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Abstract— High-Level Information Fusion (HLIF) utilizes
techniques from Low-Level Information Fusion (LLIF) to
support situation/impact assessment, user involvement, and
mission and resource management (SUM). Given the unbounded
analysis of situations, events, users, resources, and missions; it is
obvious that uncertainty is manifested by the nature of
application requirements. In this panel, we seek discussions on
methods and techniques to intelligently assess the problem of
HLIF uncertainty analysis to alleviate high-performance
statistical computational optimizations, unrealizable
mathematical assumptions, or rigorous modeling and problem
scoping which lead to time delays, brittleness, and rigidity,
respectively. Given the various methods of LLIF and the
complexity of HLIF, an interest to the ISIF community is to
utilize diverse methods (such as those from other communities)
that bridge the LLIF-HLIF gap of uncertainty analysis. To get a
qualified and diverse viewpoint, we present a summary of HLIF
uncertainty processes towards developing a multisource ontology
of uncertainty to support HLIF modeling, methods, and
management and systems design.
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I. PANEL MOTIVATION

High-level Information Fusion (HLIF) has been of
considerable interest to the fusion community ever since the
development of the fusion process models. The low-level
versus high-level distinction was made evident in the seminal
text on the subject by Waltz and Llinas, Multisensor Data
Fusion, in “Figure 1.1 Elements of a basic data fusion
system.” [1] The low-level functional processes support target
classification, identification, and tracking, while high-level
functional processes support situation, impact, and user fusion
process refinement. LLIF concerns numerical data (e.g.,
locations, kinematics, and attribute target types). HLIF
concerns abstract symbolic information (e.g., threat, intent,
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and goals). Research is needed in uncertainty analysis over
modeling, representations, reasoning, cognition, management,
hard-soft integration, and relevance of HLIF processes.
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Figure 1 Elements of a basic data fusion system. [1]

While HLIF discussions at the International Conference on
Information Fusion (referred to as FusionNN), including other
panel discussions, detailed contemporary challenges, the
Evaluation of Techniques for Uncertainty Representation
(ETUR) working group sought to address uncertainty issues in
HLIF. Recent HLIF texts include: Mathematical Techniques in
Multisensor Data Fusion [2], Concepts, Models, and Tools for
Information Fusion [3], High-Level Fusion [4], High-Level
Information Fusion Management and Systems Design [5], and
Handbook of Multisensor Data Fusion, [6-7]. The need for
HLIF uncertainty analysis is important for measures of
performance and measures of effectiveness [8].

A. Panel Organization and Discussion Overview

For this panel, experts were compiled based on various
research thrusts and their Fusion12 papers:



Methods: Costa, Laskey, Stampouli [9],
Cognitive Designs: Blasch, Nagi, Ng [10],
Systems Design: Blasch, Nagi, Schubert [11],
Decision Support. Costa, Ng, Valin [12, 13], and
Evaluation: Laskey, Schubert, Stampouli [14].

The HLIF panel discussion’s goal is to highlight the unsolved
problems and concerns to motivate the information fusion
community towards systems-level solutions. The panelists’
expert perspectives are based on three areas: (1) previous
panel discussions and summaries, (2) an integrated list of
HLIF challenges, and (3) companion papers presented at the
Fusion2012 conference (note we switch to Fusionl2 to refer
to the conference).

Panel 2012 Questions
What are methods of Uncertainty Representation (UR)?
Can multiple methods coexist and act synergistically?
Are preferable techniques of UR for LLIF and HLIF?
How to bridge the LLIF and HLIF uncertainty evaluation gap?
What techniques are of interest from other communities for ISIF
applications?
What is future of HLIF ETUR methods or top unsolved challenges?

Answers to these questions were formulated in the companion
Fusionl?2 papers [9-14].

B. Previous Related Panel Discussions

Panel discussions provide a valuable resource to the
community to overview the current techniques and provide
areas of concern for future research. Previous Fusion
Conference panel discussion papers related to HLIF include
knowledge representation (Fusion05) [15], resource
management coordination with situation and threat assessment
(Fusion06) [16], agent-based design (Fusion07) [17], HLIF
research (Fusion08) [18], intent modeling (Fusion09) [19],
and HLIF challenges [20]. Dale Lambert [21] posed some
grand challenges for the Information community including:
semantic, epistemic, paradigm, interface, and systems. Added
to the grand challenges were decision support process [22] and
evaluation challenges [23]. Evaluation challenges include
uncertainty reasoning, measurement, and context-dependent
testing.

C. High-Level Information Modeling

Following [1], the Joint Directors of Laboratories (JDL) model
was proposed and subsequent revisions were proposed by the
Data Fusion Information Group (DFIG). The DFIG model [7]
supports the original JDL goals while highlighting pragmatic
design issues by coupling resource management (RM)
functions with information fusion (IF) estimation needs. The
DFIG model supports differing control functions based on the
spatial/temporal/ spectrum differences. The spectral needs
drive sensor selection. The temporal needs are based on the
user’s need for timely information to afford action. Finally, the
spatial needs are based on the mission goals. The current
team diagrammed the current process model, shown in Figure
2, while maintaining the structure of the JDL model.

The current DFIG levels include:

Level 4 — Process Refinement
Level 5 — User Refinement
Level 6 — Mission Management

Level 0 — Data Assessment
Level 1 — Object Assessment
Level 2 — Situation Assessment
Level 3 — Impact Assessment
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Figure 2. Data Fusion Information Group (DFIG) model.

In the DFIG model, the goal was to separate the
information fusion (IF) (L0-L3) and resource management
(RM) functions (L4-L6). IF provides uncertainty assessment
while RM seeks to reduce uncertainties. High-level
information fusion (as referenced to levels beyond the DFIG
Model Level 1) is the ability of a fusion system, through
knowledge, expertise, and understanding to: capture
awareness and complex relations for perception [24], reason
over past and future events for decision makers [25], utilize
direct sensing exploitations and tacit reports, and discern the
usefulness and intention of results to meet system-level goals
based on contextual information [26]. The Information Fusion
community has coined the term “high-level fusion” however
this implies that there is a low-level / high-level distinction
when in reality they are coupled. Designs of real-world
information fusion systems imply distributed information
source coordination (network), organizational concepts
(command), and environmental understanding (context).
There is a need for automated processes that provide
uncertainty analysis in support of cognitive decision processes
and information management particularly at higher levels
requiring reasoning and inference.

The rest of this paper includes panel discussions topics:
Section II (Bayesian Semantics), Section III (Evidential
Methods), Section IV (Computational Cognitive Systems),
Section V (Information Management), Section VI (Hard and
soft fusion and uncertainty), and Section VII (HLIF
Uncertainty Measures). Section VIII concludes the paper with
a summary of the panel discussion.

II.  FIRST-ORDER BAYESIAN SEMANTICS FOR
UNCERTAINTY ANALYSIS IN HLIF

Paulo C. G. Costa, Kathryn B. Laskey: Analytical methods
for Low-Level Information Fusion (LLIF) Systems have
become well established. Probabilistic methods are common
for managing uncertainty when fusing data at JDL levels 0 and
1. JDL levels 2 and above (High-Level Information Fusion —



HLIF) bring a new set of challenges requiring sophisticated
approaches to fusing information and managing the associated
uncertainty. There is as yet no consensus on a general
methodology for managing uncertainty in HLIF. In this panel
presentation, we argue that any solution for HLIF must
connect the semantics of the information being fused with its
associated uncertainty. We present first-order Bayesian
semantics as one alternative that addresses this requirement in
a sound and efficient way, providing a promising alternative
for HLIF systems that must perform uncertainty analysis.

A. Introduction

In a typical LLIF system, the information being fused is
tied closely to the basic physics of the problem. Phenomena of
interest are well understood and standard engineering models
exist. The underlying semantics is rarely made explicit, usually
being implicitly encoded in data structures. A prototypical
example is the fusion of radar returns with overlapping error
ellipses to output a fused track. This approach works because
information is represented and processed at a low level of
abstraction and standard data structures can be “hardwired”
into systems. However, integrating information at JDL levels 2
and above involves representing and reasoning with entities at
higher levels of abstraction (e.g. aircraft, formation, enemy
intention, etc.). More sophisticated representations are required
to capture the meaning of the information being fused.
“Hardwiring” of semantics is unfeasible, as different HLIF
sources capturing the same entity might be based on distinct
conceptual understandings of a given entity and thus represent
it in diverse ways.

B.  Ontologies: Making Semantics Explicit

As recognition has grown that syntax-based LLIF solutions
are inadequate to meet the demands of HLIF, semantics has
been viewed as a silver bullet to address the need. As a result,
ontology engineering has become a major aspect of HLIF
research. Since its adoption in the field of Information Systems,
the term ontology has been given many different definitions.
For the purposes of this discussion, a computational ontology is
defined as any explicit, formal representation of knowledge
about a domain of application.

Early computational ontologies (e.g., [27]) were essentially
just type hierarchies. The need soon became apparent to
represent additional relationships, such as parthood, as well as
attributes of entities. Formalized logical semantics for ontology
languages enabled the development of logical reasoners that
could deduce logical consequences of the encoded domain
knowledge. The most common semantics for ontology
languages is description logic, a decidable fragment of first-
order logic. Two formal ontologies are considered equivalent if
there is a truth-preserving mapping between expressions
expressed in their respective languages. Automated deductive
inference is employed both to determine type inclusion
relations and to determine equivalence. Wielinga [28] gave
early work on computational ontology a sounder mathematical
foundation by defining an ontology as an equivalence classes
of language/implementations in an algebra of ontology-
transformations. Standardization efforts [29] led to the OWL
web ontology language and formal specification [30] which

supports implementation, extension, comparison, evolution and
reuse of ontologies.

Existing  computational  ontological  theory  and
implementations support many of the requirements for complex
systems. However in practice applications of such schemes are
typically updated by humans or by simple overwriting of
previous knowledge with new “finished” knowledge. This
underutilizes capabilities of existing automation, over-utilizes
scarce human expertise, and leaves users with an increasing
glut of data without information, or perhaps at best, relevant
information without actionable knowledge (cf. [31]).

C. Semantics and Uncertainty in HLIF

Current ontology formalisms lack a principled,
standardized means to represent uncertainty, which is a major
aspect of Information Fusion. For instance, HLIF applications,
among other tasks, must be able to:

¢ hypothesize the existence of an entity;

o declare a relationship between one entity and another;

e declare that another entity is one of several potential
participants in a given relationship;

e observe evidence about an attribute of an entity;

e assert potential membership of an element in a set;

o prune unlikely hypotheses.

All the above tasks require representing and reasoning with
uncertain, incomplete information. Ontologies alone do not
provide a standard approach to this. As a result, engineers have
turned to palliative solutions in which probabilities are inserted
in an ontology as annotations (e.g. marked-up text describing
some details related to a specific object or property). Such
solutions address only part of the information that needs to be
represented. Too much information is lost due to the lack of a
representational scheme that captures structural constraints and
dependencies among probabilities. A true probabilistic
ontology must be capable of properly representing these
nuances.

In previous work (e.g., [32, 33, 34]) we have presented the
concept of probabilistic ontologies as a means to address these
issues in a principled way. Probabilistic ontologies (POs)
provide a principled, structured, sharable formalism for
describing knowledge about a domain and the associated
uncertainty. POs could serve as a formal basis for representing
and propagating fusion results in a distributed system. They
expand the possibilities of standard ontologies by introducing
the requirement of a proper representation of statistical
regularities and uncertain evidence about entities in a domain
of application.

PR-OWL (Probabilistic OWL) [33] extended OWL to have
a formal semantics and practical computation of probability
distributions over class instances, enabling a mathematically
consistent method to declare hypotheses and update their
probabilistic support with inductive Bayesian inference. PR-
OWL in turn is based on the theory of Multi-Entity Bayesian
Networks (MEBN) [35], which was developed with the
purpose of meeting the representational and computational
challenges inherent in higher-level multi-source fusion and
situation awareness. Specifically, MEBN can represent any
hypothesis that can be expressed in first-order logic. Its basis in
directed graphical models gives it a natural representation for



cause and effect relationships. Its built-in capability for
context-specific independence provides a natural way to
represent contextual factors that facilitate hypothesis
management (HM), such as conditions under which a
hypothesis can be pruned because it has little or no impact on
conclusions of interest. MEBN also supports a natural
representation for essential categories of uncertainty for general
situation awareness, such as uncertainty about entity existence
(i.e., is a report a false alarm); uncertainty about the type of
entity; and uncertainty about functional relationships (e.g.,
which entity gave rise to a report). Its basis in Bayesian theory
provides a natural theoretical framework for learning with
experience. Its graphical representation supports an intuitive
interface for specifying probabilistic ontologies. Finally, its
modular representation formalism supports adaptability, by
allowing changes to be made to parts of an ontology without
affecting other parts or other ontologies, and composability, by
allowing problem-specific models to be constructed “on the
fly,” drawing only from those resources needed for the specific
problem.

As such, PR-OWL provides a promising alternative for
HLIF systems, as it combines both an explicit representation of
semantics of a system and a principled account of its
underlying uncertainty. The challenge remains of developing
solutions that implement the above-cited concepts within a
scalable, efficient framework.

D. The Future

Despite recent advances in multi-source fusion, the need
remains for principled way of representing and reasoning with
uncertainty in HLIF systems. A successful approach not only
must enable explicit representation of semantics but also must
be built upon a sound mathematical foundation. A first-order
Bayesian approach provides both and, as research on scalable
and computationally efficient algorithms evolves, will be a
strong contender to address the current limitations in
uncertainty analysis in HLIF systems.

III. EVIDENTIAL METHODS

Dafni Stampouli, Gavin Powell : Evidential methods are used
extensively for fusing data in LLIF scenarios and offer a range
of means to represent and evaluate uncertainty. For HLIF
fusion however, the existing combination rules are not
adequate to address the challenges of the task.

Defining the frame of discernment is not a straight forward
task. There might be no clear boundary between the differing
hypotheses. It is difficult to define exhaustive and mutually
exclusive hypotheses in complex problems and environments.
Some sets with cardinality larger than one might not be as
meaningful as in LLIF. At the same time, assigning initial
belief to the frame of discernment is not a simple task. In
HLIF tasks there might be need for dynamic change in the
frame of discernment. Furthermore, the curse of
dimensionality is still evident and evidential methods are
limited by the size of the frame of discernment.

The existing combination rules have difficulty dealing with
the temporal nature of evolving situations, and can be plagued
by issues related to commutivity and associativity.
Combination rules need to be able to deal with information
that is ordered over time, but also where ordering shouldn’t

matter, such as receiving information from a number of
sensors looking at the same target at the same instance in time.
Such a dual fusion type situation is common but is very
difficult to model given current combination rules.

HLIF requires subjective and qualitative analysis and the
existing quantitative methods are not adequate. HLIF includes
both textual and numeric variables and concepts. There is
need for semantic representation of the input information and
the situation at hand. This creates more uncertainty and
ambiguity, and the representation of these is not currently
adequate. At the same time, there are not any adequate
distance measures to define similarity between concepts or
non-numeric attributes. For example, police intelligence
analysis relies on interpretation and processing of witness
statements. As with all HUMINT information, these are
subject to biases, imprecision, and omissions. Interpreting and
fusing this information requires the deduction of semantic
meaning from them. Previous work has tried to address these
issues but further work and refinement is still required [36,
37].

Vagueness and uncertainty is more relevant in HLIF tasks.
The benefits of evidential methods are that they already have
some tools in place to represent and model vagueness,
uncertainty and conflict, such as the empty set. However,
interpreting the empty set is not well defined within HLIF
scenarios. Evidential method support both closed-world and
open-world cases. In a closed-world scenario it is possible to
indicate conflict of the input sources, while in an open-world
scenario a high value at the empty set might indicate that the
answer is outside of the current frame of discernment. In
current studies, this distinction was implemented [38] only in
small and relatively simple scenarios, which however fail to
represent the challenges of HLIF. The work indicated that the
current combination rules cannot adequately represent open
world scenarios and more work is required to expand or
enhance them.

Another challenge is that it is difficult to adequately
describe a HLIF scenario and breakdown the tasks and
expected performance. Data to support such scenario and
sufficient evaluation metrics are yet to be defined.

IV. COMPUTATIONAL COGNITIVE SYSTEM

Gee Wah NG: Computational Cognitive System
Computational Cognitive System (CCS) is one way of
achieving the goal of high level fusion i.e. impact
assessment,  situation  assessment and  addressing
uncertainty. CCS takes inspiration from the human brain.
This short paper will discuss a method of bringing the
various concepts and design principles from understanding
of the brain to build a CCS that achieve the goal of high
level information fusion for adaptive decision making.

A. Introduction — Cognitive Architecture

The CCS involves the design of an architecture which is
termed the Cognitive Architecture (CA). CA specifies a
computational infrastructure that defines the various
regions/functions working as a whole to produce human-like
intelligence [39, 40]. It also defines the main connectivity and
information flow between various regions/functions, and also
models information processing in the human brain. The



classes of functions in the CA are modeled after the five core
regions of the brain. They are:

A) Prefrontal cortex (Executive Function) — Prefrontal cortex
(PFC) involves in decision making, planning complex
cognitive behaviors, predict outcome, orchestration of thought
and actions in accordance to internal goals.

B) Perception - Perception is the process of acquiring, interpreting,
selecting, and organizing sensory information.

C) Limbic System (Affective Functions) - The limbic system is a
term for a set of brain structures that supports a variety of
functions including emotion, behavior and formation of long
term memory.

D) Association Cortex (Integrative Functions) - Higher-order
cortices are termed the association areas, associating sensory
inputs to motor outputs and performing mental task mediating
between sensory inputs and motor outputs.

E) Motor Cortex (Motor Control) - Regions of the cerebral cortex
involved in the planning, control, and execution of voluntary
motor functions.

The following subsections will further discuss the key
components essential in executive function to achieve the high
level information fusion. At high level information fusion, the
system will need to have the prior knowledge database and
perform reasoning given the observation to infer situation,
impact and intention. The executive function achieves this
through its ability to representation different knowledge in
terms of semantic, episodic and procedural knowledge. The
reasoning processes are encapsulated in the following 3
components, namely the dynamic reasoner, the associative
reasoner and the anticipatory reasoner.

B.  Dynamic Reasoner

The biological brain encapsulate information in chunks i.e.
mass of neurons (thousand of neurons) storing information in
many small quantities distributed in the brain [41]. Neurons
are “fired” to connect to other neurons via synapses. This
enables small chunks of neurons connection to build a
complete picture dynamically as new information stimulates
the change in the neuron’s firing. This process enables the pre-
frontal cortex to make its reasoning and inference. Similarly,
we build in the executive function, a dynamic reasoner based
on this principle. We encapsulate small chunks of knowledge
in Bayesian fragment or any small semantic network. When an
observation is received from the perception module, the
dynamic reasoner will start to combine the various relevant
fragments into the big knowledge network that can aid in its
reasoning process [42, 43]. We call this dynamic reasoner the
D’Brain. This D’Brain engine resides in the CCS. Figure 3
show an example of the dynamic reasoner. The reasoner is
dynamic because the instantiated situation network is not
precompiled and it evolves as new evidence is received. The
decision output is dynamically adjusted in line with the
unfolding of events.
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Figure 3. Schematic diagram of D’Brain

C. Associative Reasoner

The Associative Reasoner is an associative reasoning
engine where knowledge is represented in the form of semantic
network. Semantic network is a powerful and natural graphical
form of knowledge representation where concepts are
represented as nodes and relations represented as links between
nodes. A modified PageRank [44] algorithm is used as the
inference mechanism to perform associative connection. The
idea is to propagate relevancy using a variant of PageRank’s
algorithm given an initial set of observed nodes to discover
which are the most relevant unobserved nodes in the semantic
network. The PageRank is then interpreted as a measure of
relevancy of the other unobserved nodes given the initial set of
observed nodes.

D. Anticipatory Reasoner

The Anticipatory Reasoner takes the principle of the mirror
neurons in the human brain. The mirror neuron is a neuron
that fire when one observes a similar action performed by
another i.e. the neuron “mirrors” the behaviour of the other, as
though the observer were itself acting [45]. Using this
principle, a computational anticipatory module (Figure 4) was
built which contains a Self and Other person. Self refers to the
entity making the inference. Within the Self, there exists an
Own model and a mirrored model of the Other person. The
Own model represents the mechanism for actual Self decision
making and behaviour selection, and may include beliefs,
desires, preferences, etc. The mirrored model is a simulated
model used to represent the Other person within the Self, i.e.,
for inference of the Other person’s actions.

The models receive perception inputs from the
environment. Before the inputs are used for inference in the
mirrored model, reference changing or perspective changing is
required. This maps the Other person’s states as own and vice
versa, i.e., putting oneself in the other person’s shoes.

Initially, the mirrored model of the Other person is mapped
from the Own model (assuming no prior knowledge or little
information about the Other). Over time, as actions of the
Other person are viewed, updates would be made to the
mirrored model, and hence the mirrored model should
converge towards the Other person’s model given enough
updates.

The framework is based on the assumption that both the
Self and the Other person are rational individuals and thus
there should be some consistency in the actions.
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Figure 4. Computational Anticipatory Module.

E. Conclusions

A CCS that is designed using the concepts and principle
from understanding of brain are presented. We elaborated the
3 components used in the executive function that could help in
high level information fusion.

V. INFORMATION FUSION MANAGEMENT

Johan Schubert: Numerous information management issues are
involved in information fusion. Information arriving from
different sources may be mixed-up and referring to different
problems, possibly concerning different issues with different
frames and may be highly conflicting [46].

When conflict is higher than measurement errors it is a sign
that something is wrong. It should be noted that there is at least
three possible sources of conflict other than measurement
errors. We may have modeling (representation) errors, mixed-
up pieces of information, or faulty sources. Faulty sources are
corrected by appropriate discounting, modeling errors are
corrected by adopting an appropriate frame of discernment and
mixed-up information concerning different problems can be
managed by clustering. These issues are discussed in this
section within the scope of Dempster-Shafer theory [47, 48].

A. Managing Subproblem

We developed a method for handling belief functions that

concern multiple events. This is the case when it is not known
a priori to which event each belief function is related. The
belief functions are clustered into clusters that should be
handled independently.
1) Clustering consonant belief functions: In [49] a method for
clustering belief functions based on their pairwise conflict was
developed. This method was extended into a method capable
of also handling pairwise attractions [50].

When we are reasoning under uncertainty in an environment
of several different events we may find some pieces of
evidence that are not only uncertain but may also have
propositions that are weakly specified in the sense that it may
not be certain to which event a proposition is referring. We
must then make sure that we do not by mistake combine pieces
of evidence that are referring to different events.

In order to handle several belief functions regarding different
events independently we arrange them according to which
event they are referring to. We partition the set of belief
functions into clusters where belief functions within the cluster

are all assumed to refer to the same event. However, if the
belief functions are not labeled as to which event they are
referring to, it is uncertain whether two different belief
functions are referring to the same event and not possible to
differentiate between them using only their propositions. We
then use the conflict of Dempster’s rule when the two belief
functions are combined as an indication of whether they belong
together. This is the basis for separating belief functions into
clusters. A high conflict between the two belief functions is an
indication that they do not belong to the same cluster. The
higher the conflict is, the less credible that they belong to the
same cluster.

For each cluster we may create a new belief function on a
metalevel stating that we do not have an “adequate partition.”
These belief functions do not reason about the original
problems. Rather they reason about the partitioning of the other
belief functions into different clusters.

In [51], we established a criterion function of overall conflict
for the entire partition called the metaconflict. It was derived as
the plausibility of having an adequate partitioning for all
subsets. The function is minimized by neural clustering. In
Figure 5, we observe the convergence of two clustering
processes. Each line is a path traveled by a belief function from
the center of the circle at the first iteration of the neural
network towards one of twelve cluster positions at the edge of
the circle.
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Figure 5. The clustering process of 4095 belief functions into
twelve clusters. Left using conflicts only. Right using
attractions and conflicts.

2) Clustering non-consonant belief functions: We have
developed a method for managing non-consonant belief
functions concerning different events where the belief
functions are mixed up [52]. This method is based on the
extension introducing attractions [50] and a decomposition
method for belief functions [53].

The method can be described as first decomposing all belief

functions into a set of simple support functions (SSFs) and
inverse simple support functions (ISSFs) [53]. Secondly, all
SSFs and ISSFs are clustered, taking account of both conflicts
as well as information regarding which SSFs and ISSFs were
decomposed from the same belief function.
3) Estimating the number of clusters: We may use particle
filter methods for estimation of number of clusters. We have
developed a sequential approach for grouping observations
into an unspecified number of clusters [54].



A potential clustering with a specified number of clusters is
represented by an association hypothesis. Whenever a new
belief function arrives, a posterior distribution over all
hypotheses is iteratively calculated. A set of hypotheses is
maintained by Monte Carlo sampling. At each time-step, the
posterior distribution is projected into a distribution over the
number of clusters. This method solves the same problem as
[49] except that it handles the reports sequentially and does not
need to be given the number of clusters.

B.  Managing the Event Space

In order to find an appropriate framing of the problem we
construct alternative frames from input belief functions [55].
The problem we are facing can be summarized as: We have
some uncertain information about several different aspects of
some phenomenon. However, we do not know the frame of
discernment. Instead we try to construct the frame from the
cores of the belief functions at hand. Here, we do not make any
assumption that the cores are sets of atomic elements. Instead
we assume that they may belong to different homogeneous
subframes whose cross product is the frame representing all
possibilities of the whole problem.

As there may be several different alternative frames at any
moment in time we want to find the most appropriate frame.
We define appropriateness in such a way as it fulfills two
different aspects simultaneously. Shafer [48], p. 280, proposed
that an ideal frame should simultaneously let our evidence
“interact in an interesting way” without “exhibit too much
internal conflict”. We interpret “interesting” as having an as
sharp distribution as possible. The best way to measure how
focused the distribution is on as few focal elements as possible
is using the generalized Shannon entropy. The best way to
measure how focused the distribution is on as small focal
elements as possible is using the generalized Hartley
information measure. Together they make up the aggregated
uncertainty measure (4U). Finding a frame that minimizes AU
for the combined distribution is our answer to finding the frame
that best let our evidence “interact in an interesting way”. At
the same time we like the conflict of the combination of all
belief functions to be as small as possible as any conflict larger
than measuring errors is a sign that something (possibly the
framing of the problem) is wrong. Finding a frame that
minimizes the conflict is our answer to not “exhibit too much
internal conflict”. To see both considerations achieved
simultaneously we minimize their probabilistic sum.

C. Managing Sources

We develop a method for conflict management where it is
assumed that all belief functions are referring to the same
problem or alternatively that they are false [56]. In general a
high degree of conflict is seen as if there is a representation
error in the frame. One type of representation error resulting in
high conflict is when belief functions concerning different
subproblems that should be handled independently are
erroneously combined. When this is the case the assumption
that all belief functions combined must refer to the same
problem (not different subproblems) is violated.

We interpret the conflict as metalevel evidence stating that
at least one piece of evidence in the combination should not be
part of that combination. By temporarily removing (and
replacing) each belief function from the combination, one at a

time, we induce a drop in conflict. This is used to derive
metalevel evidence regarding each individual belief function
indicating that this particular belief function does not belong to
the problem in question [57]. When assuming that there is only
one problem at hand, such metalevel evidence must be
interpreted as a proposition about the falsity of this belief
function. A normalization of the drop in conflict will be shown
to be the degree of falsity of that belief function.

We investigate how to manage the conflict on an individual
case—by—case basis using the degree of falsity. We would then
like to pay less regard to a piece of evidence the higher the
degree is that it is false, pay no attention to it when it is
certainly false, and leave it unchanged when there is no
indication as to its falsity.

However, instead of directly discounting each piece of
evidence to its individual degree of falsity we take an
incremental step in that direction. Based on these initial
discounts we recalculate conflict and update all degrees of
falsities. The process is performed sequentially until a
predefined level of maximal acceptable conflict is reached.
With this sequential approach we obtain a smooth discounting
process (compared to if we would have fully discounted each
belief function to its degree of falsity) and we are able to
exactly match any level of acceptable conflict without risk of
overshooting.

It is important to observe that different measures may
measure different types of distances. Some distance measures
measure the degree to which two bodies of evidence are
different, while conflict measures the degree to which they are
incompatible. For example, two propositions “a red car” and “a
fast car” are different, but may be fully compatible if there is a
red fast car in the frame.

VI. HARD+SOFT FUSION AND UNCERTAINTY

Rakesh Nagi This panel presentation is focused on the
uncertainty modeling and analysis in Hard+Soft Information
Fusion. When fusing “soft” human-based observation
information with “hard” physics-based sensor reports an
important issue of uncertainty representation and analysis
comes up. Hard sensors are typically based on scientific
principles from physics, demonstrate repeatability, and can be
well characterized by probabilistic error rates. The classical
probabilistic representation of uncertainty seems to be an
accepted framework.

On the other hand, human reports are laden with various
forms of uncertainty. First, human perception and cognitive
processing is self referential and learning-based. Its accuracy
depends on the level of training, but is still prone to bias and
improper error characterization. Heuer states [58], “the mind is
poorly ‘wired’ to deal with (uncertainty).” Second, humans
convey information in linguistic form and the choice of
word(s) or symbol(s) they might choose are mappings of their
internal neuro-cognitive estimates. There is symbolic
uncertainty. In their FUSION 2008 paper, Auger and Roy [59]
describe some of the underlying fundamental issues in the
ambiguity of language and the issues involved in assigning
degrees of uncertainty to linguistic expressions and words.
Harras [60] describes two basic aspects of linguistic
ambiguity: referential ambiguity (ambiguities between
linguistic signs and the reality they depict in the world) and



linguistic ambiguity (different variations between a symbol
and its associated meaning). Finally, humans use qualitative
terms like "a lot," "very unlikely," and "much more likely,"
which require formal uncertainty characterization in
quantitative terms. Zadeh [61] discusses similar issues and
argues for the use of fuzzy methods for computing with words.
We concur and adopt the possibilitic or fuzzy representation of
uncertainty for soft information.

Thus, the hard+soft domain demands multiple uncertainty
representation frameworks, and their fusion requires that we
work with them simultaneously. Let us recap that while
possibility theory and probability theory both provide
approaches to the representation and manipulation of uncertain
information they are used to model different aspects of
uncertainty. Generally probability theory is used for the
representation of randomness and variability while possibility
theory is useful in cases of imprecision, vagueness, and
incompleteness. Nevertheless attempts have been made to
provide transformations between these two measures of
uncertainty. At times, these transformation can be useful in
situations were we have information in both formats and we
need to provide a basis for the fusion function of Common
Referencing or normalization of disparate representations of
some information [62].

There yet seems to be no single best way to execute these
transformations — the statistical/mathematical literature
indicates that some transformational framework is needed that

constrains the formalism of the transformation. Some
principles that have been wused are the following:
Probability/Possibility Consistency, Insufficient Reason,

Information Invariance, Preference preservation, Symmetry
preservation, and Ignorance preservation. These principles
provide a basis to “preserve” something across the
transformation — each one provides a different approach.
Essentially, the result of a transformation from one
representation to another is a type of “best estimate” of the
alternate representation for a given value of the input form —
an estimate consistent with or framed by the “Principle”
applied (see [63, 64], for example).

Significant research is needed in uncertainty representation
of soft information and its correlation with probabilistic hard
information, in our opinion. Further, the accurate
characterization of the human’s ability to sense and report
accurately on observations of interest is a much needed
multidisciplinary area of research. A recent paper [65] studies
approximately 300 references that address one or more of 67
categories of human observation in counter insurgency and
which provide empirical evidence of a qualifying variable
(contextual or environmental factor) that has potential to
influence an individual’s ability to make an accurate
observation in a respective category. Much research is needed
in the “source characterization” of the human observer.

VII. HLIF UNCERTAINTY MEASURES

Pierre Valin: Issues in uncertainty analysis of an information
fusion system have been a topic of discussion at the fusion
conferences [available at www.isif.org]. Key issues include
process models, user assessment, context and meaning, and
metrics with associated challenges in evaluation, control, and
visualization. For example, control in resource management

requires uncertainty metrics that are processed to guide future
sensor actions and the need for estimation-like capabilities for
HLIF relations. Contemporary interests are issues between
low-level (signal processing, object state estimation and
characterization) and high-level fusion (control and
relationships to the environment). Specific areas of interest
include modeling (situations, environments), representations
(semantic, knowledge, and complex), systems design
(scenario-based, user-based, distributed-agent) and evaluation
(measures of performance/effectiveness, and empirical case
studies). The goal is to address the operational and strategic
issues in pragmatic information Fusion system designs.

Fusion03 incorporates differing HLIF issues and solutions
to situation assessment [66, 67, 68], intent estimation [69], and
ontology representations [70, 71]. Fusion04 HLIF research
includes situational presentations [72, 73] of context
dependent attributes.

In 2005, Schubert and Svensson provide a first of a kind
literature review of robust high level fusion performance [74].
At Fusion05, user refinement [75] issues are presented for
uncertainty refinement and further research expands on these
topics in Fusion06 [76, 77]. Between 2007-2008, HLIF design
tradeoffs [78] and threat assessment evaluation [79, 80, 81]
was the focus.

During 2009, with the already mentioned numerous panels
calling out the needs for HLIF, numerous papers are
presented. Solutions are presented for HLIF L2 situation
assessment [82, 83] and L3 threat assessment [84]. The
scenario issues of context [85, 86] and culture [87] are
addressed. Various L5 user refinement decision support
techniques are proposed [88, 89, 90 91].

With the panel discussion in HLIF in Fusionl0, areas
addressed were formal theories for HLIF SA modeling [92,
93], situation and knowledge representations [94, 95], HLIF
system design [96, 97], decision support [98], and evaluation
[99]. Common themes from the FusionlO panel in HLIF
include:

(A) Situational awareness support,
(B) Layered set of adaptive process control loops, and
(C) Understanding the role of human intelligence.

For example, an element for situational awareness includes
the use of information relevance (IR) as a quality of service
(QOS) or information quality (IQ), that aid human intelligence
in working with sensor management control loops. From 25 IR
criteria, these were categorized as:

» Usefulness: Relevance values are dependent on potential
applications (4): Timeliness Relative to an Operation,
Request Completion, Utility in Decision Making, and
Utility in Fusion;

» Extrinsic relevance: Determination of relevance values
requires comparison of considered knowledge with
current knowledge state (5): Degree of Synchronicity of
Time-Stamped Knowledge Set, Novelty, External
Consistency, Time-Stamping Relative to a Fact (Event),
and Variation Rate Compared to Current State;

* Intrinsic relevance of content: Determination of
relevance values is content-dependent, but can be
considered context independent (8): Completeness,



Consistency with General Rules, Domain Membership of
Physical Values, Domain Membership of Qualitative
Values, Existing Reference Theme, Expiry Date, Internal
Consistency, and Precision;

+ Complexity: The information usefulness is evaluated using
measurements on the information format (2): Density,
and Volumetry;

* A priori (metadata): Determination of relevance values is
achieved using the metadata attached to the information

(7): A Priori Credibility, A Priori Thematic
Classification, Existing Reference to a Request,
Measurement Date, Priority, Collection Protocol

Compliance, and Security.

From subject matter experts reviewing textual content, nine
variables were deemed feasible and of interest to subject
matter experts. Of the nine (listed in italics), extrinsic
relevance and a prior (metadata) composed most of the set of
measures. These measures relate to the information fusion
QOS metrics of timeliness, confidence (credibility), and
accuracy (existing reference to a request) [8]. These variables
support previous HLIF discussions on situation assessment,
uncertainty refinements, culture, and situation and knowledge
representation.

VIIL

High-level information fusion situation/impact assessment,
user involvement, and mission and resource management
(SUM) requires analysis of uncertainties for the transition of
information fusion designs. There are numerous ongoing
challenges that the Fusion community can discuss towards a
common understanding and coordination for uncertainty
analysis. Current panel thoughts have highlighted these
challenges for HLIF uncertainty analysis:

SUMMARY OF PANEL DISCUSSION

1) HLIF Modeling (situations, environments, processes),

2) Ontology Representations of HLIF Information
(probabilistic, semantic, knowledge, and complex),

3) Evidential Reasoning (temporal, vagueness, and
decomposition of a scenario),

4) Cognitive Modeling (reasoning,
relationships), and

5) Information Management (clustering,
sources),

6) Hard-Soft Fusion (physics-based and human-based
uncertainty representations, sources, and integration),
and

7) Information Relevance (HLIF measures,
support, situational analysis).

inference, and

events, and

decision

Developing a multisource ontology of uncertainty [9] is
important to support in HLIF modeling, methods, and
management, as shown in Figure 6.
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Figure 6. Uncertainty Processes.
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