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Abstract — Determining how to utilize information acqui-
sition resources optimally is a difficult task in the intelli-
gence domain. Nevertheless, an intelligence analyst can ex-
pect little or no support for this from software tools today.
In this paper, we describe a proof of concept implementa-
tion of a resource allocation mechanism for an intelligence
analysis support system. The system uses a Bayesian net-
work to structure intelligence requests, and the goal is to
minimize the uncertainty of a variable of interest. A number
of allocation strategies are discussed and evaluated through
simulations.
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1 Introduction

Determining how to utilize information acquisition re-
sources optimally is a difficult task in the intelligence do-
main. Nevertheless, an intelligence analyst can expect lit-
tle or no support for this from software tools today. At
the Swedish Defence Research Agency, we are developing
an intelligence analysis support tool, Impactorium [5],
which helps an intelligence analyst to model, structure, fuse
and visualize information. In the tool, an incoming knowl-
edge request (KR) can be turned into a detailed problem de-
composition. Each sub-problem can then be treated sepa-
rately, with its own planning, collection and analysis steps.
The solution to the different sub-problems are then com-
bined using some mathematical framework, in our case us-
ing a Bayesian Network (BN). However, even though the
sub-problems can be analyzed separately, the impact on the
KR of solving a sub-problem may be sub-optimal and the
information acquisition resources have to be shared among
the sub-problems. This means that the resource allocation
must look at what is best for the KR problem as a whole.

The process of acquiring information for state estimation
with a BN is akin to sensor management in the sense that
both concern deliberation of sensing actions and their ex-
ecution in order to improve the information fusion process
and, ultimately, decision support. There is a growing litera-
ture on sensor management (surveyed in, e.g., [6] and [4]),
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but very few efforts seem so far to have been devoted to the
estimation of “high-level” information, as for example the
decomposable KR of an analyst. One exception is [7], which
poses the problem of information acquisition for state esti-
mation with a BN. The main difference between their work
and ours is that we allow uncertain evidence of the problem
components.

In general, information acquisition is a highly complex
problem involving heterogeneous and fallible resources, dy-
namic and high-level mission objectives, and decentralized
control [2, Ch. 3]. In this article, we focus on the issue
of information acquisition for high-level mission objectives
(such as support for KRs).

2 Impactorium: a Decision Sup-

port Tool

In order to understand the problem that is targeted in this
paper, we need to put it into context. To do this we will
picture a scenario of a typical intelligence workflow and de-
scribe a tool that is being developed at FOI to support parts
of this workflow.

The sole purpose of the pursuit of intelligence is to sup-
port a commander or decision maker with information in a
decision situation. The intelligence process begins when the
decision maker issues a KR to the intelligence organization.
The KR is received by an intelligence manager who priori-
tizes the request and assigns it to an analyst. The analyst is
also assigned a set of information acquisition resources.

The request is often formulated as a simple yes/no ques-
tion (or true/false statement). However, most often there is
no information available within the intelligence organization
that answers the KR directly. Moreover, the request is likely
to be complex in the sense that no single observation will
be able to answer it completely and with enough certainty.
(Note that when we say observation, we mean all kinds of
statements, no matter if it was produced by a sensor or by
an analyst reading a document.) This makes it necessary to
decompose the request into multiple sub-queries with nar-
rower and more manageable scopes. The sub-queries are
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further decomposed until they reach a level where it is pos-
sible to find a direct answer to them, either by consulting
a knowledge base or by directing sensing capabilities (sen-
sors or human observers) to observe some part of the area
of interest. This kind of observable sub-queries are called
indicators.

After a knowledge request has been decomposed into in-
dicators, information is collected to determine if the indica-
tor value, i.e., the answer to the sub-query, is true or false.
The acquired information is analyzed to see if any obser-
vations relevant to the indicator can be found. An obser-
vation that either supports or rejects an indicator is called
evidence, and will influence the analyst’s estimation of the
indicator value. When the indicator values have been deter-
mined, they are propagated upwards in the decomposition
tree and combined to answer the queries of the higher level.
This propagation and combination is repeated until the ini-
tial knowledge request is answered.

The combination of evidence can be made either manu-
ally, based on the experience of the analyst, or automatically
utilizing a supporting mathematical framework. The sim-
plest propagation model would be to just use a mean value
calculation to merge the answers from all sub-queries. To
make the model a little more elaborate, a weighted mean
can be used to capture the varying importance of the dif-
ferent sub-queries. A yet more advanced approach would
be to use a BN. This allows a more detailed description of
the dependencies as well as the causal relations between the
sub-queries.

As mentioned above, when the decomposition is com-
plete and the propagation models have been decided, the
analyst starts to search for information matching the indi-
cators to answer the lowest level sub-queries. To do this she
exploits the information acquisition resources that she was
assigned by the intelligence manager. The resources can be
heterogeneous, which means that different resources can be
more or less suitable for acquiring information on a partic-
ular indicator. To handle this, as suggested in this paper,
the analyst could formulate a specific acquisition task for
each indicator-resource pair. Then she could estimate the
expected value of performing each task. This would form
the basis for a task assignment, which could be optimized to
minimize the uncertainty of the initial knowledge request.

Impactoriumis asoftware support tool for intelligence
analysis under development at the Swedish Defence Re-
search Agency (FOI). The tool helps an analyst with model-
ing, structuring, fusing and analyzing intelligence informa-
tion, according to the workflow described above. The tool
allows an analyst to construct intelligence models, by for in-
stance decomposing a knowledge request into sub-queries
and indicators, and then use the model as a basis for a sys-
tematic search for and combination of evidence. The models
are graphical, and hence built from nodes and links, where
the links describe how the nodes influence each other. Each
node consists of a variable and a probability distribution.
The variable can for example represent a claim that can
take values True or False, and the probability distribution
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Figure 1:
An example of an Impactorium intelligence model rep-
resented as a Bayesian network. The network was drawn
with the GeNle tool.

describes how likely it is that the claim is True or False.
The probability that a particular node is True depends on the
values of its related nodes, and to describe this influence a
number of different mathematical models can be used, e.g.,
a mean value function or a BN.

Each node in the model is tied to a set of evidence that
forms the basis for the node’s probability distribution. The
evidence set ensures traceability since it is possible at any-
time to obtain all the information that served as a basis for
the assigned value.

Impactorium currently does not provide any advice for
what information to acquire. That issue is addressed in this

paper.

2.1 Example

The following example refers to a training scenario de-
veloped by the Swedish Armed Forces. It takes place in
Bogaland, a fictive nation with economic, ethnic and reli-
gious conflicts. In order to stabilize the situation, the UN has
deployed peace enforcing troops under the name BFOR. In
this particular example, the BFOR commander in charge of
stabilizing the capital X-town has the following knowledge
request: Are (the hostile) Mida forces planning to attack X-
town?

The intelligence analyst assigned to investigate the case
makes a query decomposition using the Impactorium
tool, and decides to use a BN to model the dependencies.
The nodes and their interdependencies can be seen in Fig. 1.



Indicator Resource Certainty
Mida pol. will to attack | Int assist 0.80
Mida pol. will to attack | Liaison officer 0.90
Mida pol. will to attack | MOT 0.55
Mida cap. to attack Int assist 0.70
Mida cap. to attack Liaison officer 0.90

Table 1: Examples of sensing resources and their expected
performance

The next step is to look for evidence to the indicators.
In the example, all nodes except the original query (Mida
forces planning to attack X-town) and the Increased pres-
ence of Mida ground forces-node are indicators. Along with
the knowledge request, the analyst is assigned a set of re-
sources for intelligence gathering, e.g.,

e Mechanized platoon 1 (Mech Pt 1)

Mechanized platoon 2 (Mech PIt 2)

Intelligence platoon (Int Plt)

Military Observation Team (MOT)

Liaison officer

Intelligence Assistant (Int Assist)

The resources offer different gathering services which can
be more or less suitable for capturing evidence to a particu-
lar indicator. In order to make a reasonable collection plan,
the analyst lists all indicator-resource pairs and for each pair
makes a tentative judgment of the expected impact of as-
signing that particular resource for gathering intelligence to
that particular indicator.

An ordinary BN requires that nodes are observed with cer-
tainty, i.e., observed nodes are assigned an absolute value.
However, in our case, sensor imperfection requires uncer-
tain evidence. In the case of a Boolean node, this imperfec-
tion will correspond to a certainty factor between 0.5 and
1, where 0.5 is an observation which won’t add any infor-
mation (equal to a non-observation) and where 1 is a com-
pletely certain observation. Table 1 lists an extract of the
indicator-resource judgments. In a real situation the cost of
each assignment would also be a factor to consider. How-
ever, for the sake of simplicity we leave it out (see [3] for a
description on different cost aspects of information supply
for information fusion services).

3 General Problem Description

In the previous section, we described the Impactorium
intelligence model consisting of knowledge requests, indica-
tors and their interdependencies and that this can be repre-
sented by a Bayesian network. In general, a BN represents a
joint probability function (JPF) over all included variables,
typically representing belief of joint states based on obser-
vations and prior probabilities. The probability function of

Context2
True | 035
False| 05

Contextl
True | 05

Fase| 05

Contextl [True [True |False|False

Context2 [True |[False|True | False
Hypo True| 0.9 [0.8 [06]025
thesis  False[ 0.1 0.2 | 0.4] 0.75

Act Tru

ivity I False .

Obzervationt Ohzervation2

Figure 2:
A generic description of an Impactorium intelligence
model as a Bayesian network including a hypothesis vari-
able (corresponding to a knowledge request and not directly
observable) and information variables (corresponding to in-
dicators). The network was drawn with the GeNlIe tool.

a specific variable in the network (representing the belief in
the states of the variable) can be found by marginalization.
Rather than specifying a single (and potentially enormous)
probability table for the JPF, the BN facilitates the specifi-
cation of a number of smaller conditional probability tables
(CPTs), representing the direct dependence between a sub-
set of nodes.

The network consists foremost of hypothesis and infor-
mation variables (corresponding to knowledge requests and
indicators in Impactorium, respectively). The former are
variables of primary interest for a decision maker and the lat-
ter are variables that can be observed by some means (e.g.,
by sensors). Fig. 2 depicts a generalized but simple intelli-
gence model as a BN. Indicators are here context variables
(i.e., circumstances that may support or reject a hypothesis,
such as weather conditions or political climate) and activity
variables (i.e., possible consequences of an event), both of
which can be observed.

While the hypothesis variable can not be directly ob-
served, the indicators can. Observations of the indicators
will affect (through the dependencies of the BN) the belief
of the hypothesis variable.

By necessity, we relax the assumption that the indicators
can be observed with certainty. Instead, as explained in Sec-
tion 2, sets of indicator evidence are maintained for each
information node in the BN. For simplicity, the evidence
are binary statements (either supporting or rejecting the con-
cerned indicator). The sets of evidence are interpreted as un-
certain evidence for the node in question. As BNs by design
require certain observations, the transformation from sets of
evidence to uncertain evidence for the BN must be handled.
How we deal with this issue is explained in Section 4.

In Section 2.1, we give examples of resources that can
be used to acquire information for an indicator for a spe-
cific mission. For our experiments (Section 6), we will use
a generalized form of resource. The resources in our ex-



periments are assumed to be homogeneous, i.e., having the
same performance. Each resource generates one observa-
tion (in terms of a likelihood) of the indicator, with known
certainty k, i.e.,

p(Om = im,n|1m, = Zm,n) =k V’ﬂ, (1)

where 0.5 < k < 1, I,, is indicator m, O,,, is an observation
of indicator I, , i, is state n of the binary indicator I,,, (in
our experiments there are only two states: True and False).
Hence, if an observation claims that the state of indicator /,,,
iS @y, then this information is only certain to degree k. If
multiple resources are at the system’s disposal, more than
one resource may be used for one indicator (hence resulting
in multiple observations on the same indicator). We define a
sensing action to be a full assignment of available resources
to observe indicators.

As mentioned, applying a number of resources to observe
the indicators will change the understanding of the Hypoth-
esis variable, but it can in general not be guaranteed that the
true state of the Hypothesis variable can be determined with
certainty. For instance, in the case of the BN in Fig. 2, even
if the information variables are known with certainty to be,
say, True, the probability of the true state for the Hypothesis
variable is less than 1 (0.989 in this case). Hence, to estimate
the result of a sensing action it is not appropriate to compare
the resulting marginal probability over the Hypothesis vari-
able, po (H|O) (where O is the set of all observations), to its
true state (which corresponds to a probability function with
probability 1 assigned to the true state) as that is, by the de-
sign of the BN, unattainable. Instead, the performance met-
ric we use in our experiments, Q) (po(H|O), pr(H|I)), is a
distance metric between the estimated probability po (H|O)
and the best possible one p; (H |I) (where the true state of all
information variables I are known)

N
Q (po(H|0O), pr(H|T)) Zpon prn), @

where IV is the number of states of the Hypothesis variable
H (in our case just two, True and False) and py ,, and py
are the probability values of the nth state for the probability
functions. A low value of Q(-) is desirable.

4 Uncertain Evidence

As mentioned in the previous section, observations of in-
dicator states are collected into sets of evidence. These sets
are further transformed into uncertain evidence for the indi-
cator variables in the BN. Each evidence can be described
as a likelihood (Eq. (1)) and the members of a set of evi-
dence O can be combined using Bayesian inference in the
following way:

p(I|10) o p(I

() [ r0

0€O

=o|I), A3)

where p(I) is a common prior (in our experiments assumed
to be uniform). For instance, if O = {T,T, F'}, i.e., con-

tains two observations supporting state True of an infor-
mation variable and one observation supporting False, and
k = 0.9, then the fused uncertain evidence would become
(the uniform prior can be ignored)

09-0.9-0.1

p(I = TruelO) =
09-09-01+0.1-0.1-0.9

=0.9

0.1-0.1-0.9

I=F
P alsel0) = 59709011 01.0.1.0.9

=0.1

Once the uncertain evidence p(7]O) for indicator I has
been calculated, it has to be enforced in the BN of the intel-
ligence model.

We use Pearl’s method [1] to achieve this. It is suitable for
Bayesian networks (simply adding an additional temporary
node Z with an arc extending from the node that the evi-
dence concerns to the temporary node), but requires that ev-
idence is specified as likelihoods in the CPT of Z. If, on the
other hand, the evidence is expressed as a probability func-
tion (as in Eq. (3)), the required likelihoods can still easily be
obtained from the desired probability function. Remember
that we wish to set the probability function of indicator node
I to p(I|O). Now, add a temporary variable Z with states

{2i}2_,. Z by design only has two states, namely z; = True
and zo = False. The likelihoods of Z’s CPT are then:
p(Z =Truell =in)=c- A\, ¥n @

p(Z = False|ll =ip)=1—c- X\, Vn,

where \,, is the ratio of the desired updated probability
p(I = i,|O) and the original probability p(I = i,,):

p(I: inlo)

The c in Eq. (6) is a constant that normalizes the \,s to
make them valid probabilities, e.g,

Ap = (&)

_ N
¢! = max \,.
n=1

(6)

S Information Acquisition

We compare a few different strategies to select sensing
actions for information acquisition:

Rand (random): Assigns the available resources randomly
to the indicators

Egal (egalitarian): Assigns the resources equally to all in-
dicators (only used when the number of resources
equals the number of indicators)

Ex-Greedy (exclusive greedy): Assigns all resources to
the indicator with the highest uncertainty (in terms of
highest entropy)

Nx-Greedy (non-exclusive greedy): Assigns most re-
sources to the node with the highest uncertainty (in
terms of highest entropy), but divides also some of
the resources to the other nodes according to the



entropy. Our somewhat ad-hoc approach to distribute
the resources is based on the principle that twice as
high entropy receives twice as much resources.

Hypent (hypothesis entropy): Assigns the resources in
such a way that the expected decrease in entropy of the
Hypothesis variable is maximized

While the two first are self-explanatory, Ex-Greedy, Nx-
Greedy and Hypent require some further explanation. All
three strategies use the concept of entropy H(I) which can
be used to quantify the uncertainty of a variable I.

N
H(I) == plin)logp(in) @)
n=1
5.1 Ex-Greedy and Nx-Greedy Strategies

The Ex-Greedy the
steps:

strategy executes following

1: highest_entropy < 0

2: for all information variables I do

33 FE <+ H(I) {from Eq. (7)}

4. if £ > highest_entropy then

5 highest_entropy < E

6 highest_indicator < I

7 end if

8: end for

9: return the sensing action that assigns all resources to
indicator highest_indicator

A modification is made to the algorithm above so that it can
handle the case where the entropy of multiple nodes is max-
imal. In that case, the node which receives all resources is
selected randomly from the set of nodes with maximal en-
tropy.

Nx-Greedy works similarly but stores the entropy of all
indicators (not just the one with the highest entropy) and
distributes the resources proportionally to the indicators.

5.2 Hypothesis Entropy Strategy

The Hypothesis entropy strategy focuses on the knowl-
edge request, i.e., the hypothesis variable of the BN. The
objective is to select the sensing action that minimizes
the expected entropy. The strategy executes the following
steps:

1: lowest_entropy <+ MAXINT

2: for all possible actions a do

3 virtual _reports < sample_reports(a)

4 action_entropy < exp_imp(virtual_reports)

5. if action_entropy < lowest_entropy then

6 lowest_entropy < action_entropy

7 best_action < a

8: endif

9: end for

10: return sensing action best_action
Function sample_reports(a) in line 3 generates the most
likely reports given the current understanding of the in-
dicators (as represented by the BN) and action a, e.g.,

if one sensing resource is assigned to indicator I, and
p(Im = True) > p(I, = False) then a virtual ob-
servation for I,,, = True will be generated. Function
exp_imp(virtual_reports) in line 4 calculates the entropy
of the Hypothesis variable after incorporating the virtual ob-
servations for action a. In the case that several actions re-
ceive the highest expected entropy decrease, one of the best
actions is selected randomly.

6 Experiments

In our experiments, we focus on the prototype intelligence
model BN in Fig. 2, which includes a hypothesis variable
(corresponding to a generic knowledge request) and some
indicators of context and activity. We compare the action
selection strategies of Section 5 with respect to the perfor-
mance metric ) from Section 2. In Fig. 3, we compare the
strategies for different observation certainties in the interval
55%-95% (see Eq. (1)) for every 5% when sensing actions
involve only one resource. Each strategy is run 1000 times
for each degree of observation certainty. For each simula-
tion run, the state of the hypothesis variable is set to be True,
and the true states of the indicator variables are selected ran-
domly based on how likely they are given the state of the
hypothesis variable. For each simulation run, each strategy
is allowed to select its preferred sensing action, observations
are randomly generated (conditioned on the true state of the
simulation run) and the BN, updated with the new observa-
tions, is evaluated according to Q).

The results of the Rand strategy is shown as a red and dot-
dashed line. The Ex-Greedy strategy has a dark green and
dashed line, while the Nx-Greedy strategy has a purple and
shorter-dashed line. Only shown for four resources (Fig. 6)
is Egalitarian as a cyan-colored and dotted line.

Both the mean value of 1000 runs as well as 95%-
confidence intervals are plotted. As can be seen, the differ-
ent strategies have similar performance from 55% to 85%.
From 85% the Hypent strategy dominates the others. As the
Hypent optimizes its performance with respect to the Hy-
pothesis variable (which is also the object of the evaluation
with the performance metric (), this could be expected, but
the actual degree of observation certainty where this domi-
nance starts is harder to guess.

For two and three resources (Figs. 4-5), with otherwise
identical experiment settings, the advantage of Hypent in-
creases even further, although the strategies are still insepa-
rable for lower degrees of observation certainties.

In Fig. 6, we show the result of using four resources. The
results are similar to those in the previous plots, but this
one also includes the Egal strategy which distributes the re-
sources equally to all indicators (i.e., they receive one re-
source each). Contrary to the other strategies it is poor com-
pared to Hypent for lower observation certainties, but better
for higher certainties. The reason for its exceptional perfor-
mance for higher degrees of observation certainty is simply
that it will be able to estimate all indicators with high cer-
tainty.
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Strategy #iresources | Running time [ms]
Rand 1-4 <1
Egal 1-4 <1
Ex-Greedy | 1-4 <1
Nx-Greedy | 1-4 <1
Hypent 1 24
Hypent 2 60
Hypent 3 123
Hypent 4 218

Table 2: The average running times for the different infor-
mation acquisition strategies and the number of resources to
deploy.

Obviously, one disadvantage of the Hypent strategy is its
running time. The Egal strategy has a time complexity lin-
ear in the number of indicators M (always assigning one
resource to each indicator), i.e., O(c. M), with a small con-
stant c.. The greedy strategies also have a linear complexity,
O(ch ), as they only evaluate each indicator variable, but
with a slightly higher constant, ¢, (calculating and compar-
ing entropies). The current implementation of Rand selects
one sensing action from the complete set of possible sensing
actions. As the action set increases polynomially with the
number of information variables, so does the complexity for
Rand, O(c,.M*) (for some exponent £). Hypent also iterates
over the set of all sensing action, but has a much higher cost
per sensing action, cj,, O(c, M*). The differences in run-
ning time in practice are exemplified in the Table 2 where
it can be seen that the Hypent strategy is considerably more
time consuming than the others. Still, for the many decision
support applications, the less than one second time required
for recommending sensing actions is sufficient. The exper-
iments were run on a Intel Core2 Duo 2.66 GHz CPU and
3GB RAM.

7 Discussion and Future Work

The implementation and experiments described in Sec-
tion 6 should be seen as a proof of concept. Although the
simple prototype BN used in the experiments (Fig. 2) cap-
tures some relevant aspects of an intelligence model, i.e., a
hypothesis variable and some context and activity informa-
tion variables, it would be interesting to see if the same re-
sults are received in other situations. One way of doing this
is to study the behavior of the different sensing action strate-
gies on randomly generated BNs. Alternatively (or comple-
mentary), one could study how the strategies perform on a
number of manually constructed typical cases. For instance,
it is not hard to see how to put together a BN that would
make the greedy strategies fail completely. Simply add an
indicator with high uncertainty and low impact on the Hy-
pothesis variable, and the greedy strategies will put their re-
sources on this node with a poor result.

Although not proven, it is plausible that humans fall into
the same pitfalls as the greedy strategies when facing a com-

plex BN, where it is difficult to predict the impact of ob-
serving the different indicators. This motivates further work
in the direction pointed out by this paper. It also gives a
hint on the importance of visualizing indicator impact to an
analyst of a decision support tool such as Impactorium.
This kind of visualization should play a major role when de-
signing an explanation function of an automatic information
acquistion system.

The desirable performance of Hypent comes, of course,
at price as revealed in Table 2. Another future direction
is therefore to study efficient approximation algorithms to
scale from the prototype BN in Fig. 2 to more complex BNs
with additional information variables and states.
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