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ABSTRACT
In spite of constant technological advances, the nature of to-
day’s military conflicts has increased the importance of intel-
ligence gathering by human observers. To allow for efficient
exploitation, the information collected needs to be struc-
tured. Traditional hand-held reporting systems solves this
by assuming a fixed report structure; the reporter submits
a report by filling in the various data fields in a predefined
report schema.

In this paper, we consider how to make the report schema
aware of the reporting context and also dynamically adapt
to information requests posed by actors external to the re-
porting situation: when a reporter enters data which are
relevant to an information request, but do not fully answer
the request, the schema expands to include fields that supply
the missing information. We consider in detail how to eval-
uate relevance and how to select the additional data fields
to query for.

When deciding what additional data fields to query for, we
take into account not merely what data is missing, but also
the information capability of the reporter, i.e., what kind of
data the reporter is in a position to supply in the context he
or she is in; more technically, we assume that the information
capabilities of reporters are formalized in a simple epistemic
logic extension to the domain ontology that underlies the
reporting system, and use reasoning to infer the appropriate
additional data fields for which to query the reporter.
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1. INTRODUCTION
In spite of constant technological advances, the nature of
today’s military conflicts has increased the importance of
intelligence gathering by human observers. To allow for effi-
cient exploitation, the information collected from the human
observers needs to be structured. A possible solution is to let
the human observer input free text and then apply natural
language processing techniques to transform the free text
into the required structured format. However, such tech-
niques are computationally intensive, often require a lot of
training data and are never completely accurate. In a human
reporting system these are limiting factors and alternative
approaches are of interest.

In previous work [4], we introduced the concept of an ontol-
ogy based adaptive reporting tool that supports a reporter
when entering information about an observation. The re-
ports are fed into a larger information system where they
are further processed by software agents and consumed by
other users. The information system uses an ontology as a
common information model which the output of the report-
ing tool should adhere to.

The tool proposed in [4] lets the reporter enter structured
information directly, but without assuming a fixed report
structure; the tool can be seen as an adaptive form which
reacts to user input. The tool is adaptive in the sense of
adding new input fields and filtering out irrelevant fields
based on the current user context (who is reporting, what
is the role and capabilities of the reporter, where is the re-
porter, what time is it) as well as on possible information
needs of other users in the information system.

Figure 1 provides an overview of how the reporting tool is
intended to interact with external information needs. The



reporter observes an event and enters some event informa-
tion in the reporting system, which outputs semantic state-
ments. These are then matched with information needs,
Requests For Information (RFIs) from other parts of the
system formulated as semantic queries. If there is a match,
the reporter may be asked for additional information, i.e.,
asked to fill in additional input fields.

Figure 1: System overview

Asking for additional information might disturb the reporter
and hence is associated with a cost. The problem of design-
ing systems which tries to minimize this cost is studied in
the field of intelligent user interfaces involving methods for
so called polite interaction [1]. The goal there is to find the
least disturbing moment to interrupt the user with a mes-
sage or a question, which is a valid concern for our reporting
tool.

However, in this paper we consider what additional ques-
tions - if any - should be presented to the user rather than
at what specific point in time the user should be interrupted.
To determine what to query the reporter we calculate the
utility of posing a specific question based on the following
criteria:

• The relevance of the question for satisfying one or more
information needs;

• The ability of the reporter to supply the data asked
for, given that the data exists;

• The probability that the data asked for exists;

• The value to the organisation of satisfying a specific
information need.

The rest of the paper is organized as follows. In Section 2
we make a more formalized statement of our problem based
on the criteria above. Section 3 reduces the problem of de-
termining a query’s relevance to an RFI (first item above)
and the ability of a reporter to answer the query (second
item above) to precise reasoning problems. In Section 4 we
briefly discuss how to estimate the probability that the data
asked for exists (third item above). Finally, Sections 5 and
6 concludes the paper with a general discussion and some
thoughts on future work.

2. PROBLEM STATEMENT
In this paper we consider the problem of how to decide on-
the-fly what additional input fields to present to a reporter
in light of the input entered so far and in light of the RFI:s
that analysts have posted to a central registry; we consider
the question:

1. What additional input fields − if any − should we
present to the reporter?

The answer to the question should balance the cost of dis-
turbing the reporter with the expected benefit for analysts.
Needless to say this balancing can be done in a number of
ways, with different heuristics appropriate in different con-
texts.

Example 2.1. We introduce our running example. A new
type of mine, MineTypeA, has recently appeared in a crisis
region, RegionA. An analyst at HQ conjectures that a cer-
tain actor, actorA, is responsible. The analyst registers a
request for information asking if MineTypeA detonates in
close proximity to actorA. Eventually a reporter observes ac-
torA and reports this. Soon thereafter and nearby, another
reporter reports the observation of a mine. The reporting
system considers the problem (1) and queries the reporter
whether the observed mine was in fact a MineTypeA. The re-
porter confirms the query (’presses yes−button’) whereupon
the analyst at HQ is notified that MineTypeA has detonated
in close proximity to actorA.

Throughout the paper we assume an ontology (formal vo-
cabulary) behind the reporting tool; text entered in input
fields translate to formal assertions expressed with the vo-
cabulary. In fact, we will ignore presentation issues and
simply identify a report with a set of formal assertions.

In more detail, we assume a finite set of classes (unary pred-
icates), a finite set of properties (binary relations), and a
countable set of individual constants. An assertion is an ex-
pression of the form a : C or of the form aR b, where a and
b are individual constants, C is a class and R is a property.
We assume furthermore a derivation relation ` relating sets
∆ of assertions to a single assertion F ; we say that F is
derivable from ∆ if ∆ ` F . In practice, the derivation re-
lation will be given by a finite representation − typically a
proof system of some sort − that provides a procedure for
computing the relation, i.e., deciding whether ∆ ` F for
arbitrary ∆ and F .

For ease of presentation we do not assume any dedicated
query language: a query about an assertion F is an expres-
sion ?F ; the query ?F is said to be true with respect to a
knowledge base ∆ if F is derivable from ∆.

The context for the decision problem (1) then is a report
∆r just submitted by a reporter r, a central knowledge base
∆kb (containing all reports submitted so far and, possibly,
data from other sources, e.g., live database connections),
and finally, a number of queries ?Frfi , ?F ′

rfi , . . . posted as
requests for information by analysts.



Example 2.2. We revisit the above example with more
formal details. We assume the domain ontology contains
classes Mine, MineTypeA, atLocationA, etc. and properties
closeTo, etc. satisfying e.g.,

• a:MineTypeA ` a:Mine

• a: atLocationA, a’: atLocationA ` a closeTo a’

for all individual constants a and a′.

To express his request for information, the analyst introduces
a fresh assertion Frfi and extends the derivation relation such
that:

• a:MineTypeA, a closeTo actorA ` Frfi

(for all individual constants a) and registers the query ?Frfi

as a request for information. Eventually, the first reporter
submits the report: { actorA atLocationA }. Soon thereafter
the second reporter, say r0, submits the report: { a0:Mine,
a0: atLocationA }, where a0 is a fresh individual constant
(’anonymous individual’) generated for the report. The re-
porting system − after considering the question (1) − presents
the reporter with the query:

2. ? a0:MineTypeA

Once the reporter confirms the query, the request for in-
formation Frfi becomes derivable from the central knowledge
base ∆kb which stores all submitted data.

In this paper we consider the decision problem (1) as the
problem of computing on-the-fly a query ?∆ (to pose to
the reporter) with an expected utility U(?∆) greater than
a given threshold ε, i.e., U(?∆) ≥ ε; the rest of the paper
is concerned with the details of the utility function U . At
the most abstract level, we compute the expected utility of
aksing the reporter ?∆ as follows:

3. U(?∆) = P (∆)× 1A(?∆)×
∑
?F

w(?F )× 1R(?F )(?∆)

where P (∆) is the probability of ∆ being the case, 1A is the
characteristic function for the set A of queries ?∆ which the
given reporter is able to answer, ?F ranges over registered
requests for information, w(?F ) is the weight assigned to the
request for information ?F by analysts, and finally, 1R(?F )

is the characteristic function for the set R(?F ) of queries ?∆
which are relevant to the information request ?F .

According to the definition (3), the expected utility of query-
ing the reporter ?∆ depends, firstly, on the probability P (∆)
of ∆ being the case - the intuition is that the query ?∆ pro-
vides value only when the reporter replies affirmative. We
do not consider negative evidence in this paper; a reporter
can either confirm a query or reply ’unknown’.

Secondly, the expected utility of querying ?∆ depends on
the ability of the given reporter r to answer the query: the
query provides no value if the reporter replies ’unknown’,
i.e., if 1A(?∆) = 0.

Thirdly, the expected utility of querying ?∆ depends on the
total weight assigned to all those RFI:s for which the query
is relevant.

Example 2.3. We return to example 2.2 at the point when
the reporter r0 has just submitted her report. Should the re-
porting system add an additional input field querying the
reporter whether a0 is a MineTypeA? To decide this, the re-
porting system checks that the expected utility U(?a0:MineTypeA)
of the query is greater than ε, the threshold. To calculate the
expected utility, the system calculates:

• P (a0:MineTypeA) − the probability that a0 is a Mine-
TypeA

• 1A(?a0:MineTypeA) − if a0 is a MineTypeA is the re-
porter able to confirm this?

• 1R(?F )(?a0:MineTypeA) − is the information that a0 is
a MineTypeA relevant for the request for information
?F?

In subsequent sections we formalise the characteristic abil-
ity functions 1A, the characteristic relevance function 1R(F ),
and the probability function P .

3. COMPUTING RELEVANCE AND ABIL-
ITY

In this section we formalise the characteristic ability function
1A and the characteristic relevance function 1R(?F ) from (3)
as precise reasoning problems.

Informally, a query ?∆ is relevant to a request for infor-
mation ?F if an affirmative reply to the query resolves the
request for information. Formally, we define 1R(?F )(?∆) = 1
if and only if F is derivable from ∆ together with existing
data, i.e., ∆,∆kb ` F ; else 1R(?F )(?∆) = 0.

Example 3.1. Returning again to example 2.3, the query
?a0:MineTypeA is relevant to the request for information
?Frfi, in symbols 1R(?Frfi)(?a0:MineTypeA) = 1, if and only
if a0:MineTypeA, ∆kb ` Frfi, i.e., if

• a0:MineTypeA, ∆kb ` a0:MineTypeA

• a0:MineTypeA, ∆kb ` a0 closeTo actorA

The first condition is immediate. The second condition holds
since the knowledge base ∆kb includes data from the earlier
report, namely actorA: atLocationA, as well as data from
the present report, namely a0: atLocationA.

Next we consider how to formalise also the characteristic
ability function 1A as a reasoning problem, first as a light-
weight reasoning problem and then as a more heavy-weight
reasoning problem.



3.1 Light-weight reasoning about ability
Informally, the given reporter is able to answer the query
?∆ if, whenever ∆ is the case the reporter is in a position
to verify that ∆ is the case. Formally, we define 1A(?∆) =
1, if and only if, ∆ is a specialisation of the current report
(entered data) ∆r, i.e., ∆ can be obtained from ∆r by sub-
stituting more specific concepts/properties for less specific
ones and, possibly, removing some assertions.

In detail, a concept C is more specific than a concept C if
a : C ` a : C for all individual constants a. Analogously,
a property R is more specific than a property R′ if aR b `
aR′ b for all individual constants a and b.

Example 3.2. Continuing example 2.3, the reporter is
able to answer the query ?a0:MineTypeA, in symbols
1A(?a0:MineTypeA) = 1, if a0:MineTypeA is a specializa-
tion of the current report ∆r, i.e., if MineTypeA is more
specific than Mine.

3.2 Epistemic reasoning about ability
The intuition in Section 3.1 is that the reporter is able to
supply more specific classes and properties if asked. For
example, it is assumed that if an instance of MineTypeA is
known by the reporter to be a Mine, then it is also known
to be a MineTypeA:

4. a:MineTypeA, r knows a:Mine =⇒ r knows a:MineTypeA

The assumption (4) is of course over overoptimistic and may
cause the reporting system to disturb reporters unnecessar-
ily with queries they are unable to answer. In particular,
while the assumption (4) may be reasonable for reporters in
mine squads it is perhaps unreasonable for reporters in relief
units.

Next we formalise the characteristic ability function 1A as a
reasoning problem using assumptions that are custom−made
for a specific context. The method requires manual prepa-
ration − creating the custom−made assumptions − but in
return may offer less noise, i.e., reduce the number of queries
that reporters are unable to answer.

Assumptions about reporters − assumptions about what
this or that reporter knows in this or that situation − are
made explicit in a context specific extension to the domain
ontology (the ontology underlying the reporting system).The
ontology extension is built using epistemic assertions of the
form r knows F, where r ranges over a given finite set of
reporter names and F is a regular assertion (assertion in the
domain ontology language).1 Intuitively, the epistemic as-
sertion r knows F states that the reporter r is in a position
to infer (verify) that F holds.

Example 3.3. Returning to example 2.2, someone − say
an ’administrator’ of the reporting system − extends the do-
main ontology with assumptions about reporters, such as the
assumption that mine experts are able discriminate between
different types of mines:
1We assume the set of reporter names is a subset of the set
of individual constants.

5. a:MineTypeA, r knows a:Mine, r:MineExpert
` r knows a:MineTypeA

However, the administrator does not extend the domain on-
tology with the stronger assumption (4).

Given the assumptions about reporters in the extended on-
tology, we can use reasoning to compute queries ?∆ which a
given reporter r is able to answer, i.e., queries ?∆ such that
if ∆ is the case then r knowst ∆.

Formally, we define 1A(?∆) = 1, if and only if, ∆kb ` ∆ →
r knows ∆, i.e., if and only if, ∆kb,∆ ` r knows ∆.

Example 3.4. Continuing example 2.3, the reporter is
able to answer the query ?a0:MineTypeA, in symbols
1A(?a0:MineTypeA) = 1, if
a0 :MineTypeA → r knows a0 :MineTypeA is derivable from
existing data, i.e.,
a0 :MineTypA, ∆kb ` r knows a0 :MineTypA.

When reasoning about the knowledge of reporters we follow
standard practice in knowledge representation and assume
that reporters are perfect reasoners and know all logical con-
sequences of what they know (cf. [2]):

6. If ∆ ` F , then r knows ∆ ` r knows F

(Note that the intended meaning of r knows F is that the
reporter r is able to verify that F holds if asked.) In addition
to (6), we assume the extended ontology inherits all proof
rules from the domain ontology.

Example 3.5. As a special case of the assumption (6)
about perfect reasoners, if class C is more specific than C’
then r knows a:C ` r knows a:C’.

We assume that the knowledge base ∆kb is extended with
context data about reporters, such as an assertion stating
that a certain reporter is a mine expert. In addition, we
assume the extended knowledge base keeps track of who has
said what: the knowledge base includes assertions r knows
∆r for every report ∆r submitted (now or in the past) by
the reporter r.

Example 3.6. Continuing example 3.4, we assume the
knowledge base ∆kb contains the context data: r0:MineExpert.
Once the reporter r0 submits her report { a0:Mine, a0: at-
LocationA }, the knowledge base ∆kb contains: r0 knows
a0:Mine, r0 knows a0: atLocationA.

Example 3.7. Continuing examples 3.4 and 3.6, it fol-
lows from the custom asumption (5) that the reporter is able
to answer the query, i.e., a0 :MineTypA, ∆kb ` r knows
a0 :MineTypA. However, if the knowledge base had not in-
cluded the context data that the reporter r0 is a MineExpert,
then it would not follow that r0 is able to answer the query.



4. COMPUTING PROBABILITY
In this section we consider how to obtain the probability
P (∆) when calculating the expected utility of a query ?∆
according to (3).

Intuitively, the (subjective) probability of the event ∆ is
the conditional probability of ∆ given everything the sys-
tem knows, i.e., given the current knowledge base: P (∆) =
P (∆ |∆kb). Unfortunately, estimating the conditional prob-
ability between arbitrary sets ∆ and ∆kb is notoriously dif-
ficult (even if the ontology is fixed).

Here, we consider a light-weight approach that places lit-
tle demand on representative traning data or user input
from domain experts. Since the characteristic ability func-
tion 1A(?∆) in (3) is equal to 0 unless ∆ specialises the
current report ∆r, we can assume that ∆ is obtained from
the current report ∆r by replacing classes C1, C2, . . . with
the more specific classes C′

1, C
′
2, . . . and replacing properties

R1, R2, . . . with the more specific properties R′
1, R

′
2, . . . .

We define the probability P (∆) as the product:

7. P (∆) = Π
i
P (C′

i |Ci)×Π
i
P (R′

i |Ri)

of all the conditional probabilities P (C′
i |Ci) and P (R′

i |Ri).
Intuitively, the definition (7) approximates the conditinal
probability P (∆ |∆kb) given the knowledge base with the
conditional probability P (∆ |∆r) given the current report,
which in turn is computed under the simplifying assumption
that assertions are statistically independent.

We consider three methods of obtaining the conditional prob-
abilties P (C′

i |Ci) and P (R′ |R) used in (7). The first method
is to ask domain experts, which might be feasible if e.g. the
number of classes is small and experts are available.

The second method is a straight-forward frequency analysis
using available instance data, either from the knowledge base
or from a training set:

8. P (C′ |C) = |{a:C′}|
|{a:C}|

where |{a : C}| is the number of instances of the class C in
the available data set (P (R′ |R) is estimated analogously).
Of course, the frequency analysis (8) requires a data set
which is reasonably respresentative for the application do-
main.

The third method, on the other hand, requires neither rep-
resentative data sets nor input from experts. The method
simply assumes that instances are equally distributed among
(immediate) subclasses to a common superclass:

9. P (C′ |C) = 1
|{X<C}|

where |{X < C}| is the number of immediate subclasses
to C according to the domain ontology and C′ is itself an

immediate subclass of C. The definition (9) is lifted to con-
ditional probability for arbitrary subclasses C′ (not merely
direct sublasses of C) by taking the product of the con-
ditional probabilities along the path from C to C′ in the
subclass-graph.2

The same product construction can be used also in the first-
and second method above in order to reduce the number
of conditional probabilities P (C′ |C) that need to be deter-
mined, reducing the burden on domain experts and repre-
sentative training data.

5. DISCUSSION
Ideally, the reporting system has access to a rich description
of each reporter’s abilities and enough representative data
to calculate the required probabilities. Unfortunately, this is
not always the case, and approximations and heuristics such
as those presented in the previous sections will be necessary.

Since reporting situations can vary quite dramatically, the
proposed heuristics may result in unpredictable variations
in the estimated utility levels, leading to large variations in
the number of questions posed to the reporter. To avoid
the risk of overload, a dynamic utility threshold based on
how well the adaptable component is performing could be
useful. Another solution could be to simply limit the number
of questions to ask the reporter, regardless of their expected
utilities.

So far we have not addressed the problem of where in the
reporting process to present questions to the user. Research
related to human-machine interaction has shown that in-
terrupting users without taking their current situation and
task in mind can lead to annoyance [1]. One aspect of par-
ticular interest to our application is how long to wait before
presenting a query after it has passed the utility threshold.
In the case where the user is already about to enter the in-
formation that the system wants to ask about, interruption
is unneccessary and might be conceived as annoying. On
the other hand, if the system waits too long before asking
the question, the user might have switched focus and the
interruption will be even more disturbing.

Instance subtype prediction based on the ontology structures
is associated with assumptions about the type distribution.
The simple and naive method where we assume that the
subtypes are equally distributed may work in some cases
but may give an incorrect, and perhaps misleading, repre-
sentation of the probability distribution in other cases.

An alternative approach might be to replace probability in
the utility function (3) with other less precise metrics that
do not depend on assumptions about probability distribu-
tions. One such metric is semantic distance which (in its
simplest form) counts the number of edges in the path from
one concept to another more general concept in the ontology
class hierarchy. Semantic distance per se does not say any-
thing about how probable it is that an instance of one type
actually is an instance of a more specific type. Nevertheless,

2It is assumed that the subclass-graph is a tree, as is of-
ten the case for tradtitional light-weight ontologies such as
taxonomies, directories, etc.



one could perhaps assume, as a heuristic, that a large dis-
tance indicates a low probability. However, one would have
to interpret the semantic distance in terms of probability
in order to use it in the utility function (3). Interpreting
semantic distance in terms of probability would force us, as
all subjective probabilistic approaches, to make assumptions
and use heuristics to model the necessary distributions. This
might turn out to be very difficult.

The matching problem, the problem of determining if a re-
port is a potential answer to an RFI, could alternatively
be solved using an RDF graph matching approach. More
specifically, the report (represented by an RDF graph) could
be compared with the query (represented as an RDF graph
with variables) using concept similarity measures like the
ones described in [5]; if the report is similar to the query,
the RFI itself is presented as a query to the reporter. While
simple and straightforward, this approach does not take into
account the fact that the reporter might not (by herself)
be able to supply all the information asked for in the RFI.
Thus, exposing the complete RFI to the reporter may lead
to considerable noise, i.e., queries that disturb the reporter
without benefiting the analyst.

As shown in the previous section, we can exploit the ontol-
ogy structure to estimate the probability that an instance
belongs to a specific class. The problem of predicting the
type of a new instance can be seen as a standard classifi-
cation problem where machine learning algorithms can be
applied. However, selecting which features to use to train
a classifier is not always straightforward. In the previous
section we based the predictions solely on the super-class,
but other features such as instance data can be used. The
generic prediction problem in such a semantic setting can
be formulated using statistical relational learning (SRL) as
presented in [3].

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented the concept of an ontology-based
adaptive reporting tool that works as a broker between re-
porters and analysts with information needs. We analysed
in detail how the reporting tool should decide on-the-fly
whether to ask a reporter for some additional information,
given the context of a reporting situation and a set of ex-
ternal information needs. The proposed formal solution bal-
ances the expected utility of receiving a relevant answer with
the cost of disturbing the reporter. The described approach
was only explored theoretically. The next step is to do an
implementation and perform user tests as described in [4].
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