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Abstract-In this paper we provide decision support regarding
robustness during execution of a military operational plan. We
learn boundaries from simulated data from alternative plan
instances of an expeditionary operation beyond which drastic
changes can occur. These are boundaries that an operation must
not move beyond without risk of failure. We receive simulated and
evaluated plan instances from a simulation-based decision
support system. These patterns are clustered by an unsupervised
neural Potts spin clustering method into clusters where the
instances in each cluster have similar characteristics and
outcomes. This gives all plans a classification. We use a belief
function based model screening method where all actions of the
plan are evaluated as to their differentiating capacity between the
two sets of plan instances. All plan instances are projected from
their full representation to a subset of actions with high
differentiating capacity. We apply supervised learning by support
vector machine using the previous classification to learn support
vectors for all pair of clusters given the reduced plans from the
model screening. From these support vectors we derive a lower
dimension hyperplane. One hyperplane between each pair of
clusters will make up a full set of boundaries for this operational
plan. We provide decision support during execution of an
operational plan by continuously calculating the distance from the
plan to the closest hyperplane step-by-step as action-by-action is
being executed. This way a commander may observe if the
operation is approaching a boundary during execution of the
plan, beyond which it should not move without risk of failure.

Keywords-military operational planning; effects-based planning;
indicators; clustering; neural network; Potts spin; Dempster-
Shafer theory; factor screening, support vector machine;
hyperplane; data analysis; big data analytics; decision support.

I.   INTRODUCTION

In this paper we provide decision support regarding
robustness during execution of a military operational plan. We
learn boundaries from simulated data from alternative plan
instances of an expeditionary operation, beyond which drastic
changes can occur. This is performed in a simulation-based
decision support system through an event-based simulation that
model plans according to the effects-based planning (EBP)
approach [1–3]. We model the plan and evaluate alternative

plan instance on how well they are able to drive the entire state
of the simulation model, simulating a large set of actors,
towards a predetermined end state. These plan instances are
evaluated as to their performance and clustered by neural Potts
spin clustering [4, 5] into clusters where all plan instances have
both common characteristics and outcomes [6, 7].

We extend a methodology for learning the boundaries
between single pairs of clusters [8] to manage any number of
clusters. These boundaries are represented as high dimensional
hyperplanes. We use a support vector machine (SVM) [9, 10]
that learn support vectors for all clusters and we derive all
hyperplanes from the support vectors.

In order to reduce the dimensionality of the hyperplanes we
use Dempster-Shafer theory [11–13] for model screening of all
actions of the plan. The idea is to find subsets of action
alternatives that partition the set of all alternative ways to
perform the action. This is done individually for each pair of
clusters, with the purpose of finding those actions of the plan
with the highest average discriminating capacity between all
clusters.

We provide decision support during execution of a plan by
calculating the distance from the plan to the closest hyperplane
step-by-step as action-by-action is being executed. By
visualizing the change in distance during execution a
commander may observe if the operation is approaching a
boundary beyond which outcomes may be uncertain.

In section II we introduce EBP. In section III we describe
the scenario of an expeditionary operation. In section IV we
describe event-based simulation of military operational plans
and the A*-search through simulation increments of alternative
plan instances. In section V we present a method for clustering
all simulated and evaluated plans into clusters with common
characteristics and outcomes. In section VI we perform an
information fusion based model screening of all actions of the
plan in order to find the actions with the highest differentiating
capacity between the plans of different clusters. In section VII
we use an SVM to learn support vectors of each pair of clusters
using the reduced plan instances. From these vectors we derive
low dimensionality hyperplanes that work as boundaries
between military plans of different characteristics and
outcomes of different clusters. The implementation of SVM is
described in section VIII. In section IX we elaborate on the
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usage of hyperplanes and demonstrate how the distance from a
plan during execution to the boundary it should not move
beyond can be visualized for decision support. When a plan is
at or close to the boundary an unexpected outcome may push
the plan over that boundary. Finally, in section X conclusions
are drawn.

II.   EFFECTS-BASED PLANNING

How we model a phenomenon depends on the purpose of
the model and the questions we want to answer. Since our
simulation system aims to support decision-making within an
effects-based approach to operations (EBAO) [14, 15] the
modeling has to be based on EBAO and the concepts used
within it, such as plan, action, effect, end state, etc.

EBAO is a military approach to the management and
implementation of efforts at the operational level. According to
the United States Joint Forces Command (USJFCOM) EBAO
are “operations that are planned, executed, assessed, and
adapted based on a holistic understanding of the operational
environment in order to influence or change system behavior or
capabilities using the integrated application of selected
instruments of power to achieve directed policy aims” [16].

Within the framework of EBAO, EBP is a method for
developing objectives and effects to be achieved through a
series of synchronized actions within a military operational
plan, conceptually developed starting top-down from a desired
end state.

III.   BOGALAND SCENARIO

We make use of the same scenario that has regularly been
used by the Swedish Armed Forces in the Combined Joint Staff
Exercises. The scenario comprises several fictitious countries,
two of which, Xland and Bogaland, have been described in-
depth. Background histories offer explanations to why and how
sentiments, stances, identities, loyalties, economic
dependencies and inequalities have evolved over time,
occasionally resulting in shifts of power. Phenomena that are
commonly found in conflict areas and post conflict areas have
been embedded in scenario contexts that make the origins of
the phenomena plausible, Fig. 1.

 Fig. 1. The Bogaland scenario.

In Bogaland, a newly industrialized country, a civil war
broke out ten years ago when discontent within the minority
ethnic-religious group had reached very high levels. The root
cause was increasing social stratification caused by what
members of the minority group perceived as unjust distribution
of revenues from a natural resource located in an area
populated by the minority group. The civil war put an end to
the exploitation of the resource, in this case oil, and revenues
dropped to very low levels. The country was split into two
parts, roughly along ethnic lines, with each part having its own
government. A post-war economy evolved over the next
decade, and several irregulars and insurgents are now
challenging the incumbent presidents.

The incumbent presidents have signed a peace-agreement,
and an international force, BFOR, is present to support the
implementation of the agreement. Irregular groups in Bogaland
seek to preserve or increase their influence by undermining the
efforts of BFOR, the governments or competing irregulars.

IV.   EVENT-BASED SIMULATION OF PLANS USING A*

A.   Plans
A plan as it is defined in the context of EBAO is a sequence

of actions that together leads to a desired end state which is set
by a military force.

A typical plan instance P1 in our scenario of study is

[1  2  41  61  43  108  20  8  21  12  0  62  64  50
60  52  18  25  63  53  55  56  70  78  67  82  90
79  80  97  0  95  96  104  106  29  30  0  0  0  58
46  47  3215.1  2422.0  793.1]

where all but the three last numbers in this sequence are the
numbers of the selected alternative for each action in this plan
instance. For example, action number 3 (i.e., position 3 in the
sequence) takes alternative number 41. Note, that alternatives
for different actions are numbered with running numbers in no
particular order. The three last parameters are different
evaluation measures called f, g and h. They are distance
measures calculated from changes in the scenario state and
used in an A*-search algorithm. If all possible plan instances
are represented in a tree, a full plan instance is a path from the
root of the tree down to one particular leaf. Obviously, the
depth of the tree is the length of the sequence minus three (i.e.,
not counting the f, g and h estimates). Plan instance P1 above
corresponds to a sequence of 43 specific simulations for the 43
actions where the actions take the numbered alternative listed
in the sequence as its input parameter [2]. A few actions have
value “0”. These are actions not performed in this particular
plan instance.

B.   Simulating action alternatives
The scenario consists of participating actors, their initial

states and probability distribution for different actions,
environmental data, as well as the plan that is to be evaluated.

The system state Sn is defined as the combination of all
actors’ state parameters. Consider action An. It transforms
system state Sn-1 according to Sn = f(Sn-1, An). The
implementation of An is an interaction between our own action,



other actors’ agendas and response operations, and other
external events. Hence, our function f(Sn-1, An) is designed as
an event-driven simulation model in order to manage the
complex interactions in a transparent manner [17].

We know that the goal of the simulation is to execute
different plans and identify those plans that result in system
states that are closest to our end state, i.e., has the shortest
distance to it.

C.   Searching among action alternatives
To find good combinations of alternatives for all actions of

the plan we apply A*-search. It means that, on the basis of a
given system state, we simulate the effect of each alternative
action in our plan, but only one step at the time. Doing so, for
every alternative, we get a new system state whose distance to
the desired end state is calculated. Given the alternative that is
best, i.e., closest to our end state, we simulate possible
subsequent alternative actions provided, but again only one
step ahead in our action/event list. One of these alternatives
leads to a condition that is closer than the others. However, it is
possible that all the alternatives actually lead away from the
target as seen by Fig. 2.

 Fig. 2. An example illustrating the four first steps in a simulation of a plan
starting with initial system state S0 with the distance of 100 to the desired end
state.

Therefore, we must also compare the new distance with the
best of the distances that have been simulated and recorded in
the previous simulation steps, but then had opted out in favor
of a better sequence of alternative actions. The best sequence
now becomes the basis for the next simulation step.

During simulation an assessment is made of how well each
action is performed. This is done by the functions g and h.
Function g measures the consequence of all performed actions
as a distance from the initial state  to the current simulated
state  action-by-action [1, 2]. We have,

. (1)

Function h is a heuristic estimate of the remaining distance
from  to the end state. 

The estimated distance from the current state to the end
state is given by

. (2)

With the total weighted estimated distance from the initial
state to the end state via the current state  is

. (3)

This is the distance function that is minimized by A*. The
weight “80” was derived by experimentation to balance the
performance of minimizing g and h and is domain dependent.

In an experiment performed, we used a full size operational
plan of 43 actions and simulated 10 000 different plan
instances. The total computation time was 66.5 hours using a
single core processor. This problem scales well for parallel
computing as we have a Monte Carlo loop within the event-
based simulation that is easy to compute in parallel.

V.   CLUSTERING SIMULATED PLAN INSTANCES

We cluster the patterns of plan instances that are similar in
structure and consequences. Similar in structure means that
they have more or less carried out similar alternative actions.
Similar in consequences means that they travel on average the
same distance action-by-action towards the end state.

We observe the difference in consequences between two
plans. We compare the difference in the incremental changes of
g and h called ΔG and ΔH, respectively, for each action Ak and
both plans Pi and Pj as they progresses down the sequence of
additional actions Ak. We have, for each Ak,

(4)

and

(5)

where

(6)

and

, (7)

and i is an index for different plan instances and k is the index
for action.

Thus, Pi.Ak is a variable referring to the kth action of the ith
plan. It takes an integer as its value that is the number of the
alternative for this action, e.g., P1.A3 = 41 imply that action
number 3 of plan number 1 performs alternative number 41.

In addition, we need to measure the structural distance
between two plans. This is done by the Hamming [18] distance
Ha which measures the structural distance between Pi and Pj.

S0 100
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A13A12A11
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Step 4: Activities following S11 are now simulated and S212 is 
the “closest” and next to simulate.  

Step 2: After execution of alternative activities that follow 
S12, S222 is the “closest” to the target. 

Step 4: From S222 all the alternative activities 
that are presented are executed. S11, which was 
calculated earlier appears to be “closest” now. 

Step 1: From the initial state all 
available alternatives are simulated. S12 
appears to be “closest” to the target. 
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Sx yx,

f yx( ) g yx( ) 80h yx( )+=

ΔG Pi.Ak Pj.Ak,( ) Δg Pi.Ak( ) Δg Pj.Ak( )–=
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Δh Pi.Ak( ) h Pi.Ak( ) h Pi.Ak 1–( )–=



We have,

(8)

when both actions  and  exists within the simulated
sequences Pi and Pj, otherwise 0 by definition.

Using this measure, we compare each action in two
different plans to calculate the structural distance between the
plans. For each action we observe the alternative chosen in
both plans.

We put these three measures together into an interaction
functions that measures the overall distance between plan Pi
and Pj [2].

We have,

(9)

Here the sums of the second and third lines are normalized
by the maximum difference, and all sums of the three lines are
normalized by the number of actions of the plan. Thus,

, and is “1” if one of the three measures is at
maximum, and is “0” is all three measures are at minimum.

We partition the set of all simulated plans into clusters
using the Potts spin model [4] in such a way as to minimize the
overall sum of all interactions  within each cluster.

The Potts spin problem consists of minimizing an energy
function

(10)

by changing the states of the spins Wia’s, where Wia ∈ {0, 1}
and Wia = 1 means that plan Pi is in cluster a. This model

serves as a clustering method if  is used as a penalty factor
when plan Pi and Pj are in the same cluster.

For computational reasons we use a mean field model,
where spins are deterministic with , Via ∈ [0, 1], in
order to find the minimum of the energy function. The Potts
mean field equations are formulated [5] as

(11)

where

(12)

and T is a parameter called the temperature that is used to
control the influence of the interaction. This is a system
parameter initialized to

, (13)

where K is the number of clusters, and  and  are the

extreme eigenvalues of M, where

. (14)

In order to minimize the energy function (11) and (12) are
iterated until a stationary equilibrium state has been reached for
each temperature. Then, the temperature is lowered step-by-
step by a constant factor until  in the
stationary equilibrium state, Fig. 3 [6, 7].

VI.   EVIDENTIAL MODEL SCREENING OF ACTIONS

In this section we investigate which actions of the plan
have most differentiating capacity for each pair of clusters
using Dempster-Shafer theory. These are the actions that

should be part of an indicator projected from (ℤ+)  to a
lower dimension, onto the set of these actions. This will
reduce, by the same factor, the dimensionality of the support
vectors and hyperplanes that are learned from all plan instances
of reduced dimensionality (section VII) with only the most
differentiating actions remaining.

D.   Maximum differentiating capacity
The most differentiating actions are found by investigating

the maximum differentiating capacity for one action Ak of two
disjoint subsets of the frame of discernment  =

 one for each cluster, i.e., the set of possible

values of Ak over all clusters , where i, j and k are indices for
different plan instances, clusters and actions, respectively. Note
that  is an element from  that is not dependent on
cluster, but varies for each action Ak.

We develop a method, which for each cluster  calculate
histograms for all actions Ak over all plan instances that we
receive from the simulation-based decision support system.

From all plan instances Pi in each cluster  we build the
histogram over all alternatives for Ak.
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 Fig. 3. Cluster algorithm.

We have,

(15)

where  and the summation is made over all

plans Pi in , and l = 0 is a missing value due to action Ak not
being performed in Pi.

What we are looking for are actions where there are
alternatives with very different frequencies for two clusters 
and , where some alternatives have much higher frequency
for one cluster, and other alternatives have much higher

frequency for the other cluster. When this is the case we have
an action with high discriminating capacity.

However, our interest is in finding different subsets of
alternatives with maximum differentiating capacity. In order to
handle this situation we need to represent the histograms as
basic belief assignments within Dempster-Shafer theory.

From each histogram we construct a basic belief
assignment where the frequency of “0” is assigned to Θk. This
is a mass function where all focal elements except one are
singleton subsets of the frame  (i.e., actions of

the plan). The exception being the support of Θk 

as the only non-singleton focal element.

For all subsets of Θk (i.e., regarding action Ak) we construct
 for . We get,

(16)

where  is the number of plan instances. Note, that all
subsets B with cardinality  receive zero support.

In order to evaluate the discriminating capacity of a
particular action Ak for a pair of clusters  and  we
investigate the separation of all disjoint subsets. We find the
maximum separation for the two disjoint subsets where we
measure the difference in belief in a subset X of two different
belief functions from  and , respectively, for Ak, and the
difference in belief for another disjoint subset Y between 
and . Here, X and Y are disjoint subsets  of the
frame of discernment where , i.e., not necessarily

.

We calculate the discriminating capacity DC(Ak) of action
Ak as the maximum difference of belief between two clusters

 and  for each of two disjoint subsets X and Y of the frame
Θk. We have,

(17)
where . The maximum in (17) is found by
evaluating  for all  where . This is
of course a problem of exponential computational complexity,
but easy to do since  is usually small;  in the
example we study.
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From  we can calculate the average discriminating
capacity  or each Ak over all pairs of clusters  and

. We have,

(18)

where  is the number of clusters.

With this measure we can rank all actions of the plan as to
their average discriminating capacity for all clusters. Using a
threshold we can project all plan instances onto a smaller
number of screened factors with high discriminating capacity.

In Fig. 4 we show the calculation of ADC(Ak) by (18) for
all 43 actions of the plan in the example. From this result we
can select a subset of actions that has the highest
discriminating capacity ranked by ADC(Ak) as a lower
dimension projection to be used for the SVM-learning of
boundaries between clusters.

 Fig. 4. Discriminating capacity for each action.

In our example we use a cut off of 0.25, focusing on the ten
actions with the highest discriminating capacity of the 43
actions available in the plan; {A5, A8, A9, A10, A12, A13, A15,
A17, A18, A36}. These are the ten actions that are best in
discriminating between plans with different characteristics and
outcomes that belong to different clusters.

In addition to the alternatives for all actions of plans, each
plan instance also consist of the three real values (f, g, h)
describing the consequence of the plan instance as evaluated by
the simulation-based decision support system, these three
values are always included in the projected plan instance.

VII.   LEARNING SUPPORT VECTORS AND HYPERPLANES

We summarize the information contained in a cluster by
using a hyperplane created by an SVM. We are mainly
interested in the distances from a chosen plan to its boundary
with classes other than its own. Several stages are needed to

achieve the result. First, we need to find the best way to
represent the training data for use in the SVM, this includes
normalization. Secondly, we must analyze the problem of
finding optimal SVM-parameters and a kernel. Finally, we
analyze the distances. An SVM analysis finds the hyperplane
that is oriented so that the margin between the support vectors
of different classes is maximized.

The concept of treating the objects to be classified as points
in a high-dimensional space and finding a line that separates
them is not unique to the SVM. The SVM, however, is
different from other hyperplane-based classifiers in how the
hyperplane is chosen. If we define the distance from the
separating hyperplane to the nearest data point as the margin of
the hyperplane, then the SVM selects the maximum margin
separating hyperplane. Selecting this hyperplane maximizes
the SVM’s capability to calculate the correct classification of
up to that time unseen plan instances. When representing the
classification boundary by the SVM optimal hyperplane, each
dimension has a bound for the corresponding action in the plan.
Using the SVM decision function, each action can be evaluated
by its presence in the tested plans presented to the decision
function. This way we can correct our bad plans to be good
plans by simply changing the bad actions.

The first step is to adapt the plans to the SVM machinery.
SVM requires that each data instance is represented as a vector
of real numbers. Let a plan contain R actions which can take
any value representing a valid alternative for this action. We
generate N number of R-dimensional vectors for training. The
plans are clustered into different classes to be used as training
targets . Training plans are represented by vectors

. The plan vectors  are all normalized.
Scaling them before applying the SVM is very important. This
is done to avoid that attributes in greater numeric ranges
dominate those in smaller numeric ranges.

The basic idea of SVM is to find a function  that has
the highest deviation from the actually obtained targets  for
all training data , where X denotes
the space of the input plans.

In the case of linear functions , a separating hyperplane,
written in terms of a weight vector w and a threshold b takes
the form  with , where 
denotes the dot product. We want to minimize the norm

 as shown in Fig. 5.

This can be formulated as a convex optimization problem:

Minimize

, (19)

subject to

. (20)
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 Fig. 5. Optimal linear divider of two separate classes. 

The support vectors lie on the boundary of the convex hulls
of the two classes, thus they possess supporting hyperplanes.
The support vector optimal hyperplane is the hyperplane which
lies in the middle of the two parallel supporting hyperplanes
(of the two classes) with maximum distance. We have the
decision function

. (21)

The complexity of a function’s representation by support
vectors is independent of the dimensionality of the input space
X, and depends only on the number of support vectors.

For all points from the hyperplane , the
distance between the origin and the hyperplane HP is .
This is the distance measure used.

Using the kernel trick [19] we can represent the decision
function in higher dimensions. The choice of kernel used in
this work is a Gaussian, which has a single parameter

(22)

to be decided.

The accuracy of an SVM model is largely dependent on the
selection of model parameters. Some flexibility in separating
the categories is needed. SVM implementations have a cost
parameter C, which controls the trade off between allowing
training errors and forcing rigid margins. This parameter gives
the model a soft margin that permits some misclassifications
[10]. Increasing C increases the cost of misclassification of
plans and forces a more accurate model to be crated. A search
is used to find the optimal value of C and .

Using a hyperplane to separate the feature vectors into two
classes works when there are only two target categories, but
how do we handle the case where we have more than two
classes? The two most used methods are: (i) “one against
many” where each category is split out and all of the other
categories are merged and (ii) “one against one” where

 models are constructed where k is the number of
categories. In this work we use the second approach and we
evaluate classes against each other. 

VIII.   IMPLEMENTATION OF SVM
We study an experiment of 1000 evaluated plan instances

that are clustered by Potts spin clustering into eleven different
clusters based on their characteristics and outcomes. Each
action of the plan holds a unique integer number representing
the alternative performed for that action. A training matrix of
the 1000 different plans of length 46 is normalized with respect
to each action. The eleven clusters are represented as classes
which in turn are represented by any integer between 1 and 11. 

We use the LIBSVM library [20] in this work. Important in
LIBSVM is the kernel function and the choice of if its
parameters. Parameter optimization is done by a full search out
of a pre-defined parameter set. Cross validation is used for
selection of best parameters for this training set, meaning that
each combination of parameter choices is checked using cross
validation, and the parameters with best cross-validation
accuracy are chosen. Using the selected parameters the final
model is trained on the whole training set. We use the optimal
hyperplane defined by the SVM for determining the distance
from any plan to the boundary of the classes for the other plans.

Since LIBSVM only delivers output for calculating the
distance to the support vectors, the plans nearest the
hyperplane of each class, we use an extra class for the plan
under execution. This is (by definition) the only support vector
of this class, and the distance from any specific plan of interest
to the hyperplane can be calculated. Most interesting is how the
distance for a specific plan under execution changes depending
on how many of the actions has been performed. To be able to
calculate this, the SVM needs to be re-trained for each new
number of performed actions.

The primal variable w is not a direct output of LIBSVM.
Instead we use the provided support vectors SVs and the
coefficients for the support vectors sv_coef;

w = SVs * sv_coef. (23)

The parameter b is a direct output from the trained model. It
includes result from every combination of all classes. We are,
however, only interested in the part of b regarding class 12 of
the plan under execution. We need to select these by a selection
vector for b.

The model is trained for twelve classes, eleven classes from
pre-calculated Potts spin clustering and one class containing
the plan under execution. Training is done 45 times for each
investigation, each training with successive longer plans, from
plan length of 2 actions to training on the full matrix with 43
actions, see TABLE I.

sign wx b+( )

HP xi w( , ) b+ 0=[ ]

b w⁄

γ 1
2σ2---------=

γ

k k 1–( ) 2⁄

TABLE I: Pseudo code for the investigation.

1. Select the plan to be investigated and put it in a separate class. Update 
input label vector and selection vector for b.

2. For length of plan = 2 to 46:

2.1 Select optimal parameters for training.

2.2 Train the model.

2.3 Calculate distances  using w = SVs * sv_coef.

3. End.

4. Plot distances.

b w⁄



IX.   USING HYPERPLANES AS DECISION SUPPORT

Single plans are tested against all the other plans and the
result is plotted in Fig. 6–Fig. 11. The length of the plans is on
the x-axis and the distances on the y-axis. The distances from
the tested plan to the boundary of another class varies with the
length of the plan. First, the best plan is tested against all the
other plans; the best plan is the one with lowest value of h. The
distance from the best h-plan to nearest hyperplane of all other
classes using successive longer plans is shown in Fig. 6.

 Fig. 6. Distance of the best plan (by measure h) during execution towards the
eleven hyperplanes.

In Fig. 7 we show another view of the same result, by
taking the minimum distance of all eleven classes in Fig. 6 at
each length of plan.

 Fig. 7. Minimum distance of the best plan (by measure h) during execution to
the closest hyperplane.

The same procedure is performed for the best plan by the
measure g. The distance from the best g-plan to all other eleven
classes using successive longer plans is shown in Fig. 8.

 Fig. 8. Distance of the best plan (by measure g) during execution towards the
eleven hyperplanes.

Taking the minimum distance of all classes in Fig. 8 at each
length of plan gives us the result in Fig. 9.

 Fig. 9. Minimum distance of the best plan (by measure g) during execution to
the closest hyperplane.

Since most of the plans are “good” we take a look at the ten
best plans regarding h.

In Fig. 10, minimum distances created in the same way as
in Fig. 7 are plotted for the ten best plans regarding h. The best
plan is plotted in red for comparison.
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 Fig. 10. Minimum distance for each of the ten best plans (by measure h) to the
closest hyperplane during execution.

Fig. 11 is showing the same view as Fig. 10 but for the ten
best plans regarding g.

 Fig. 11. Minimum distance for each of the ten best plans (by measure g) to the
closest hyperplane during execution.

By using views as in Fig. 7 and Fig. 9 we may provide
decision support during execution of a military operational
plan. During the execution we observe in these figures the
distance towards the closest (of eleven different) boundaries
for the plan under execution as we progress down the sequence
of actions.

In Fig. 6 and Fig. 8 the analyst observe a more refined view
and may observe which other cluster of plans we might be
approaching. The difference in outcomes by the current plan
and the plans in the other cluster can then be observed by
comparing the current plan with the best plan of that other
cluster.

X.   CONCLUSIONS

We conclude that it is possible to provide decision support
regarding the robustness of military operational plans by
learning boundaries from simulated and evaluated plan
instances from a simulation-based decision support system.

Using a series of computational processing steps, such as
calculating distances between all plans based on their
characteristics and outcomes, clustering all plans with Potts
spin neural clustering using those distances, performing
evidential model screening of all actions as to their
differentiating capacity between different clusters of plans,
using SVM to learn support vectors from clusters of screened
plan instances, and deriving hyperplanes from these support
vectors, we provide decision support regarding the risk of
failure as measured by the distance from a plan during
execution towards the closest hyperplane.
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