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Abstract—Describing social positions and roles is an important
topic within social network analysis. One approach is to compute
a suitable equivalence relation on the nodes of the target network.
One relation that is often used for this purpose is regular
equivalence, or bisimulation, as it is known within the field of
computer science. In this paper we consider a relation from
computer science called simulation relation. Simulation creates a
partial order on the set of actors in a network and we can use
this order to identify actors that have characteristic properties.
The simulation relation can also be used to compute simulation
equivalence which is a less restrictive equivalence relation than
regular equivalence but is still computable in polynomial time.
This paper primarily considers weighted directed networks and
we present definitions of both weighted simulation equivalence
and weighted regular equivalence. Weighted networks can be
used to model a number of network domains, including informa-
tion flow, trust propagation, and communication channels. Many
of these domains have applications within homeland security
and in the military, where one wants to survey and elicit key
roles within an organization. Identifying social positions can be
difficult when the target organization lacks a formal structure
or is partially hidden.

I. INTRODUCTION

Social network analysis (SNA) [1], [2], [3] is a set of powerful
techniques to identify social roles, important groups and
hidden organization structures. While SNA has a long and
successful history within sociology, networks are everywhere
in nature, and SNA and related methodology can be used to
analyze a wide variety of different problems [4].

One particular application that has gained interest lately is
for military and security purposes: can we use SNA to find
criminals or terrorists? While it is easier to use SNA in forensic
analyses after a crime or terrorist act has been committed,
it is sometimes still hoped that SNA in conjunction with
other techniques could allow us to obtain early warnings
about future incidents. Correlation of observed data about
individuals, things, places, memberships, etc., may be used to
detect organized crime or terrorist cells and networks through
the observation of hidden relations and co-occurrences. This
methodology assumes that the ways the members of a group
can and do communicate with each other are correlated with
important properties of that group. There are a number of
different measures that could be calculated for a given network
and that tell us details about it.
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A network consists of a set of actors and a set of binary
relations between the actors that describe their communication
patterns. Most networks of interest are very large, making it
difficult to visualize them to a human user. In order to facilitate
easier visualization and analysis, we want to construct a
smaller network that still has the most important characteristics
of the original one. One way of doing this is to discover the
community structure of the network. Another is to look for
actors in the network that are equivalent.

In this paper, we follow the latter route and investigate
how different equivalence relations from computer science
could be used to construct abstractions of large networks.
The equivalence relations used could be used to distinguish
between different social positions and roles in the network.
The notions of social position and social role are standard
concepts when analyzing social networks. The standard view
is that a social position is a property of actors in a network. For
a given social network a social position is defined as a subset
of actors, namely those who have that property [5]. Positions
are determined by an equivalence relation over the set of actors
and the equivalence classes represent the different positions in
a network. There are several different equivalence relations
that can be used to describe social positions in a network:
automorphic equivalence, structural equivalence and reqular
equivalence are three of the most well-known equivalences in
the literature [1]. Of these three relations, regular equivalence
is the relation that is least restrictive. However, it is more
common to approximate the relations to get a better result.

In this paper we use simulation equivalence to create equiva-
lence classes that form positions in the network. The reduced
network that is formed can be used as an abstraction of the
larger network, and is easier to use for explorative visual
analysis.

Finding such equivalence classes is interesting for many
different applications. Our interest lies mainly in using the
equivalence classes to produce abstractions of large networks
that are easier for military intelligence analysts to study
and visualise. An obvious application is for recommenda-
tion systems. Another application is in enterprise incentive
management, where company bonuses should be divided as
fairly as possible among all employees. In a large corporation,
employees who cannot be simulated (i.e., replaced) by other
employees could be regarded as more valuable than others, and
thus receive larger bonuses. The lack of redundancy could also
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be considered as a risk to the system. In such cases, measures
should be taken to make sure that a backup is created. In a
similar way, the relation could be used to find weak points in
other networks, for instance transport networks or information
processing networks.

The techniques that we present in this paper can be used
to identify social roles and social relations on actors in a
network. First, regular equivalence is used to group actors
into equivalence classes based on their similarity in the net-
work. For each actor in the network, the similarity measure
is obtained by looking at the network properties which is
hopefully a good approximation of the person’s actual skill
or rank. That is, the underlying assumption is that a person’s
communicative behavior reveals whether he/she is, e.g., a for-
mal or informal leader at some level. This is an important part
of military intelligence analysis when studying, e.g., terrorist
organizations: to cluster people depending on their formal or
informal status. Second, simulation equivalence is a somewhat
less strict similarity measure that says that two persons are
simulation equivalent if they simulate each other. Lastly, the
partial order that the simulation relation produces is used
to identify key actors in the network. Hence, the simulation
relation can be used to produce a network illustrating how the
equivalence classes are related to each other, e.g., identifying
leaders as opposed to subordinates and so forth.

The paper is outlined as follows. Section II presents an
example aimed at providing an intuitive understanding of
the mathematics presented in Sections III and IV, where
relevant definitions are given. After that, Section V presents an
example in the form of a communication scenario that puts the
presented abstraction techniques into context, while Section VI
briefly describes military intelligence work and how it could
benefit from abstraction techniques such as the one presented.
The paper concludes with a summary and some suggestions
for future work in Section VII.

II. AN INTUITIVE EXAMPLE

Analyzing equivalence classes is one way of making sense
of the patterns of relations among actors in a network. The
ability to define, theorize about, and analyze data in terms of
equivalence is important since we want to be able to make
generalizations about social behavior and social structure.
In order to do this we think about actors as examples of
categories. That is, sets of actors who are in some way defined
as “equivalent.”

To define regular equivalence, [1] uses an example where
neighborhood bullies occupy the same social position, though
in different neighborhoods, because they beat up some kid(s)
and are scolded by some irate parent(s), but they do not
necessarily beat up the same kid(s) nor are they scolded by
the same parent(s).

The network in Figure 1 shows a set of actors and a set
of ties representing the different relations mentioned above.
Using regular equivalence, we get three different equivalence
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Fig. 1. A network representing parents who scolds at bullies beating up kids.

classes each containing two actors: {1,2}, {3,4} and {5,6}.
The social position that the equivalence classes represents are:
irate parents {1,2}, bullies {3,4} and children {5,6} (irate
parents scolds at neighborhood bullies that beats up their kids).
To illustrate the difference between simulation equivalence and
regular equivalence we use a similar network as in Figure 1
with the modification that one of the bullies decides to start
robbing some of his victims as well as beating them up. The
network is shown in Figure 2. Using regular equivalence on
the network we get the following equivalence classes : {1},

{2}, {3}, {4} and {5,6}. This means that the children are
still equivalent and hold a common social positions, but the
parents and the bullies do not.

scolds  beat up

< > scolds

Fig. 2. A network representing parents who scolds at bullies beating up and
robbing kids.

Using simulation equivalence we obtain the equivalence
classes {1,2}, {3}, {4} and {5,6}. The children {5,6}
maintain their social position as children, the bullies (3 and 4)
are now divided into two social positions: one containing the
bully that only beats up his victims and the other containing the
bully that beats up and sometimes also robs his victims. The
parents, consisting of the equivalence class {1, 2} form a social
position of irate parents that scolds bullies that are beating
up and/or robbing their kids. The fact that the social position
of the parents are preserved although one of the bullies now
robs some of his victims depends on the underlying properties
of the simulation equivalence. Simulation equivalence can be
desribed more formally as follows: an actor a simulates an
actor b if a has at least ties to the same actors as a or to actors
that simulate these. We say that two actors are simulation
equivalent if they simulate each other.
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Fig. 3. The directed network G with weighted edges. Fig. 5. The equivalence classes of network G using simulation equivalence.

()2 , 3
{a} @ {r.r'} 1
: ()
1
3 3
Fig. 6. An abstraction of the network G using simulation relation.
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network, and can be removed from the resulting abstraction.
Actor ¢’ can be simulated by actor p’ and ¢’ can be replaced
by p’. Actor p’ cannot be simulated by any other actor in the
network. Actors ¢ and p can be simulate each other (that is,
they are simulation equivalent).

Fig. 4. The equivalence classes of network G using regular equivalence.

A. Weighted Directed Networks

In a more advanced approach we can add weights to the ties Figure 6 shows an abstraction of the network in Figure 3 where
in the network. Using the same network structure as in the only the actors that cannot be simulated by other actors are
previous example but adding weights to the ties we obtain a represented.

network as shown in Figure 3.

Regular equivalence for weighted networks is a quite restric- III. PRELIMINARIES

tive relation since two states are considered equivalent only if

they have edges with similar weights to equivalent states. In  In this section we present some preliminaries on networks,
this example we use weights from the semiring of integers. relations and equivalences.

This means that two edges can be combined using addition of
their weights. The network from Figure 3 where the regular
equivalence classes are computed is shown in Figure 4. In this
example the actors 5 and 6 form an equivalence class.

Numbers and relations Let S be a set, and let ~ and = be
binary relations on S, i.e., >~ and = are both subsets of S x
S. We abbreviate the Cartesian product S x S by S2. The

relation =2 is said to be coarser than ~ (or equivalently: ~ is
Using simulation equivalence, we obtain four equivalence a refinement of =), if ~ is a subset of =2.

classes as depicted in Figure 5. The fact that actor ¢ and p
form an equivalence class comes from the fact that actor p’
simulates actor ¢’, which means that every tie that actor g has
to some equivalence class, actor p’ also has (and possible more
ties). Simulation equivalence is a less restrictive equivalence
relation than regular equivalence, especially in the case with
weights that are integers. Using regular equivalence, two states
are considered equivalent only if they have similar ties and
weights to other equivalence classes while in the case of
simulation, one actor simulates another actor if the ties are

Let < be a binary relation on the set S. The relation < is a
preorder (or quasi-order) if it is reflexive and transitive. It is
an equivalence relation if it is a symmetric preorder. We write
1 (s), where s € S, for the set of elements {s’ | s < s’} of
elements in S that dominate s. We denote by maz<(S) the
subset {s | As’ € S: s <X s’As’ A s}. That is, maz<(S) is the
set of maximal elements of S with respect to <. We denote
by =< the coarsest equivalence relation that is a subset of =,
ie., =< isequal to <N <"1

similar and have at least the same weights (possibly more). Example: Preorder Let S = {a,b,c}. The relation
When computing simulation equivalence, a preorder is ob- {(?’a)’ (b,b), (¢, ¢), (a,b), (b, ¢), (a, )} is a preorder on 5, but
tained. This preorder divides the states into a partial order neither

and can be used to create an abstraction of a network. The {(a,a),(a,b), (b,c),(a,c)}

abstraction is created by removing all actors that can be

simulated by some other actor. In the network in Figure 3, nor

the actors  and 7’ can be simulated by all other actors in the {(a,a), (b,b), (¢, c), (a,b),(b,c)}
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are, as the first relation is not reflexive and the second is not
transitive.

The equivalence class of an element s € S with respect to an
equivalence relation ~ is the set [s]~ = {s’ | s ~ s’'}. When-
ever =~ is obvious from the context, we simply write [s] instead
of [s]~. It should be clear that [s] and [s'] are equal if s and s’
are in relation ~, and disjoint otherwise. The equivalence
relation ~ thus induces a partition (S/~) = {[s] | s € S}
of S.

Networks and Graphs  An alphabet is a finite set of
symbols. We write ¢ for the empty word.

Definition 1 (Directed graph): A directed graph (or network)
is a tuple (V, E') where

« V is a finite set of vertices (or nodes), and
o EC V xV is a finite set of edges.

If G has vertices with labels in the alphabet 3, then V can
be partitioned into a X-indexed family (V})4ecsx of sets of
vertices. If G has edge labels in X, then F is a X-indexed
family (F,)qex of sets of edges, such that E, CV x V, for
each a € X. We thus only allow parallel edges if they are
labeled with different symbols.

For each symbol a € ¥, we denote by E,(u) the set of
vertices {v | (u,v) € E,} that can be reached from u along
a-labeled edges. Similarly, for each w € ¥*, we have

Uver, (u) Buw (v) if w = aw’, for some a €
and w' € ¥*, and
if w=e

E,(u) =
{u}

Let X be an alphabet and G = (V, E) a directed graph with
edge-labels in X. The graph G has a trace w € ¥* if there is
av € V such that Fy,(v) # 0. The trace behavior of a graph
G is given by

L(@G) = |J{we = | By(v) #0} .

veV

Algebraic structures Towards the end of Section IV, we
recall a number of results concerning weighted simulation, and
for this we need the following algebraic concepts.

A monoid is a set A together with a binary operation - from
A x Ato A and an element 1 in A that satisfy the following
two axioms:

o The operation - is associative in that for every three
elements a, b, and ¢ in A, it holds that (a - b) - ¢ is equal
toa-(b-c).

o The element 1 is the neutral element with respect to -;
ie,wehavea-1=1-a=aq, for all a € A.

A monoid (A, -, 1) is commutative if a-b=b-a, for all a,b
in A.
Moreover, a semiring is a tuple (4, +,-,0,1) where

e (A,+,0) is a commutative monoid and
e (A, 1) is a monoid.
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« For every a, b, and ¢ in 4, it holds that (a + b) - ¢ equals
(a-¢)+(b-c)and a- (b+c) equals (a-b)+ (a-c), ie.
the multiplicative operation distributes over the additive.

o For every a in A, we have that a-0 = 0-a = 0. In other
words, the element 0 is absorptive.

o Finally, 0 and 1 are distinct elements.

IV. SIMULATION RELATIONS

Before we delve into the formal definitions, let us start with
an intuitive description of simulation relation and simulation
equivalence. A simulation on a graph G is an ordering (more
precisely, a preorder) of the vertices of G, such that if there
is an edge v — v/ in G, then for every vertice u that
dominates v, there is also an edge u — u’ to some vertex u’
that dominates v’. In other words, if a vertex « simulates a
vertex v, then the freedom of movement at u is at least as
great as it is at v.

A maximal simulation equivalence is the coarsest equivalence
relation contained in =, ie., =<. In a social network the
equivalence classes corresponds to different social roles.

The simulation preorder < can also be used to gain infor-
mation about the actors in a network. The preorder contains
information on the relations between the actors and if they
simulate each other. A subnetwork containing only actors from
the maximal vertices of < is an over approximation of the
original network. This technique normally produces a small
network but it does not preserve the trace behavior of the
graph: although every trace that can be found in the original
graph can also be found in the reduced graph, the converse is
not true in general.

A. Relations

In this paper we consider the problem of finding the coarsest
possible equivalence relation ~ on the set of vertices of
a graph. We can use this information to collapsing each
equivalence class of ~ into a single vertex and produce a
(hopefully) smaller graph.

Definition 2 (Aggregated graph): Let G = (V,E) be a di-
rected edge-labeled graph, and let ~ be an equivalence relation
on the vertex-space V. The reduced graph (G/~) is the
system ((V/~),E’") where

E' = {([ulx, [w]2) | (u,u') € E} .

Note that E’ is well-defined because ~ is an equivalence
relation.

Definition 3 (Regular equivalence): An equivalence
relation ~C V' x V is a regular equivlence or bisimulation
ifu ~wv a€ X, and vV € E,(v), implies that there is
au € E,(u) such that ' ~ v’, and vice versa.

The coarsest regular equivalence can be computed in
time O(mlogn), where m is the number of edges and n the
number of vertices of the input graph, using a divide-and-
conquer technique by Hopcroft [6] that was generalized to



the nondeterministic case by Paige and Tarjan [7]. The major
drawback with regular equivalence is that it is unnecessarily
strict, and thus provides an unnecessarily weak reduction of
the vertex space [8].

A less restrivtive relation is simulation preorder.A vertex u
simulates a vertex v if, for every symbol ¢ € X and
edge (v,v') € E,, there is an edge (u,u’) € E, such that v’
simulates v’.

Definition 4 (Simulation preorder): A preorder relation <C
V x V is a simulation if the fact that v < u, a € 3,
and v € E,(v), implies that there is a v’ € E,(u) such
that v’ < wu.

A pair of vertices u,v € V' are simulation equivalent if < is
a simulation and both v < v and v < u hold.

If the graph G under consideration has has vertex-labels in
the alphabet %, ie. V = (V,)qex, then require that every
simulation on V' refines the partitioning (V,)sex-

A regular equivalence is thus a symmetric simulation preorder,
i.e. a simulation relation that is also an equivalence relation.
Since the two relations are so closely related, it should come
as no surprise that simulation can be computed in time
O(mn) [9].

A simulation preorder is in general not an equivalence relation.
Instead, we can use the coarsest equivalence contained in =,
namely =~. Simulation equivalence =~ produces, in general,
larger equivalence classes than regular equivelence.

If we are willing to settle for an over-approximation of the
trace behavior, we can use the simulation preorder and create
an aggregated abstraction of the graph. We first re-route all
edges to and from each non-maximal vertex v to each of the
vertices in T (v). We then drop all vertices that are not in
maz< (=) together with the edges connected to them.

Definition 5 (Simulation abstraction): Let G = (V, E) be a
directed edge-labeled graph, and let < be a simulation relation
on the vertex-space V. The reduced graph (G/ <) with respect
to < is the system (V’, E’), and where V' = (maz<(V)/ <)

E' = A{(lulx, [v]~) [ v el (v) Nmaz< (V) A
u €T () Nmaz<(V)A

(v,v') € E} .

a) Example: Consider the directed network G of Figure 7.

Computing regular equivalence over G gives us the equiv-
alence classes {0},{1}.{2},{3}.{4}.{5}.{6,7,8,9}, the ag-
gregated network is shown in Figure 8. Using simulation
equivalence we obtain the equivalence classes {0},{1,2},
{3},{4}, {5}.{6,7,8,9}, the aggregated network is depicted
in Figure 9. Finally, using the simulation preorder abstraction,
we obtain an aggregated network as depicted in

Figures 8, 9 and 10 show the graphs that arise after minimiza-
tion with respect to each of these equivalence relations.
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The directed labelled graph G
{6,7,8,9}

The graph of Figure 7 after computing regular equivalence.

Fig. 8.

B. Weighted Relations

It is often useful to model quantitative as well as qualitative
relations between vertices in a social network, such as trust,
affection, or level of communication. The typical approach is
to assign weights taken from some semiring A to the edges of
the network, turning the edge relation into a (total) mapping
that takes pairs of vertices into A.

Definition 6: A weighted directed graph or weighted directed
network (over a semiring A) is a tuple G = (V, E), where V
is a finite set of vertices and E: V x V — A is a mapping
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Fig. 9. The graph of Figure 7 after computing simulation equivalence.

f
f

a,b
Fig. 10. The graph of Figure 7 after using simulation preorder abstraction.

The nodes {6, 7, 8,9} did not contain maximal vertices and was consequently
dropped.
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Fig. 11. A network with weighted edges.

that assigns to every ordered pair of vertices in V' a weight
in A.

If G has edge labels in X, the we consider E to be a
family (E,)qex of mappings such that E,: V x V — A,
for every a € 3.

Regular equivalence for weighted directed networks is defined
as follows.

Definition 7 (Weighted regular equivalence): An equivalence
relation ~C V x V is a regular equivalence if v ~ v and v’ €
E(v), implies that there is a v’ € E(u) such that E(u,u’') =
E(v,v") and v’ ~ v’, and vice versa.

The definition of weighted simulation is similar. Definitions
for simulation relations for weighted tree automata (since a
string is a special kind of tree, the definitions can be directly
applicable to graphs) can be found in [10].

Definition 8 (Weighted simulation): The preorder <X is a
weighted simulation if v < u implies that, for each v/ € V
and a € X, there is an v’ € V such that E(u,u’) > E(v,v’)
and v’ < /.

As one could notice, the difference between regular equiva-
lence and simulation equivalence is more observable in the
weighted setting. This is because the weights of the edges has
to be strictly equal to fulfil the requirements in the case of
regular equivalence while in the case of weighted simulation,
the weight of an edge has to be equal or greater than to satisfy
the required conditions. The difference can be illustrated using
the network depicted in Figure 11. Using regular equivalence
the nodes of the network can be divided into three equivalence
classes: {1},{2} and {3,4}. Using simulation equivalence
the nodes of network can be divided into two equivalence
classes {1,2} and {3,4}.

V. EXAMPLE

Social networks play fundamental roles as mediums for
spreading information, ideas and influence among their mem-
bers. In the following example, we test our ability to find social
positions in a network where each tie represents the possibility
to communicate.

In the experiments reported on here, we used a network
obtained from the communication pattern within a department
consisting of 20 researchers, see Figure 12. The network is



weighted and directed. A directed tie between two actors a
and b represents the fact that actor ¢ communicates with
actor b. Each tie is also assigned a weight representing the
possibilities that actor a has to communicate with actor b.
In this experiment we assign a link between two actors the
weight one if their regular communication is done using e-
mail and the weight two if the communication is done using
phone. This means that communicating via phone is worth
twice as much as communicating using e-mail, indicating that
real-time talking signifies a closer social relation than that of
virtual relationships.

Fig. 12.

The original network of communication.

Using regular equivalence for weighted networks according to
Def. 7 we obtain 18 different equivalence classes, depicted in
Figure 13, divided into 17 classes containing one actor and
one class containing 3 actors. Further, computing simulation
equivalence on the same graph results in a smaller graph with 5
different equivalence classes, depicted in Figure 14. Although
these two graphs differ in size, they are still similar in that they
contain clusters of people that are, to some extent, similar.
What differs is the similarity measure: a less strict measure
results in a smaller graph.

Using the preorder that was obtained when computing the
simulation relation, we notice that one of the equivalence
classes simulates all the other equivalence classes according
to Table 1. Therefore the resulting graph, see Figure 15, only
contains one node. Theoretically, this indicates that we can
replace the other equivalence classes with this dominating
equivalence class and still preserve all communication that
was present in the original network. Hence, it should be noted
that the graph obtained in Figure 15 must be thought of in
terms of clusters of equivalence classes rather than the clusters
of individuals that are depicted in the graphs in Figures 13—
14. Of course, this total reduction is due to the investigated
social scenario (a research department) where all departmental
members are, in some sense, comparable with respect to
their duties. That is, since all members in the investigated
organization are of the same type the graph collapses into
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Fig. 13. Regular equivalence computed on the network of communication.

6,5,7,2,9,11,20

Fig. 14. Simulation equivalence computed on the network of communication.

one single node. In a more heterogeneous organization, the
number of equivalence classes would of course correspond to
the number of different types of personnel in the organization,
e.g., a scientist cannot be assumed to be able to simulate an
officer and vice versa since the jobs are so different.

[8,13,12,19,1, 14, 3, 16, 5, @(9, 11, 20,17, 15, 4, 10, 18, 6

Fig. 15.  Simulation preorder abstraction on the network of communication.

VI. MILITARY INTELLIGENCE BY GRAPH REDUCTION

Our application of interest is social network analysis within
the military intelligence domain. Here, one wishes to consider
and model a network of interesting people, e.g., a terrorist cell,
that are connected to each other in various ways.

Military intelligence is largely an unknown business: the
nature of the work and the resulting intelligence products
make it vital to keep current practices, methods and techniques
secret. However, on a more generic level it is apparent that a
shift is currently taking place. Traditional intelligence work
has been closely related to the so-called intelligence cycle



Actor Simulated by actors

10 20, 17, 4, 16, 7, 12, 9, 10, 2,
14,3, 11,19, 1,5, 8, 13
4 20, 17, 4, 16,7, 12,9, 2, 14,
3,11,19, 1,5, 8, 13
17 20, 17, 16,7, 12, 9, 2, 14, 3,
11,19, 1, 5, 8, 13
6,15,18 20, 15, 4, 16, 7,
12,9, 10, 2, 14,
18,3, 11, 19, 1, 5,
8,13,6
1,2,3,5,7,8,9,11, 1,2,3,5,7,8,9,11,12,13,14,16,
12,13,14,16,19,20 19,20
TABLE I

THE SIMULATION PREORDER. LEFT COLUMN CONTAINS ACTORS THAT
ARE SIMULATION EQUIVALENT, RIGHT COLUMN ALL ACTORS THAT CAN
SIMULATE THE ACTORS IN THE LEFT COLUMN.

where one plans, gathers documents, analyses these documents
and delivers a report. This iterative process is ill-suited to
the modern information age and therefore new computerized
methods making use of continuous updating, multiple sources
and automation changes the very foundations of military intel-
ligence work and turns the traditional way that analysts’ work
into a target-centric intelligence loop where several sources
contribute in parallel to a continuously updated situation pic-
ture [11]. For example, the combination of manual social net-
work analysis, live data from a mobile phone communication
network and field observations can yield new insight and better
intelligence products. One consequence of this shift is that
the analyst is faced with networks containing large numbers
of vertices and edges that need to be analyzed quickly and
continuously. Hence, efficient graph reduction techniques and
tools for graph mining are foreseen to be vital ingredients in
tomorrow’s computer support for intelligence analysts. Given
a large social network depicting a dark organization of some
kind, the intelligence analyst could gain insight by finding
graph patterns in many ways. The graph reduction techniques
that we present in this paper help the analyst to discover
important patterns within graph data that, in turn, give insights
regarding important intelligence aspects regarding social roles
and positions.

VII. SUMMARY AND FUTURE WORK

In this paper we present a relation from computer science
called simulation relation that can be used to distinguish be-
tween different social positions and roles in a social network.

A simulation relation computed on the nework N is an
ordering (a preorder) of the nodes of N. The ordering is
such that if an actor a simulates an actor b then actor a
has at least the same relations as b to other actors (or actors
that simulate these). Actors in the network that simulate each
other are considered to be simulation equivalent and each such
equivalence class represents a social position.

We use simulation equivalence to describe social positions
within a social network since simulation equivalence is a
less restrictive equivalence relation than regular equivalence,
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automorphic equivalence and structural equivalence.

We use the simulation preorder to create an abstraction of
a given social network. The abstraction contains every trace
that is found in the original network but the size may be
significantly smaller than that of the original network. The
abstraction can be used to perform a worst case scenario
analysis of the network.

The social positions and the ordering that are obtained using
simulation equivalence are particulary interesting when we
look at social networks describing different competences since
we can use the positions to get an understanding of how the
groups of the competences are composed.

We see many possibilities for future work based on the
algorithm and ideas presented in this paper. First of all, it
would be interesting to investigate if it is possible to define
approximately simulation equivalence (as in the case of regular
equivalence). Secondly, it would be interesting to conduct
experiments on other, publically-available, data sources. In
order to validate the usefulness of the relation for military
intelligence analysis, it is necessary to implement the func-
tionality into an SNA tool (such as the one used in [12]) and
conduct user experiments. Finally, it would be interesting to
use the ideas in this paper to consider uncertain data. In this
case, we might not know for sure that there is an edge between
two actors, instead we only have a probability that there exists
a link.
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