
1-4244-1513-06/07/$25.00 (c)2007 IEEE 1 of 7

DECISION SUPPORT FOR CROWD CONTROL: USING GENETIC ALGORITHMS WITH
SIMULATION TO LEARN CONTROL STRATEGIES

Johan Schubert and Robert Suzić
Department of Decision Support Systems

Division of Command and Control Systems
Swedish Defence Research Agency

SE-164 90 Stockholm, Sweden
schubert@foi.se

http://www.foi.se/fusion

ABSTRACT

In this paper we describe the development of a
decision support system for crowd control. Decision
support is provided by suggesting a control strategy
needed to control a specific current riot situation.
Such control strategies consists of deployment of
several police barriers with specific barrier positions
and barrier strengths needed to control the riot. The
optimal control strategy for the current situation is
found by comparing the current situation with pre-
stored example situations of different sizes. The
control strategies are derived for these pre-stored
example situations by using genetic algorithms where
successive trial strategies are evaluated using
stochastic agent-based simulation.

Keywords: Crowd control, riot control, decision
support, learning, simulation, fuzzy measure, genetic
algorithms.

INTRODUCTION

In international operations today, our forces must be
able to handle riots and be successful in crowd
control. This makes it important to derive control
strategies for different riot situations [1]. Such crowd
control strategies may be evaluated using a riot
simulator and used to provide decision support when
found effective.

In this paper we develop a decision support system for
crowd control. Decision support is provided by
suggesting a control strategy needed to control a
specific current riot situation. Such control strategies
consists of deployment of several police barriers with
specific barrier positions and barrier strengths needed
to control the riot. The tactical commanders,
responsible for keeping security, may use those
control strategies derived for simulated situations that

are most similar to the on-going situation, and study
the predictive situation picture given alternative
courses of actions.

The control strategies are derived for these pre-stored
example situations by using genetic algorithms [2]
where successive trial strategies are evaluated using
stochastic agent-based simulation. Each strategy
corresponds to the collected information about the
strength at every possible predetermined barrier
position. The population of all individuals in the
genetic algorithm makes up the collected set of all
alternative strategies for positioning and manning the
barriers.

The stochastic agent-based simulation is based on
stochastic agent models, embedded simulations and
its predicted effects. We have developed a proof-of-
concept model that is aimed to exemplify and give
new research findings of embedded simulations [3]
[4] [5]. Inputs are strategies and positions of real
world agents with uncertain estimates of hostility.
Effects that may occur are destroyed buildings of
importance and destroyed barriers. The strategies are
scored based on these effects. The simulations are
used to generate a data base over simulated riot cases
in a certain city environment. This is done beforehand
for a specific city or suburb using its street and block
network, before an assumed critical situation might
arise.

The problems we have to solve to realize the sought-
after decision support are:

• a decision theoretic matching algorithm comparing
a current situation with pre-simulated situations,

• an appropriate computer representation of control
strategies for the genetic algorithm,

• an effective agent simulation model,

in Proc. Third IEEE Workshop Situation Management
(SIMA 2007), Paper SIMA-3.4, pp. 1-7, Orlando, USA,
October 2007.

2 of 7

• the level of simulation complexity.

A novelty in our approach is that we combine agent
based simulation and genetic learning to generate
optimal ways to control a crowd.

In the last several years there has been a substantial
amount of research on how to model crowds and give
them complex behaviors using intelligent agents. In
spite of all this research there is very little work on
the subject of crowd control. Several scientists
involved in Project Albert [6] (US Marine Corps) have
also used genetic algorithms for optimization of
agent-based behavior. In a project report Graves et al.
[7] demonstrated how to use genetic algorithms to
improve the rule bases that define when individual
agents take various actions in agent-based simulation,
e.g., when advancing towards enemy lines or shooting
at enemy soldiers. Dixon and Reynolds [8] used
genetic algorithms for peacekeeping scenarios on
their Behavior Action Simulation Platform (BASP)
for cases where it is anticipated that the model will
evolve from one or more preceding models.

Previously, we have used genetic algorithms to derive
prediction rules within anti-submarine intelligence
analysis [9]. While that simulation was done in a
much simpler way without any interaction with own
forces it also modeled situation awareness towards the
opposing forces. This is not considered here.
Presumably, we could do both to improve on realism
in decision support.

In the next section we describe how decision support
is designed and realized using crowd control
strategies. This is followed by a section on learning
the strategies for crowd control. The fourth section
presents how stochastic agent-based simulation is
used in the learning process. Finally, conclusions are
drawn.

DECISION SUPPORT

In this section we describe how decision support is
designed using the results from a learning and
simulation system.

Decision support is provided to the tactical
commander as the optimal control strategy for the
current situation. It is found by comparing the current
situation with pre-stored example situations of
different sizes, Figure 1. With each of these pre-stored
situations an optimal control strategy is associated.

The current riot situation may have a best match to a
superposition of a subset of these pre-stored
situations. The decision support will then be given as
the corresponding superposition of control strategies.

Figure 1. On-line decision support is given as ∪{Tk}
where {Tk} is a subset of all control strategies such
that the corresponding set of simulations Di = {Sk}

minimizes the distance ΔP to the current situation C.

Let us investigate how the optimal control strategy
may be constructed. Let S = {Si} be the set of all
simulations Si. We have Si = {μj}, where μj is the
starting position1 of the jth agent of Si.

For a particular simulation Si we calculate a 2-
dimensional fuzzified position map around each
agent starting position μj using a normal distribution

, (1)

where is the degree to which the jth agent’s
starting position is xk, xk − μj is the euclidean distance
between the two positions and σ2 is the variance of
the distribution. The variance used is domain
dependent and must be adjusted in relation to the used
resolution of the position map, Figure 2.

1It should be noted that we treat each position of a
simulation run as alternative starting positions for different
simulations labeled Si.

C: Current
situation

Si: Simulated
situation

Ti: Control
strategy

Si: Simulated
situation

S1 T1

S2 T2

Sn Tn

...

Off-line computation

On-line computation

S T

Decision Support System

minDi
 ΔP(PC, PDi)

Di ⊆ SC

∪{Tk} | Sk ∈ Di

Di

Riot
Control

Simulation

Genetic
Algorithm

Learning and Simulation System

P
Si

Pμ j

Si xk()
1

σ 2π
--------------e

xk μ j–()2

2σ2
------------------------–

=

Pμ j

Si xk()

3 of 7

Figure 2. .

For each position xk in the map we sum up the
contribution from each agent’s starting position μj

, (2)

Figure 3.

Figure 3. .

Using the position maps

, (3)

we may calculate the total support for each
position xk in the map from any subset of all
simulations , where .

We have
. (4)

Here,

(5)

is the support map for Dj and

(6)

is the set of all alternative superpositioned support
maps.

To each simulation Si we have a strategy Ti attached.
In order to find the best decision support we compare
the current situation C with all subsets of all
simulations .

First, we calculate a 2-dimensional fuzzified position
map around each agent starting position μj in the
current situation C, using a normal distribution in the
same way as was done in Eq. (1),

. (7)

Here, is the degree to which the jth agent’s
starting position in the current situation C is xk.

As in Eq. (2) we sum up the contribution from each
agent’s starting position μj for each position xk in the
map

. (8)

Using we can now find the best decision support.
We calculate the sum of absolute differences between

 and for all positions xk in the map

(9)

for all including , where

, (10)

Figure 4.

Figure 4. .

0

20

40

60

80

100

0

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

Pμ j

Si xk()

P
Si xk() Pμ j

Si xk()
μ j Si∈
∑=

0

20

40

60

80

100

0

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

P
Si xk()

P
Si xk()

⎩ ⎭
⎨ ⎬
⎧ ⎫

k

P
D j xk()

D j S⊆ D j{ }
j

2S=

P
D j xk() P

Si xk()
Si D j∈
∑=

P
D j xk()

⎩ ⎭
⎨ ⎬
⎧ ⎫

k

P
D j xk()

⎩ ⎭
⎨ ⎬
⎧ ⎫

k⎩ ⎭
⎨ ⎬
⎧ ⎫

j

D j S⊆

P
C

Pμ j

C
xk()

1

σ 2π
--------------e

xk μ j–()2

2σ2
------------------------–

=

Pμ j

C
xk()

P
C

xk() Pμ j

C
xk()

μ j C∈
∑=

P
C

P
C

P
D j

ΔP P
C

P
D j,() P

C
xk() P

D j xk()–
xk

∑=

D j S⊆ D j ∅=

P
∅

xk() 0≡ xk∀

0

20

40

60

80

100

0

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

P
C

xk() P
D j xk()–

4 of 7

Decision support is given as the union of all strategies
whose corresponding subset of simulations

Sk ∈ Di minimizes the difference between the
fuzzified position-map of C and Di, i.e.,

(11)

Whenever several control strategies in {Tk} have a
strength greater than zero for some barrier position
their strengths are simply summed up as the decision
support regarding that particular barrier.

LEARNING STRATEGIES

A genetic algorithm is a method for solving
optimization problems that is based on natural
selection, the process that drives evolution. Starting
from a population of random individual problem
solutions, Figure 5, the genetic algorithm evolves the
population by repeated incremental modifications. At
each step the genetic algorithm selects at random two
individuals from the population as parents and uses
them to create an offspring for the next generation.
Successively over time the population evolves towards
an optimal solution to the problem at hand. This
biologically inspired process is a very robust
optimization tool suitable for many difficult
optimization problems.

Figure 5. A genetic binary representation
(chromosome) of a complete strategy for all barrier

strengths.

In the problem of optimizing road barrier strengths
and positions each individual corresponds to the
collected information about the strength at every
possible predetermined barrier position. A strength of
zero at a certain barrier position corresponds to no
barrier at this position. The higher the strength, the
more agents a barrier can manage before it is broken
and more resources are needed to man the barrier. The
sum of all barrier strengths is constrained in the
optimization. This corresponds in a real riot case to
the situation that the resources for manning barriers
are limited.

The population of all individuals makes up the
collected set of all alternative strategies for
positioning and manning the barriers. The
optimization of strategies for barrier positions and
strengths is carried out in each generation by
evaluating each strategy by itself. Each strategy is
scored based on its success in the riot control
simulation from two aspects, on the one hand in
protecting certain designated buildings and on the
other hand that the barriers themselves are not
disrupted by the rioters.

An obvious balance is that the barriers must be placed
in positions where they are at risk themselves in order
to protect the designated buildings. However, they
must not be placed in such a way that they are at risk
needlessly nor be given such a low strength that they
are easily broken without giving protection to the
designated buildings. A suboptimal solution will be
achieved if proper consideration is not taken to the
fact that both barriers and designated buildings may
become destroyed by the rioters in the simulation.

The initial set of strategies are generated randomly.
As this set of alternative strategies develops, good
strategies with high scores are chosen and generate
offspring. This is done in such a way that all
strategies in one generation are evaluated by the riot
control simulator and awarded score points from the
perspective of how well the designated buildings were
spared and that the barriers themselves where not
disrupted by the rioters. From this scoring all
strategies are ranked. The strategies are now given
new points where the best strategy is awarded one
point, the second best 1/2 point, the third best 1/3 point,
etc. After normalization by the sum of these new
scores they yield the probability with which two
parents are selected. This is called Rank Selection.
Thus, two individuals are selected randomly from the
population with these probabilities. This selection of
pairs of individuals is repeated as many times as there
are individuals in the population. If the population
consists of 100 individuals, 100 pairs of individuals
are selected. Each individual can be selected several
times. Some individuals that represent strategies that
have been successful will certainly be selected several
times, while other individuals that represent strategies
that fail may have such a low probability that they are
not selected at all. Each pair generates one offspring
to the next generation which will consist of the same
number of individuals as the last. In this manner the
optimization will continue generation by generation

T k{ }∪

T k{ }∪ Sk Di∈ Sl Di∉ l k≠, ,

D j S⊆∀ j i≠ . ΔP P
C

P
Di,() ΔP P

C
P

D j,()<,

5 of 7

towards better and better results until a good enough
solution is obtained.

Finally, generation of a new strategy (offspring) is
created from a selected pair of alternative strategies
(parents) by selecting some barrier positions and
strengths from one parent and some from the other.
This is done randomly. It is also possible to have a
new barrier strength by selecting bits and pieces from
each parent’s barrier representation. This will give us
a new strategy that is based on the two parent
strategies. To select parents randomly using a
probability based on their performance in simulation,
but not directly selecting only the best, leads to an
optimization that is very robust.

STOCHASTIC AGENT-BASED SIMULATION

In this section we describe the simulation that is used
to score strategies in the genetic algorithm.

Stochastic agent-based simulation (SABS) is based on
stochastic agent models, embedded simulations and
the predicted effects that are the output of the
simulation. In Figure 6 we describe some of the
features of SABS. An agent is anything that can
perceive using its sensors and act using its effectors.
An agent can be an individual or a group of
individuals [10]. In our simulation, a software agent is
a representation of a real world agent.

Figure 6. Stochastic agent-based simulation testing
different actions.

Inputs to the simulation are strategies, uncertainty
based representation of situation and behavior.
Strategies are represented here by all barrier positions
and strengths. Situations are represented by positions

of real world agents, both rioters and peaceful
protesters, with an uncertainty-based estimate of their
hostility. By specifying the number in a range from
zero to one the user may enter its own belief of the
median value of the statistical distribution of hostility.
Simulation runs until a pre-defined stop time,
determining how long the situation is predicted.

Scenarios have to be developed for each area of
interest. They are not assumed to be generic in nature.
Given a specific scenario, barrier strategies and
protesters actions, embedded simulation can be used,
Figure 7. Since the simulations use stochastic agents,
different effects may occur from one simulation to the
next. Simulated effects are destroyed buildings of
importance and destruction of the barriers. The
prioritization between buildings and barriers is
presumed to be made by a tactical commander. In
learning strategies by genetic algorithms and
simulation we put a weight on how a destroyed
building is prioritized compared to a disrupted barrier.

Figure 7. Visualization of a simulation.

The agent behavior is modeled for both rioters and
peaceful demonstrators. The model consists of three
parts.

The first part defines crowd dynamics. The research of
Helbing [11] has been a guideline for describing how
a group of agents moves through an environment and
interact with each other. According to Helbing, the
motion of pedestrians can be described as if they were
subject to social forces. The social force is a sum of
inertial (), repelling () and attracting forces ()
[11], [12], i.e.,

What if
Simulations

P(Simulation) P(Behavior)

Combination
of actions P(Effects)

Legend

Regular

Building of

building

importance

Protester

Moderately
hostile
protester

Very hostile
protester

Police
barrier with
certain
strength

Place for
protest

Fi Fr Fa

6 of 7

. (12)

Inertial force means that agents continue to move in
the present direction. This is not modeled in our
SABS implementation. Since the agents we model are
lacking mass we use velocity vector addition,
resulting in the following motion model

. (13)

The length of the repelling velocity vector of an agent
is modeled as an exponential function in analogy to
the repelling force described in [11], i.e.,

, (14)

where ap is the agent’s position, aclosest is the position
of the closest other agent and c is a constant.

The value of the attraction velocity vector is
dependent on distances to barriers and other places of
interest. Those places include meeting points,
important buildings and places where police or
military forces are located. The direction of the
attraction velocity vector depends on where important
buildings are and what is the A* -optimal [10] path to
reach them. Helbing’s computer simulations of
interacting pedestrians show that the social force
model is capable of describing the self-organization
of several observed collective effects of pedestrian
behavior very realistically. In other words, Helbing’s
results have been submitted to verification and were
shown to have high accuracy in crowd modeling [11].

The second part of the behavior model concerns the
interaction between different agents and objects. It is
modeled mainly in a heuristic manner and additional
study is needed. The interaction between rioters and
our own forces is a matter of force balance, i.e., the
strength of our own forces vs. that of rioters. If our
own forces are stronger than the rioters then barriers
will hold. A barrier event is modeled as follows:

(15)

The third part is statistical sampling. It is limited to
sampling one property of each agent. In every

simulation step, agents’ hostilities are sampled from
an initial distribution of our estimate about the
emotional state of demonstrators. If agents during the
simulation face situations where congestion occurs,
then we will see an increase in the level of hostility.
This leads to different behaviors depending on the
level of hostility, and as a result to different effects.
These predicted effects are used by the genetic
algorithm to evaluate barrier placements and their
corresponding strengths.

RESULTS

We ran a scenario with 21 different possible
placements of barriers. In these scenarios barriers
have a strength from zero (meaning there is no
barrier) to 25 (i.e., the strongest possible barrier given
total amount of resources). In the scenario we involve
several key buildings that the tactical commander has
the task to protect. In the tests we use several groups
of agents, each representing different groups of
protesters with variable level of hostility. A brute fore
approach would be to run simulations to find
the optimal strategy according to the simulation
model. However, we use a genetic algorithm that leads
the simulation to an optimum after only 1000
simulations (10 generations), Figure 8.

Figure 8. Convergence of GA by using simulations.

In the scenario with 21 different possible placements
of barriers we were able to derive optimal and near
optimal control strategies.

Ftotal Fi Fr Fa+ +=

vresulting vattraction vrepelling+=

vrepelling c e a p aclosest–()⋅=

vattraction

IF wnormal an⋅ whalfangry aha⋅ wh ah⋅+ + wstrength aown⋅>

THEN event: BarrierBroken

2.1 10 25()⋅

3500

3000

2500

2000

1500

1000

500

0
2 4 8 12 166 10 14 18 20

Score

Generation

7 of 7

CONCLUSIONS

We have demonstrated that it is possible to derive riot
control strategies using genetic algorithms and
stochastic agent-based simulation. Furthermore, we
have developed a decision making algorithm where a
current situation is compared to all simulated
situations. The union of control strategies whose
corresponding superposition of simulated situations
most closely resembles the current situation, is given
as decision support.

FUTUTRE WORK

At this stage the genetic algorithm for learning
strategies and the stochastic agent-based simulation
are implemented. The next step in our work will be an
implementation of the full decision support system
using the strategies, the current situation and Eq. (11)
for selecting riot control strategies as decision
support.

REFERENCES

[1] D. Grieger. An Overview of Crowd Control
Theory and Considerations for the Employment
of Non-Lethal Weapons. DSTO-GD-0373,
Defence Science and Technology Organisation,
Edinburgh, SA, Australia, 2003.

[2] J. H. Holland (1973). Genetic Algorithms and the
Optimal Allocation of Trials. SIAM Journal on
Computing 2(2):88−105.

[3] R. Suzić and K. Wallenius. Effects Based
Decision Support for Riot Control: Employing
Influence Diagrams and Embedded Simulation.
In Proceedings of the Workshop on Situation
Management (SIMA 2005), Atlantic City, NJ,
USA, 17 October 2005. IEEE, Piscataway, NJ,
2005.

[4] R. Suzić. A generic model of plan recognition
using embedded simulations, microeconomics
and behavior models. In Proceedings of the 15th
Conference on Behavior Representation in
Modeling and Simulation (BRIMS 2006),
Baltimore, MD, USA, 15−18 May 2006. SISO,
Orlando, FL, 2006.

[5] R. Suzić. Stochastic Multi-Agent Plan
Recognition, Knowledge Representation and
Simulations for Efficient Decision Making. PhD
Thesis, ISBN 91-7178-498-5, TRITA-CSC-
A 2006 : 21, ISSN-1653-5723, ISRN-KTH/CSC/
A--06/21--SE. Royal Institute of Technology,
Stockholm, 2006.

[6] Project Albert (2007, August). [Online].
Available: http://www.projectalbert.org

[7] T. Graves, R. Picard, and S. Upton. Improving
Rule Bases for Agent Based Simulations.
Unclassified Report 00-2566. Los Alamos
National Laboratory, Los Alamos, NM, 2000.

[8] D. S. Dixon and W. N. Reynolds. The BASP
Agent-Based Modeling Framework:
Applications, Scenarios and Lessons Learned. In
Proceedings of the 36th Hawaii International
Conference on System Sciences, Track 3, Vol. 3,
p. 93.3, Waikoloa, Hawaii, USA, 6−9 January
2003. IEEE Computer Society, Washington, DC,
2003.

[9] U. Bergsten, J. Schubert and P. Svensson.
Applying Data Mining and Machine Learning
Techniques to Submarine Intelligence Analysis.
In Proceedings of the Third International
Conference on Knowledge Discovery and Data
Mining (KDD’97), pp. 127−130, Newport Beach,
CA, USA, 14−17 August 1997. The AAAI Press,
Menlo Park, CA, 1997.

[10] S. J. Russell and P. Norvig. Artificial
Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, 1994.

[11] D. Helbing and P. Molnár (1995). Social force
model for pedestrian dynamics. Physical Review
E 51(5):4282−4286.

[12] D. Helbing, I. Farkas, and T. Vicsek (2000).
Simulating dynamical features of escape panic.
Nature 407(6803):487−490.

