithm does not require a predetermined
number of clusters to assign the articles to a given corpus’.
However, the number of clusters depends on parameter
B € (0,1), as shown in (1). A value of  near zero results in
many clusters, while a value of f near one produces fewer
clusters.

We focus on the articles that have been clustered and
examine how well they fit into the clusters where they have been
placed. Each article has a probability distribution across all
clusters that indicates the probability that each cluster is the
optimal location for that article as defined in (1). This
distribution is calculated and used in the clustering process for
GSDMM and is recalculated in each step of the clustering
process for all articles. At the end of the clustering process, we
use the final calculated probability distribution for each article.

We consider {pgy;}, where pgy; is the probability that article
d belongs to cluster k at iteration 7 in (1), with:

! The collection of all articles from a particular search.
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Z Pari = 1
k=1

for any constant d and i, where X is the initial number of clusters.

If the placement of a particular article is almost certain, that
article will have a probability value of close to one for that
cluster. To study the convergence of the GSDMM algorithm, we
calculate at each Gibbs sampling iteration i the entropy [9] for
each article d as:

K
Enty; = —Z Pari(ka = k|k_q,d)
=1
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To determine the quality of a specific clustering (i.e., the
clustering at a specific iteration i for a specific value of f5), we
calculate its entropy as:

D
Enti = Z Entdi.
d=1

A good measure of the quality of the entire partition of all
articles for a particular clustering process is the sum of entropy
over all articles after the final 14th iteration, where Ent,, is the
target entropy to be minimized.

€

As fincreases, there is a decline in the final entropy for each
clustering process.

The number of clusters keeps decreasing as /5 approaches 1.
Ideally, we want to find a partition that has well-defined clusters
that correspond to subject areas and yet has the lowest possible
entropy.

To estimate the correct number of clusters, the final entropy
derived from clustering with different values of /5 is calculated.
If £ is small, then entropy is high; as f increases, entropy
decreases with a small residual entropy at high f. This is similar
to what we did in [10, 11], where alternative partitions were
evaluated using the entropy of another probability measure. The
entropy’s behavioral change occurs at a point that we believe
provides the best number of clusters [12]. In Fig. 2, we observe
a change in the behavior of the entropy at a point corresponding
to the smallest acute angle between the left and right line
segments of the concave lower envelope of entropy. This point
corresponds to the best number of clusters, and the £ used in this
clustering is selected.

Enty, N

Fig. 2. The red line is the concave lower envelope of the black dots, and green
is the minimizing angle.
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Often, there is a reason to choose a different number of
clusters than what resulted from the automatic determination of
the number of clusters. One such reason may be that the
subsequent analysis is to be performed by a group of analysts
who will carry out different parts of the analysis. In this
situation, it may be appropriate to merge several clusters so that
each analyst obtains a set of related clusters that cover a broader
area rather than many unrelated clusters. Another such reason is
that one may want a uniform resolution in all subareas of the
subject. Clustering can lead to a resolution within one subarea
that differs from another. For example, a search for vehicles may
result in a cluster of articles regarding trucks, while articles
relating to passenger cars have been divided into different
clusters according to car brands. If one wants to keep a
consistent resolution in all clusters, then the clusters with articles
about different car brands can be merged.

CLUSTER MANAGEMENT

Of course, there may be other reasons why we want to
change the number of clusters or why we may want to merge the
articles found in certain clusters into one single cluster.
Regardless of the reason to merge certain clusters, it is important
to obtain information about how consistent the articles are in
different clusters. Therefore, we calculate the distance between
each pair of clusters and visualize the results of these
calculations in a dendritic tree and a cluster graph.

A. Distance between clusters

To estimate the distance between clusters, we examine the
consequence of merging each possible pair of clusters. This is
done by estimating the change in entropy across all articles with
regards to a possible merger of the two clusters. Remember that
while each article is placed in a cluster based on the probability
that the article belongs to that cluster, each article has a
probability distribution of belonging to each cluster.

Let us first write pgs = pgs; because i = 14 is treated as a
constant after the clustering process is completed. Second, pys
is a filtered version of pgy; of (1) with cluster position for each
article containing only R index values (R < K) corresponding to
the R number of clusters that contain at least one article after the
last sampling of (1), with i = 14, i.e., [{pgs}| = R. Note that in
most clustering processes, the final number of clusters R is
significantly less than the original number of clusters, which is
500 in our settings.

In Fig. 3, article number 1 is placed in cluster number 1, y;.
However, it has a probability distribution {p;;};_, over all
clusters {y;}3_;.

X1
X3

X2

Fig. 3. Anarticle with probability pi1 placed in cluster y, still has a probability
distribution over all clusters.



If we merge clusters y; and y,, article 1 would have a
probability for the merged cluster of p;; + p;, while keeping
the probability p;5 for cluster y5 unchanged.

We have:

vdstr|d € {1,..,|d|},s €{1,..,R—1},t € {s +1,...,R},

Pas + Pat, T =S5
r€{1,..,R}.quser =10, r=t , 5)
Par, r#s,t

where g is the probability of two merged clusters, d is an article
index, s and ¢ are indices that control the cluster merging of
clusters s and #, and r is the cluster index. Thus, g4, are
elements of a three-dimensional matrix ¢ where each dimension
depends on d, the pair (s, ) and 7, respectively, with dimension

|(;| x BED R. As an example, if we have 100 articles (|(1| =

2
100) and 10 nonempty clusters (R = 10), then ¢ will have
dimension 100 x % x 10 =100 x 45 x 10 = 45 000.

To be able to compare how suitable different partitions of
articles are, we need to be able to evaluate each possible merger
of two clusters. The idea is that we can find which clusters are
close to each other in terms of information theory. Directly
comparing different clusters with each other when they have
widely differing numbers of articles can be difficult to do
objectively. Instead, we view the problem from an article’s
perspective and study how different articles are affected by
merging two clusters. Since each article has a probability
distribution over R clusters, we can measure the effect when two
clusters are merged using the entropy for the new resulting
probability distribution after the merger. A merger that entails
minimum entropy is preferable because it corresponds to a
probability distribution that is closest to a determination of the
article’s affiliation with a particular cluster.

We calculate the entropy for each article’s probability
distribution given each possible merger of two clusters, i.e., for
the entire set {(s, t)}. We have:

vdst|d € {1,...,|d|},s € {1,..,R—1},t € {s+1,..,R}.

Entge = — (6)

R
Qaser 108 Qaser

r=1
where Entyg; is the entropy of article d given a merger of

clusters s and ¢. Thus, Ent,, are elements of a two-dimensional
matrix Ent where each dimension depends on d and (s, f),

respectively, with dimension |(§ | x R(R—1)/2.

To evaluate all possible mergers of two clusters against each
other, we sum for each possible merger of two clusters the
entropies for the new probability distribution of all articles after
the merger. In this way, we can observe how each alternative
merging of two clusters affects the resulting probability
distributions for all articles. The merger that has the lowest sum
of entropy calculated over the probability distribution for all
articles is the preferred merger.
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We calculate the sum of entropy from all articles d and each
possible cluster merging (s, £). We have:

vstls €{1,..,R—1},t € {s+1,...,R}. SEnt

Ent g,
ae(1,...|d|}

Q)

where SEntg, is the total entropy over all articles given a merger
of clusters s and ¢. Thus, SEnty are elements of a one-
dimensional vector SEnt whose length depends on the pair (s,
f). The length of SEnt is R(R — 1) /2.

The estimated sum of entropy SEnt, over all articles d
given the merger of clusters s and ¢ is the distance sought
between the two clusters. The two closest clusters are the pair (s,
f) given by argmin,, SEnty, , where s € {1,..,R —1},t €
{s+1,..,R}

An example of a graph of clusters with arcs is presented in
Fig. 4. The width of the arcs corresponds to the distance between
the clusters, SEntg;. Based on the width of the arcs in the cluster
diagram, the analyst can choose which clusters to merge. After
each selection, (5-7) are recalculated, and the cluster diagram is
updated. Usually, we do not work directly with such sizable
cluster diagrams. In the next section, we will introduce a
dendritic tree that presents a proposed order for cluster mergers.

The pseudocode of an algorithm for calculating (5-7) is
given in TABLE I. This algorithm calculates the sum of entropy
over the probability distribution of all articles for each possible
merger of two clusters. That sum is considered the distance
between each pair of clusters.

The computational time complexity of (5-7) is O(DR?).
This makes the proposed cluster management process as a post-
cluster aggregation computationally reasonable since GSDMM
has a time complexity of (KDL ), where usually R « Kand
R<L.

Fig. 4. A cluster graph where the node size corresponds to the number of
articles in the cluster and the width of the arcs corresponds to the distance
between the clusters (wide arches mean that the clusters are close).



TABLE L. PSEUDOCODE OF AN ALGORITHM FOR CALCULATING THE

DISTANCES BETWEEN ALL CLUSTERS.

Algorithm: The sum of the entropy of the probability
distribution for all paired clusters of articles.

algorithm calculateSENT(D,R,P)
input: D integer,

R integer,

P array(D,R)

Q array(D,R),

ENT array(D),

SENT array(R,R)

output: SENT array

fors:=0toR-1
fort:=s+1toR
ford:=0toD
forr:=0toR
// Compute (5)
ifr=s
Q(d,r):=P(d,s) + P(d,t)
elseif r=t
Q(d,r):=0
else
Q(d,r):==P(d,r)
end
/I Compute (6)
ENT(d):= 0.0
forr:=0toR
if Q(d,r)>0.0
ENT(d) := ENT(d) - Q(d,r) * log(Q(d,r))
end
end
// Compute (7)
SENT(s,t) := 0.0
ford:=0toD
SENT(s,t) := SENT(s,t) + ENT(d)
end
end
end
return SENT
end

Wang [2] and Wang et al. [3] proposed an alternative
approach, where pre-clustering aggregation using node
proximity [13] was used before spectral clustering [14]. This is
another approach where aggregation before clustering is used to
reduce the time complexity of clustering. Our approach of
aggregation after clustering is done to manage the number of
clusters and improve analysis.

The computational complexity of pre-clustering by Wang
[2] was found to be O(KZ?logK). With R < K , the
computational time complexity of (5-7), being O(DR?), is less
than pre-clustering for medium-sized clustering problems. For
large clustering problems with several thousand documents (D),
the method of Wang [2] can be used as pre-clustering before
GSDMM, followed by the post-clustering method proposed in
this paper.

B. Managing the number of clusters

Clustering can be visualized with both a cluster graph and a
dendritic tree in HSTOOL software. This allows the analyst to
see how closely related different clusters are to each other and
choose which clusters to merge.

A dendritic tree corresponding to the cluster graph of Fig. 4
is shown in Fig. 5.
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Fig. 5. A dendritic tree of the same problem as shown in the cluster graph in
Fig. 4. The length of the vertical branches corresponds to the distance
between the respective clusters. The node labels contain the cluster-ID.

When two clusters are merged through interaction with the
dendritic tree or with the cluster graph, the clustering algorithm
(TABLE 1) is initiated recursively with all documents and the
new cluster. If two clusters were merged in the interaction, the
new cluster would contain all documents from the merged
clusters but no other documents.

1) Interaction with a dendritic tree

The dendritic tree is produced by iteratively calling the
clustering algorithm. First, the cluster pairs with the lowest
entropy (i.e., distance) according to SEntg (7) are identified.
The probability distributions for these clusters are added to a
joint cluster, and the clustering algorithm is then called again.
This procedure is repeated until all distances are obtained, and a
dendritic tree can be constructed, as shown in Fig. 6.

The interaction in the dendritic tree is done by double-
clicking on a node. If the action is performed on an unlabeled
node, the child clusters will merge, and the dendritic tree will be
recreated based on the new entropies (Fig. 7). The action can be
reversed by double-clicking on the merged node.

% & % % 2 Ba e 7

S % B H, % e %
o s Ry R 5l
% % % w % %, % % %
2 DA Y Y Y

2

Fig. 6. The dendritic tree from HSTOOL clustering where the entropies
between clusters correspond to the distances in the tree. The node labels
contain the cluster-ID (which varies between 0 and 499) with the cluster
number of documents within parentheses.



Fig. 7. A dendritic tree where several clusters (with cluster-IDs 244, 289, 297,
152, and 159) from the example in Fig. 5 have been merged into one
cluster with 12 documents (cluster-ID 1000).

2) Interaction with a cluster graph

A cluster graph enables the visualization of the relationship
between all clusters according to SEntg, and makes it possible
to merge clusters that are further apart according to the dendritic
tree; for example, clusters that belong to different branches.
Interaction with the cluster graph is performed either by double-
clicking on an arc to merge two clusters or by double-clicking
on a node corresponding to two merged clusters to unmerge
them. Fig. 8 shows the cluster graphs for the corresponding
HSTOOL clustering shown in Fig. 6 and 7.

406 (5 docs)

440 (22 docs) 16 }iocs) J‘

4_-. 159 (1 docs)

<A |/
N\ —‘346<5docs>

451 (5 docs)

| '\ / 1000 (12 docs)

440 (22 docs)

Fig. 8. The figure on the left shows the cluster graph corresponding to the
dendritic tree in Fig. 6. The figure on the right shows the cluster graph
after merging the same five clusters as in Fig. 7.

IV. CONCLUSIONS

In this paper, we develop an approach to managing the large
number of clusters resulting from the clustering of articles using
a GSDMM algorithm. The method is based on estimating an
information-theoretical distance between all possible pairs of
clusters. Instead of making a direct comparison based solely on
the content of the clusters, we take a reverse approach where we
see possible mergers between all pairs of clusters from the
perspective of the articles. These articles have a complete
probability distribution of affiliation that spans all clusters.
When we evaluate a possible merger between two clusters, we
compute the effect it has on the probability distributions of
affiliation for all articles in the given corpus.
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By calculating the entropy of all articles for each possible
merger of two clusters, we can estimate how close two clusters
are to each other. Merged clusters that result in lower entropies
of the probability distributions for all articles are close in an
information theory sense.

We conclude that by using the two visualization models
known as dendritic trees and cluster graphs, based on the
calculated entropy-based information theory distances, an
analyst can better manage the number of clusters by selecting
proposed cluster pairs to merge in a sequence of decisions.
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