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Abstract: In this article we study a problem within Dempster-Shafer theory
where 2n − 1 pieces of evidence are clustered by a neural structure into n clusters.
The clustering is done by minimizing a metaconflict function. Previously we devel-
oped a method based on iterative optimization. However, for large scale problems we
need a method with lower computational complexity. The neural structure was found
to be effective and much faster than iterative optimization for larger problems. While
the growth in metaconflict was faster for the neural structure compared with iterative
optimization in medium sized problems, the metaconflict per cluster and evidence
was moderate. The neural structure was able to find a global minimum over ten runs
for problem sizes up to six clusters.

1    Introduction

In this article we will study a neural structure for clustering evidence in large scale
problems within Dempster-Shafer theory [12]. The studied problem concerns the sit-
uation when we are reasoning with multiple events which should be handled inde-
pendently. We use the clustering process to separate the evidence into subsets that
will be handled separately.

In earlier work [4–9] we developed a method based on iterative optimization for the
clustering of evidence in medium sized problems. That method was developed as a
part of a multiple-target tracking algorithm for an antisubmarine intelligence analysis
system [1–2]. In a subsequent paper [10] we developed a classification method for
incoming pieces of evidence. Here, we used prototypes in order to obtain faster clas-
sification. These prototypes were derived from a previous clustering process. That
method further increased the computation speed of the iterative optimization for
small and medium sized problems, but it did little for larger problems.

For large scale problems it became clear that we need a method with much lower
computational complexity. To achieve this we are prepared to sacrifice some of the
clustering performance, if necessary.

The solution described in this article is based on clustering with a neural structure.
We will use a neural network, but we will not do any learning to set the weights of the
network. Instead, all the weights will be directly set by a method where we use the
conflict in Dempster’s rule as input to setting the weights.
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In a recent paper [11] this method was further extended for simultaneous clustering
and determination of number of clusters during iteration in the neural structure. Here,
we let the output signals of neurons represent the degree to which a pieces of evi-
dence belong to a corresponding cluster. From these we derive a probability dis-
tribution regarding the number of clusters, which gradually during the iteration is
transformed into a determination of number of clusters. This gradual determination is
fed back into the neural structure at each iteration to influence the clustering process.

Many of the ideas in this article are inspired by a solution to the traveling salesman
problem by Hopfield and Tank [3]. They used a neural network as an effective
method to find a good shortest path between several cities.

In Section 2 we describe the problem at hand and in Section 3 we give an overview of
the iterative optimization solution developed in [4]. Then we describe the neural
structure to achieve effective clustering (Section 4). We end by presenting a compari-
son between the neural structure and iterative optimization (Section 5).

2    The problem

If we receive several pieces of evidence about different and separate events and the
pieces of evidence are mixed up, we want to arrange the them according to which
event they are referring to. Thus, we partition the set of all pieces of evidence χ into
subsets where each subset refers to a particular event. In figure 1 these subsets are
denoted by χi and the conflict when all pieces of evidence in χi are combined by
Dempster’s rule is denoted by ci . Here, thirteen pieces of evidence are partitioned
into four subsets. When the number of subsets is uncertain there will also be a
“domain conflict” c0 which is a conflict between the current hypothesis about the
number of subsets and our prior belief. The partition is then simply an allocation of
all pieces of evidence to the different events. Since these events do not have anything
to do with each other, we will analyze them separately.

Figure 1: The conflict in each subset of the partition becomes a piece of evidence at
the metalevel
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Now, if it is uncertain to which event some pieces of evidence is referring we have a
problem. It could then be impossible to know directly if two different pieces of evi-
dence are referring to the same event. We do not know if we should put them into the
same subset or not. This problem is then a problem of organization. Evidence from
different events that we want to analyze are unfortunately mixed up and we are facing
a problem in separating them.

To solve this problem, we can use the conflict in Dempster’s rule when all pieces of
evidence within a subset are combined, as an indication of whether these pieces of
evidence belong together. The higher this conflict is, the less credible that they
belong together.

Let us create an additional piece of evidence for each subset with the proposition that
this is not an “adequate partition”. We have a simple frame of discernment on
the metalevel Θ = {AdP, }, where AdP is short for “adequate parti-
tion.” Let the proposition take a value equal to the conflict of the combination within
the subset,

These new pieces of evidence, one regarding each subset, reason about the partition
of the original evidence. Just so we do not confuse them with the original evidence,
let us call this evidence “metalevel evidence” and let us say that its combination and
the analysis of that combination take place on the “metalevel,” figure 1.

We establish [4] a criterion function of overall conflict called the metaconflict func-
tion for reasoning with multiple events. The metaconflict is derived as the plausi-
bility that the partitioning is correct when the conflict in each subset is
viewed as a piece of metalevel evidence against the partitioning of the set of
evidence, χ, into the subsets, χi.

DEFINITION. Let the metaconflict function,

be the conflict against a partitioning of n evidences of the set χ into r disjoint subsets
χ

i. Here, ci is the conflict in subset i and c0 is the conflict between r subsets and prop-
ositions about possible different number of subsets.
We will use the minimizing of the metaconflict function as the method of partitioning
the evidence into subsets representing the events. This method will also handle the
situation when the number of events are uncertain.

The method of finding the best partitioning is based on an iterative minimization of
the metaconflict function. In each step the consequence of transferring a piece of evi-
dence from one subset to another is investigated.

After this, each subset refers to a different event and the reasoning can take place
with each event treated separately.

AdP¬

∆mχi
AdP¬( ) Conf e j e j χi∈{ }( ).=

∆Mcf r e1 e2 … en, , , ,( ) 1 1 c0–( ) 1 ci–( )
i 1=

r
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3    Iterative optimization

For a fixed number of subsets a minimum of the metaconflict function can be found
by an iterative optimization among partitionings of evidences into different subsets.

In each step of the optimization the consequence of transferring evidence from one
subset to another is investigated. If a piece of evidence eq is transferred from χi to χj
then the conflict in χj, cj, increases to  and the conflict in χi, ci, decreases to .

Given this, the metaconflict is changed to

The transfer of eq from χi to χj is favorable if Mcf* < Mcf. This is the case if

It is, of course, most favorable to transfer eq to χk, , where Mcf* is minimal.

When several different pieces of evidence may be favorably transferred it will be
most favorable to transfer the evidence eq that minimizes Mcf*.

It should be remembered that this analysis concerns the situation where only one
piece of evidence is transferred from one subset to another. It may not be favorable at
all to simultaneously transfer two or more pieces of evidence which are deemed favo-
rable for individual transfer.

The algorithm, like all hill-climbing–like algorithms, guarantees finding a local but
not a global optimum.

4    Neural structure

We will study a series of problems where 2n − 1 pieces of evidence, all simple sup-
port functions with elements from 2Θ, are clustered into n clusters, where Θ = {1, 2,
3, ..., n}.

Thus, there is always a global minimum to the metaconflict function equal to zero,
since we can take all pieces of evidence that includes the 1–element and put them
into cluster 1, of the remaining evidence take all those that includes the 2–element
and put them into subset 2, and so forth. Since all evidence of cluster 1 includes the
1–element there intersection is nonempty, and all evidence of cluster 2 includes the
2–element their intersection is also nonempty, etc. Thus, all conflicts ci are zero and
we will always have a global minimum with Mcf = 0. This makes it easy to use Mcf
as a standard for the efficiency of the clustering process.

The reason we choose a problem where the minimum metaconflict is zero is that it
makes a good test example for evaluating performance. If another problem had been
used we would have no knowledge of the global minimum and evaluation would be
more difficult. We have no reason to believe that this choice of test examples is atyp-

c j
* ci

*

Mcf * 1 1 c0–( ) 1 ci
*–( ) 1 c j

*–( ) 1 ck–( )
k i j,≠
∏⋅ ⋅ ⋅–=

1 1 c0–( ) 1 ck–( ).
k
∏⋅–=

1 c j
*–

1 c j–
--------------

1 ci–

1 ci
*–

--------------.>

k i≠



423
ical with respect to network performance.

We will choose an architecture that minimizes a sum. Thus, we have to make some
change to the function that we want to minimize. If we take the logarithm of one
minus the metaconflict function, we can change from minimizing Mcf to minimizing
a sum.

Let us change the minimization as follows

where  is a weight [12, p. 77] of evidence, i.e., metaconflict.
Since the minimum of Mcf (= 0) is obtained when the final sum is minimal (= 0) the
minimization of the final sum yields the same result as a minimization of Mcf would
have.

Thus, in the neural network we will not let the weights be directly dependent on the
conflicts between different pieces of evidence but rather on −log(1 − cjk),
where cjk is the conflict between the jth and kth piece of evidence;

This, however, is a slight simplification since the neural structure will now minimize
a sum of −log(1 − cjk), but take no account of higher order terms in the conflict. The
actual function being minimized is

while the function above can be rewritten as

where X and Y are the higher order terms.
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These functions are identical in there first order terms, and Y ≤ X. Thus, the actual
minimization slightly overestimates the conflict within the subset. This is the price
we have to pay to achieve fast clustering.

Let us now study the calculations taking place in the neural network during an itera-
tion. We will use the same terminology as Hopfield and Tank [3] with input voltages
as the weighted sum of input signals to a neuron, output voltages as the output signal
of a neuron, and inhibition terms as negative weights.

For each neuron nmn we will calculate an input voltage u as the weighted sum of all
signals from row m and column n, figure 2.

This sum is the previous input voltage of the previous iteration for nmn plus a gain
factor times the sum of the weighted sum of output voltages Vij of all neurons of the
same column or row as nmn plus an excitation bias and minus the previous input volt-
age of nmn.

In the column the output voltages are weighted by a data-term inhibition times the
weight of conflict plus a global inhibition;

where dti is the data-term inhibition, gi the global inhibition, Vin is the output voltage
from neuron nin, and i is an index over all rows of the column.
In the row the Vmj’s are weighted by the sum of row inhibition and global inhibition;

Figure 2: Neural network. Each column corresponds to a cluster and each row corre-
sponds to a piece of evidence

dti 1 cin–( )log⋅– gi+( ) Vin⋅
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where ri is the row inhibition, and j an index over all columns of the row.
Thus, the new input voltage to nmn at iteration t + 1 is

where η is the gain factor.
In the experiments we used the following parameter settings: η = 10−5, ri = −500. Ini-
tially dti was set at −2000 and gi was set at −200. Both were lowered as the problem
size grew. This is to assure that the inhibitory signals from the column does not over-
whelm the signals from the row as the column length grows like 2n while the row
length grows like n as the problem size n grows. The excitation bias was set at

where n is the number of columns, i.e., clusters.
The task of parameter fine tuning grows with the size of the neural network. For
larger problem it might be necessary to do this thing automatically, although this has
not been done here.

Finally, from the new input voltage to nmn we can calculate a new output voltage of
nmn

where tanh is the hyperbolic tangent, u0 = 0.02, and .
Initially, before the iteration begins, each neuron is initiated with an input voltage of
u00 + noise where

and atanh is the hyperbolic arc tangent.
The initial input voltage is set at where , the noise, is a random number
chosen uniformly in the interval .

In each iteration all new voltages are calculated from the results of the previous itera-
tion. This continues until convergence is reached. As long as the weights of the neu-
ral network is symmetric convergence is always guaranteed. This is always the case
here since the only factor that varies is the conflict between two pieces of evidence.
Thus, the weights from nin to njn and from njn to nin are equal.

In each iteration we need to make some special checks.

First, we assure that not all output voltages of a row of neurons decrease during the
same iteration. That could possibly lead to the piece of evidence corresponding to
that row not being clustered at all. If this happens we will add to all output voltages
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of the row so that the one that decreased the least is now unchanged.
This control plus the fact that we have logical conditions only on the row, and data-
terms from only one column for each neuron makes our problem easier than Hopfield
and Tank’s model for the traveling salesman problem. They had logical conditions on
both row and column plus data-terms from both the previous and next columns for
each neuron. This allows us to avoid the problems with convergence and perfor-
mance, as described by Wilson and Pawley [13], of the Hopfield and Tank model.

Secondly, we check the two highest output voltages of the row. If the highest output
voltage is greater or equal to 0.99 then it is set to 1.0 and all other output voltages of
the row are set to 0.0, or if the second highest output voltage is 0.0, then regardless of
the value of the highest output voltage, the highest output voltage is set to 1.0. This is
done merely to speed up convergence.

In figure 3 the convergence of a 155-neural network with 31 rows and five columns
for clustering 31 pieces of evidence into five subset is shown. This leads here to a
Figure 3: Six different states (iterations) of a neural network with 155 neurons. From
left to right: The convergence of clustering 31 pieces of evidence into five clusters at
the first, eleventh, 21st, 31st, 41st, and 51st (final state) iteration. In each snap-shot of
an iteration each of the five columns represent one cluster and each of the 31 rows
represent one piece of evidence. The linear dimension of each square is proportional
to the output voltage of the neuron and represent the degree to which a pieces of evi-
dence belong to a cluster. In the final state each row has one output voltage of 1.0 and
four output voltages of 0.0. A piece of evidence, represented by a row, is now clus-
tered into the cluster where the output voltage is 1.0
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global optimum being found in 51 iterations.

After convergence is achieved the conflict within each cluster, i.e., column, is calcu-
lated by combining those pieces of evidence for which the output voltage for the col-
umn is 1.0.

We now have a conflict for each subset and can calculate the overall metaconflict,
Mcf, by the previous formula.

5    Results

In this section we investigate the clustering performance and computation time of the
two clustering processes for the neural structure and the iterative optimization. We
make this comparison as the problem size grows.

In all problem sizes we will try clustering 2n − 1 pieces of evidence into n subsets. As
reported before the evidence support all different subsets of the frame Θ = {1, 2, 3, ...,
n}. Thus, we know that the metaconflict function has a global minimum with meta-
conflict equal to zero.

In figure 4 we notice that the iterative optimization has an exponential computation
time in the number of items of evidence. The neural structure has a much lower com-
plexity although it has a higher computation time for small problems. For problems
up to five subsets and 31 pieces of evidence the iterative optimization is the fastest,
but from six subsets and 63 pieces of evidence the neural structure is vastly superior.
Now let us study the clustering performance: Will we find a global optimum?

Yes, we find that the best run out of ten different runs in both methods manages to
find a global optimum for all problem sizes of three to six subsets. However, we also
notice that the median and mean minimum metaconflict are much higher for the neu-
ral structure than for the iterative optimization.

Figure 4: Computation time (mean of 10 runs) of neural structure compared to itera-
tive optimization
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For the neural structure we have mean conflicts of 0.016, 0.059, 0.076, 0.398 and
0.856 for problem sizes three to seven, while for iterative optimization the mean con-
flicts are 0, 0.001, 0.003 and 0.097 for problem sizes three to six.

How serious is this metaconflict?

If we make an assumption that in a local minimum the different conflicts from the
clusters are equal, they certainly are at a global minimum (equal to zero), we may
then calculate the average conflict of a cluster.

With c0 = 0 and ci = cj for all i, j we have

We see in figure 5 that it grows much slower than the total metaconflict. Thus, a large
part of the growth in metaconflict depends on the increased number of clusters whose
conflicts becomes additional terms in the metaconflict function.

Notice that in the six cluster problem we have roughly ten pieces of evidence in each
cluster. These pieces of evidence have on average a basic probability number of 0.5.
Still the median conflict in a cluster is only 0.094.

To investigate this performance a bit closer still, let us first study the probability of a
conflict between different pieces of evidence.

With 2n − 1 pieces of evidence, all simple support functions with elements from the
set of all subsets of Θ = {1, 2, 3, ..., n}, there are

possible combinations.
Of these

are in conflict.

Figure 5: Conflict and conflict per cluster
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If we draw two different random pieces of evidence from the set of all subsets we
have a probability of conflict between there propositions of

where, e.g.,  = 0.152 when n = 6.

We may compare the total median conflict in a cluster of 0.094 with the average con-
flict between two known conflicting pieces of evidence of 0.25, or the average con-
flict between two random selected pieces of evidence of 0.038 (by using the formula
above).

In an local minimum the probability is much smaller since the pieces of evidence are
clustered to avoid other conflicting pieces of evidence.

When the number of misplaced pieces of evidence are close to zero it might be rele-
vant to measure the median metaconflict per cluster and evidence. (We already found
that local optima were good with very few misplaced pieces of evidence).

In figure 6 below, we see that the median metaconflict per cluster and evidence is
quite moderate, although it grows in the six and seven cluster problem.

Let us study the best clustering of the seven cluster problem. We find conflicts of
0.05, 0, 0.21, 0.17, 0, 0 and 0.32, respectively, in the seven different clusters. The
median conflict is 0.05 in the 1st cluster. The 1st cluster contains 17 pieces of evi-
dence. All but two of them contains the 6–element. The two remaining support
{4, 5, 7} and {1, 2, 5, 7}, respectively. At least one of these elements are also
present in all but one other piece of evidence. The two pieces of evidence {4, 5, 7}
and {1, 2, 5, 7} are only in conflict with {6}.

Thus, of the 136 pairs of evidence in the 1st cluster only two pairs have a conflict.
This is a small price to pay to obtain effective clustering. Had we chosen 17 random
selected items we could have expected 16.4 of the 136 pairs to be in conflict (by the
formula above).

Figure 6: Median conflict per evidence
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6    Conclusions

We have demonstrated that a neural structure is effective for clustering evidence in
large scale problems. In the trials with 2n − 1 pieces of evidence clustered into n clus-
ters the neural structure was faster than iterative optimization for problems when
clustering 63 pieces of evidence into six clusters or larger. While the best of ten runs
found a global optimum for both methods for all problem sizes up to six clusters the
median metaconflict was higher for the neural structure. However, since a good best
run was found and the median conflict per cluster and evidence was moderate, this
was deemed acceptable.
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