
Learning Boundaries on Military Operational Plans
from Simulation Data*

Johan Schubert, Anna Linderhed
Division of Information Systems

Swedish Defence Research Agency
SE-164 90 Stockholm, Sweden

johan.schubert@foi.se, anna.linderhed@foi.se
http://www.foi.se/fusion/

Abstract-In this paper we learn indicators from simulated data
that serve as boundaries on military operational plans of an
expeditionary operation. These are boundaries that an operation
must not move beyond without risk of drastic failure. We receive
simulated and evaluated partial patterns of plan instances from a
simulation-based decision support system that are patterns of
integer strings. These partial patterns are clustered by an
unsupervised neural Potts spin clustering method into clusters
where the instances in each cluster have similar characteristics
and outcomes. This gives all partial patterns a classification. We
use a Dempster-Shafer theory based factor screening method on
each pair of clusters, where all activities of the plan are evaluated
as to their differentiating capacity between the two sets of partial
plan instances. All plan instances are projected from their full
integer string representation to a subset of factors with high
differentiating capacity. We apply supervised learning by Support
Vector Machine using the previous classification to learn support
vectors for each pair of clusters given the projected plan instances
of these clusters. From these support vectors we derive a lower
dimension hyper plane that will serve as one of the indicators. One
indicator from each pair of clusters will make up a full set of
indicators for this operational plan. This set of indicators can be
provided to the intelligence service and used during execution of
the plan for assessment of its progress, and serve as a warning bell
if the plan approaches an indicator which it should not proceed
beyond.

Keywords-military operational planning; effects-based planning;
indicators; partial patterns; clustering; neural network; Potts
spin; Dempster-Shafer theory; factor screening, support vector
machine; hyper plane.

I. INTRODUCTION

In this paper we learn indicators from simulated data that
serve as boundaries on military operational plans of an
expeditionary operation. These indicators can be provided to
the intelligence service for monitoring. We simulate and
evaluate alternative plan instances of the overall military plan
[1, 2]. This is performed in a simulation-based decision support
system that model plans according to the effects-based

planning approach. We model the plan and evaluate alternative
plan instance on how well they are able to drive the entire state
of the simulation model, simulating a large set of actors,
towards a predetermined military end state. These plan
instances are evaluated as to their performance and clustered
by neural Potts spin clustering [3, 4] into clusters where all
plan instances have both common characteristics and outcomes
[5, 6]. The idea is that these clusters, whenever they contain
plan instances of good performance, are a robust set of
alternative plans that can be used for minor dynamic
replanning whenever necessary.

To differentiate between minor replanning and whenever
major replanning becomes necessary in order to avoid drastic
negative consequences of plans that begin to deviate
substantially from the initial planning, we adopt indicators as
warning bells. An indicator is the boundary between two
clusters beyond which drastic changes can occur. The
indicators are represented as high dimensional hyper planes.
We use a support vector machine (SVM) [7, 8] that learn
support vectors for each pair of clusters and derive the hyper
planes from the support vectors.

In order to reduce the dimensionality of the hyper planes
whenever the indicators are provided for human analysis we
use Dempster-Shafer theory [9] to screen each activity of the
plan. (If the hyper planes are intended for further machine use
this may not be necessary.) The idea is to find subsets of
alternatives that partition the set of alternative ways to perform
the activity, one subset for each cluster. This is done
individually for each pair of clusters to find factors of the plan
with the highest discriminating capacity between this pair of
clusters.

In section II we present a method for clustering all plan
instances into clusters with common characteristics and
outcomes. In section III we screen all factors of the plan
individually for each pair of clusters in order to find the factors
with the highest differentiating capacity for this pair of
clusters, and reduce the clustered plan instances to these
factors. In section IV we use a support vector machine to learn
support vectors of each pair of clusters using the reduced plan
instances. From these vectors we derive low dimensionality
hyper planes that work as the sought after indicators. In section

*This work was supported by the FOI research project “Real-Time
Simulation Supporting Effects-Based Planning”, which is funded by
the R&D programme of the Swedish Armed Forces.

978-1-4577-0653-0/11/$26.00 ©2011 IEEE 1325

V we elaborate on the usage of hyper planes as indicators.
Finally, conclusions are drawn (section VI).

II. CLUSTERING PARTIAL PATTERNS OF PLAN INSTANCES

We cluster the partial patterns of plan instances that are
similar in structure and consequences. Similar in structure
means that they have more or less carried out similar
alternative activities. Similar in consequences means that they
travel on average the same distance towards the end state for
each carried out activity.

A typical plan instance P1 is

[1 2 41 42 3 4 43 12 10 54 51 16 47 55 22 26 31 33 58 60 0 0 0
0 1902.0
1645.2 256.8],

where all but the last three numbers in this sequence is the
number of the selected alternative for each activity in this plan
instance. For example, activity number 3 (i.e., position 3 in the
sequence) takes alternative number 41. Note, that alternatives
for different activities are numbered with running numbers in
no particular order, they do not restart at 1 for each new
activity, and “0s” are missing values corresponding to future
activities that has not yet been simulated for this particular
partial plan instance. If all possible plan instances are
represented in a tree, a full plan instance (with no missing
values) is a path from the root of tree down to one particular
leaf. Obviously, the depth of the tree is the length of the
sequence minus three (i.e., not counting the f, g and h
estimates). Plan instance P1 above corresponds to a sequence
of 20 specific simulations for the first 20 activities where the
activities take the numbered alternative listed in the sequence
as its input parameter [1].

The last three parameters are different evaluation measures
called f, g and h (f = g + h). They are distance measures
calculated from changes in the scenario state and used in an
A*-search algorithm.

During simulation an assessment is made of how well each
activity is performed. This is done by the function g, a function
that measures the consequence of all performed activities as a
distance from the initial state to the current simulated

state [1]. Function h is a heuristic estimate of the

remaining distance from to the end state. It is not used in

clustering. We have,

. (1)

We observe the difference in consequences between two
plans. We compare the incremental changes of g called Δg as
each plan Pi and Pj progresses down the sequence of additional
activities Ak, where

(2)

and i and j are indices for different plan instances and k is the

index for activities.

In addition, we need to measure the structural distance
between two plans. This is done by the Hamming [10] distance
Ha which measures the structural distance between Pi and Pj.
We have,

(3)

when both activities and exists within the

simulated sequences Pi and Pj, otherwise 0 by definition.

Using this measure, we compare each activity in two
different plans to calculate the structural distance between the
plans. For each activity we observe the alternative chosen in
both plans.

We put these two measures together into an interaction
functions that measures the overall distance between plan Pi
and Pj [1].

We have,

(4)

We partition the set of all simulated plans into clusters
using the Potts spin model [3] in such a way as to minimize the

overall sum of all interactions within each cluster.

The Potts spin problem consists of minimizing an energy
function

(5)

by changing the states of the spins Wia’s, where Wia ∈ {0, 1}
and Wia = 1 means that plan Pi is in cluster a. This model

serves as a clustering method if is used as a penalty factor

when plan Pi and Pj are in the same cluster.

For computational reasons we use a mean field model,
where spins are deterministic with , Via ∈ [0, 1], in

order to find the minimum of the energy function. The Potts
mean field equations are formulated [4] as

(6)

where

S0 0,

Sx yx,

Sx yx,

g yx() Δ Si yi, Si 1+ yi 1+,,()
i 0=

x 1–

=

Δg Pi.Ak() g Pi.Ak() g Pi.Ak 1–()–=

Ha Pi.Ak Pj.Ak,()
0 Pi.Ak Pj.Ak=,

1 Pi.Ak Pj.Ak≠,






=

Pi.Ak Pj.Ak

Jij
 -

1 1 Ha Pi.Ak Pj.Ak,()

k
––=

 1 Δg Pi.Ak() Δg Pj.Ak()–

k
– .×

Jij
 -

E
1
2
--- Jij

 -
WiaWja

a 1=

q


i j, 1=

N

=

Jij
-

Via Wia =

Via
e Hia– V[] T⁄

e Hib– V[] T⁄

b 1=

K



-----------------------------------=

1326

(7)

and T is a parameter called the temperature that is used to
control the influence of the interaction. This is a system
parameter initialized to

, (8)

where K is the number of clusters, and and are the

extreme eigenvalues1 of M, where

. (9)

In order to minimize the energy function (6) and (7) are
iterated until a stationary equilibrium state has been reached for
each temperature. Then, the temperature is lowered step by
step by a constant factor until in the

stationary equilibrium state, Fig. 1, [5, 6].

III. EVIDENTIAL SCREENING OF FACTORS FOR ACTIVITIES
WITH HIGHEST DIFFERENTIATING CAPACITY

In this section we investigate which activities of the plan
have most differentiating capacity for each pair of clusters
using Dempster-Shafer theory. These are the activities that

should be part of an indicator projected from (ZZ+) to
a lower dimension onto the set of these activities. This will
reduce, by the same factor, the dimensionality of the support
vectors and hyper planes that are learned from all plan
instances of reduced dimensionality (section IV) with only the
most differentiating activities remaining.

A. Dempster-Shafer theory

In Dempster-Shafer theory belief is assigned to a
proposition by a basic belief assignment. The proposition is
represented by a subset A of an exhaustive set of mutually
exclusive possibilities, a frame of discernment Θ.

The basic belief assignment (or mass function) is a function
from the power set of Θ to [0, 1].

(10)
whenever

(11)
and

(12)

where is called a basic belief number, that is the belief
committed exactly to A.

The total belief in a proposition A is obtained from the sum
of belief for those propositions that are subsets of the
proposition in question and the belief committed exactly to A

 Fig. 1. Clustering algorithm.

(13)

where Bel(A) is the total belief in A and Bel(.) is called a belief
function

(14)

A subset A of Θ is called a focal element of A if the basic belief
number for A is non-zero.

B. Maximum differentiating capacity

The most differentiating activities are found by
investigating the maximum differentiating capacity of two
disjoint subsets of the frame of discernment =1In MATLAB a vector of eigenvalues is returned by the function

eig(M).

Hia V[] JijVja

j 1=

N

 γVia–=

1
K
---- max λmin– λmax,()⋅

λmin λmax

Mij Jij
- γδi j–=

i a,∀ . Via 0 1,=

Ak{ } 1–

m: 2Θ 0 1,[]→

m ∅() 0=

m A()

A Θ⊆
 1=

m A()

INITIALIZE
K (number of clusters); N (number of plans);

;

s = 0; t = 0; ε = 0.001; τ = 0.9; γ = 0.5;

T0 = Tc (a critical temperature) , where

 and are the extreme eigenvalues of M,

where ;

;

REPEAT
• REPEAT−2

∀i Do:

• ;

• ;

• ;

• ;

UNTIL−2

;

• ;
• ;

UNTIL

;

RETURN

;

Jij
 -

 i j,∀

1
K
---- max λmin– λmax,()⋅=

λmin λmax

Mij Jij
- γδi j–=

Via
0 1

K
---- ε rand 0 1[,] i a,∀⋅+=

Hia
s

Jij
 -

Vja

s 1 j i<,+
s j i≥,




j 1=

N

 γVia
s

 a∀–=

Fi
s

e
Hia

s– T t⁄

a 1=

K

=

Via
s 1+ e

Hia
s– T t⁄

Fi
s

------------------ ε rand 0 1[,] a∀⋅+=

s s 1+=

1
N
---- Via

s
Via

s 1–
–

i a,
 0.01≤

T
t 1+ τ T

t⋅=

t t 1+=

1
N
---- Via

s()2

i a,
 0.99≥

χa Si χa. ∈ b a≠ Via
s

Vib
s>∀∀

 
 
 

Bel A() m B()

B A⊆
=

Bel: 2Θ 0 1,[]→

Θk

1327

 one for each cluster, i.e., the set of possible

values of Ak over all clusters , where i, j and k are indices for

different plan instances, clusters and activities, respectively.
Note that is not dependent on cluster, but varies for each

activity.

We develop a method, which for each cluster calculate

histograms for all activities Ak over all partial plan instances
that we receive from the simulation-based decision support
system.

From all plan instances Pi in each cluster we build the

histogram over all activities Ak. We have,

(15)

where and l = 0 is a missing value due to a

partial plan instance that provides no information regarding Ak.

In Fig. 2 and Fig. 3 we provide one example of histograms
calculated by (15) for activity A8, the activity with the highest

differentiating capacity, for two clusters and ,

respectively.
The histogram in Fig. 2 is a summation for activity A8 over

all plan instances in cluster of how many times each

alternative was carried out.

What we are looking for are activities where there are
alternatives with very different frequencies for the two clusters

 and , where some alternatives have much higher

frequency for one cluster, and other alternatives have much
higher frequency for the other cluster. When this is the case we
have an activity with high discriminating capacity.

Comparing Fig. 2 and Fig. 3 we observe directly that A8 has
high discriminating capacity since the frequency of alternative
12 is much higher for than for , i.e.,

 (first bar in Fig. 2 and Fig. 3) and the

frequency of alternative 13 is much higher for than the

frequency for , i.e., (second bar in Fig.

2 and Fig. 3).

However, our interest is in finding different subsets of
alternatives with maximum differentiating capacity. We must
also handle the situation with missing values “0”. In order to
handle this situation we need to represent the histograms as
basic belief assignments within Dempster-Shafer theory.

From each histogram we construct a basic belief
assignment where the frequency of missing values “0” is
assigned to Θk. This is a mass function where all focal

elements except one are singleton subsets of the frame
 (i.e., activities of the plan). The exception being

 Fig. 2. Histogram over alternatives for activity A8 of all

plan instances in cluster , where .

 Fig. 3. Histogram over alternatives for activity A8 of all

plan instances in cluster .

the support of Θk as the only non-singleton focal

element.

For all subsets of Θk we construct for . We get

(16)

where N are the number of plan instances. Note, that all subsets
B with cardinality receive zero support. This is

Pi.Ak χj Ak,{ }

χj

Θk

χj

χj

hχj

Ak l()
1 Pi.Ak l=,

0 Pi.Ak l≠,






i
=

l Pi.Ak χj Ak,{ }
c

∈

χ1 χ2

χ1

χ1 χ2

χ2 χ1

hχ1

A8 12{ }() hχ2

A8 12{ }()«

χ1

χ2 hχ1

A8 13{ }() hχ2

A8 13{ }()»

l{ } mχj
l{ }(),[]

12 13 35 15 11 14 0
0

10

20

30

40

50

60

70

80

Alternatives

Fr
eq

ue
nc

y

hχ1

A8 l()

χ1 l 0 11 12 13 14 15 35, , , , , ,{ }∈

12 13 35 15 11 14 0
0

10

20

30

40

50

60

70

80

Alternatives

Fr
eq

ue
nc

y

hχ2

A8 l()

χ2

Θk mχj
Θk(),[]

mχj
χj

mχj

Ak l{ }()
1
N
---- h⋅

χj

Ak

l() l Pi.Ak χj Ak,{ }∈,=

mχj

Ak Θk() 1 mχj

Ak k{ }()

k 1=

Θk

–= l 0=,

mχj

Ak B() 0 1 B Θk< < ,,=

1 B Θk< <

1328

equivalent to a discounted Bayesian belief function [9],
whenever there are some missing values.

In order to evaluate the discriminating capacity of a
particular activity Ak for a pair of clusters and we

investigate the separation of all disjoint subsets. We find the
maximum separation for two disjoint subsets where we
measure the difference in belief for one subset X between

and for Ak and for another disjoint subset Y, the difference in

belief for this subset between and . Here, we have

 and , i.e., not necessarily .

We calculate the discriminating capacity DC(Ak) of activity
Ak as a difference of subsets of the frame Θ

(17)

where . The maximum in (17) is found by

evaluating for all where . This is

of course a problem of exponential computational complexity,
but easy to do since is usually very small, often .

For activity A8 we get two belief functions for clusters

and , respectively, over all focal elements. In Fig. 4, Fig. 5

and Fig. 6 all focal elements are in numerical order.

In Fig. 4 and Fig. 5 we find the belief (13) for activity A8
for all subsets of Θ of the mass functions constructed in (16)
for clusters and , respectively. What we are looking for

are two disjoint subsets of Θ with maximum difference of
belief between and . In Fig. 6 we observe the difference

in belief for all subsets of Θ. We notice that there are several
subset with large differences in belief between clusters and

. Using the results of Fig. 4 and Fig. 5 and (17) we can

calculate the discriminating capacity of activity A8; DC(A8).

With this measure we can rank all activities of the plan as to
their discriminating capacity for each pair of clusters. Using a
threshold we can project all partial plan instances onto a
smaller number of screened factors with high discriminating
capacity.

In Fig. 7 we return to the example a show DC(Ak) for all 54
activities of the plan in this example. From this result we can
select a subset of activities that has the highest discriminating
capacity ranked by DC(Ak) as a lower dimension projection.

In addition to the alternatives for all activities of plans, each
plan instance also consist of three real values (f, g, h)
describing the consequence of the plan instance as evaluated by
the simulation-based decision support system, these three
values are always included in the projected plan instance.

 Fig. 4. Belief function over all subsets of alternatives for
activity A8 and cluster .

 Fig. 5. Belief function over all subsets of alternatives for
activity A8 and cluster .

 Fig. 6. Absolute difference between Fig. 4 and Fig. 5.

χi χj

χi

χj

χj χi

X Y∩ ∅= X Y∪ Θk⊆ X Y∪ Θk=

DC Ak() max

X Y Θk⊆,

X Y∩ ∅=

Belχi
X() Belχj

X() Belχj
Y() Belχi

Y()–+–

=

0 DC Ak() 2≤ ≤

DC Ak() X Y Θk⊆, X Y∩ ∅=

Θk Θk 5≤

χ1

χ2

χ1 χ2

χ1 χ2

χ1

χ2

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Focal elements in numerical order

B
el

ie
f

χ1

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Focal elements in numerical order

B
el

ie
f

χ2

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Focal elements in numerical order

B
el

ie
f

1329

 Fig. 7. Discriminating capacity for each activity.

IV. LEARNING SUPPORT VECTORS AND HYPERPLANES AS
BOUNDARIES ON MILITARY PLAN

Finding indicators is necessary in order to find a way to
check if a plan is good or not without simulation. Support
Vector Machine (SVM) is a method that can be used to
summarize the information contained in a data set by the
Support Vector (SV) produced. Ongoing work is three-folded.
First, find the best way to represent training data for use in
SVM. Secondly, analyze the problem of finding optimal SVM-
parameters and kernel. Finally, find out how to present the SV
information for use as indicators. An SVM analysis finds the
line (or, in general, hyper plane) that is oriented so that the
margin between the support vectors is maximized.

The first moment is to adapt the plans to the SVM
machinery. SVM requires that each data instance is represented
as a vector of real numbers. A plan with R activities combined
in N different ways generate N number of R-dimensional
vectors. From section II we have the plans clustered into
different classes to be used as training targets . The clusters

are represented as classes which in turn are represented as +1
or -1. Training plans are represented by vectors

. Initially they are of high dimensionality but

the dimensionality can be reduced by the techniques presented
in section III. The plan vectors are normalized. Scaling them

before applying SVM is very important. This is to avoid that
attributes in greater numeric ranges dominate those in smaller
numeric ranges.

The concept of treating the objects to be classified as points
in a high-dimensional space and finding a line that separates
them is not unique to the SVM. The SVM, however, is
different from other hyper plane-based classifiers in how the
hyper plane is chosen. If we define the distance from the
separating hyper plane to the nearest data point as the margin
of the hyper plane, then the SVM selects the maximum margin
separating hyper plane. Selecting this hyper plane maximizes
the SVM’s capability to calculate the correct classification of
up to that time unseen plan instances.

C. Principles of SVM

The basic idea of SVM is to find a function that has at
most deviation from the actually obtained targets for all the

training data where X denotes the

space of the input plans.

In the case of linear functions , a separating hyper plane,
written in terms of a weight vector w and a threshold b takes
the form with where
denotes the dot product in . We want to minimize the norm

 as shown in Fig. 8. This can be formulated as a
convex optimization problem.

Minimize
, (18)

subject to
. (19)

 Fig. 8. Optimal linear divider of two separate classes.

For all points from the hyper plane , the

distance between origin and the hyper plane HP is . We

consider the plans from the class -1 that satisfy the equality
, and determine the hyper plane HP1; the

distance between origin and the hyper plane HP1 is equal to

. Similarly, the plans from the class +1 satisfy the

equality , and determine the hyper plane HP2;

the distance between origin and the hyper plane HP2 is equal to

. Hyper planes HP, HP1, and HP2 are parallel and no

training plans are located between hyper planes HP1 and HP2.
Based on the above considerations, the distance between hyper

planes HP1 and HP2 is .

The standard way to train an SVM is to introduce Lagrange
multipliers and optimize them by solving a dual problem.

We construct a Lagrange function L from the primal function,

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Activities

D
is

cr
im

in
at

in
g

be
lie

f

yi

xi xi1 … xil, ,{ }=

xi

f x()
yi

x1 y1,() … xl yl,(), ,{ } X R×⊂

f

f x() x w(,) b+= w X b R∈,∈ (,)

X

w 2 w w(,)=

1
2
--- w 2

yi xi w(,)– b– 1≥ i 1 … l, ,=

HP xi w(,) b+ 0=[]

b
w

xi w(,) b+ 1–=

1 b––
w

xi w(,) b+ 1=

1 b–
w

2
w

αi

1330

(20)

where are the Lagrangian multipliers.

It can be shown that this function has a saddle point with
respect to the primal and dual variables at the solution, and it
follows from the saddle point condition that the partial
derivatives of L with respect to the primal variables have to
vanish for optimality. Then we can write

, (21)

i.e., can be completely described as a linear combination of
the training plans . The plans for which are called

Support Vectors, they lie exactly at the margin. SVs do lie on
the boundary of the convex hulls of the two classes, thus they
possess supporting hyper planes. The Support Vector optimal
hyper plane is the hyper plane which lies in the middle of the
two parallel supporting hyper planes (of the two classes) with
maximum distance. We have the decision function,

. (22)

The complexity of a function’s representation by Support
Vectors is independent of the dimensionality of the input space
X, and depends only on the number of Support Vectors.

Normally, data is not separable because the target function
is essentially nonlinear. But it can be separable in higher
dimensional space. In the case where a linear boundary is
inappropriate we map our input vectors nonlinearly into a high
dimensional feature space and perform the separation there.
One can first do a nonlinearly transform on the set of input
vectors into a high-dimensional feature space by a

map and then do a linear separation. This feature

expansion has the same optimization as before. This classifier
is nonlinear in original features, but linear in expanded feature
space. We have replaced by for some nonlinear so
the decision boundary is some nonlinear surface

(23)

and the decision function

. (24)

Since is a linear combination of (signed) training
examples, has a finite representation even if there are
infinitely many features.

Using the kernel trick [11] we can represent the decision
function in higher dimensions without using .

When used in feature space is created by applying a
nonlinear feature expansion function to some original vector

. We have

. (25)

K is called a kernel function and satisfies a condition analogous
to nonnegative definiteness for a matrix.

In many cases there is a simple expression for K even if
there is none for .

One choice of kernel used in this work is a Gaussian, which

has a single parameter . For this kernel we have

. (26)

This means that even if we do calculations in feature space
we use the original input variables and the decision function
becomes

. (27)

D. Choosing parameters

For the use in an SVM algorithm the training data must be
normalized. Target values included in the vector y are set to -1
or 1 depending on which class they represent. The plan
instance vectors are normalized. We transform the data to

corresponding values between 0 and 1. In this example we use
some lower dimensional training set created using filter 3 from
section III in which the four most significant activities and the
resulting values of g to form a five dimensional vector. The g
value is normalized only with respect to other g values and not
to the rest of the vector. A typical plan instance P1 is [1 2 41 42
3 4 43 12 10 54 51 16 47 55 22 26 31 33 58 60 0 0 0 0 0 0 0 0 0
0 1902.0 1645.2
256.8], and a corresponding training vector then would be [43
12 10 54 1645.2] and when normalized [0.7963 0.2222 0.1852
1.0000 0.9900].

The accuracy of an SVM model is largely dependent on the
selection of the model parameters. Some flexibility in
separating the categories is needed. SVM implementation have
a cost parameter, C, that controls the trade off between
allowing training errors and forcing rigid margins. This
parameter gives the model a soft margin that permits some
misclassifications [8]. Increasing C increases the cost of
misclassifying plans and forces a more accurate model to be
crated. A search can be used to find the optimal value of C and

.

Best combination of C and is selected by an exhaustive
search with growing sequences of C and . This is the most
simple brute force method to find optimal parameters and is
used in this paper. Values tested in this initial work are:

C = [0.1 1 10 100 1000 inf];
 = [0.3 0.8 1 10];

We also tried different values for the conditioning
parameter for solving the quadratic programming problem [12]
included in the algorithm;

 = [0.001 0.01 0.05 0.1 1 10];

L w b α, ,() 1
2
--- w 2

= αi

i 1=

l

 yi xi w(,) b+[] 1–{ }–

αi

w αiyixi

i 1=

l

=

w
xi xi αi 0>

sign wx b+()

xi … xl, ,

φ:xi zl→

x φ x() φ

wφ x() b+ 0=

sign wφ x() b+[]

w
w

w

x
φ

qi

K qi qj,() φ qi()φ qj()=

φ

γ 1

2σ2
---------=

K qi qj,()
qi qj, 2

σ2
-------------------–

 
 
 

exp=

sign K

i
 q qi,()yiαi b+

xi

γ

γ
γ

γ

ε

1331

The final model is the one with parameters C, , , such

that is minimized. Based on the first coarse search we did
a finer search and the resulting parameters for our example is

C = 0.1, = 0.3, = 1;

More advanced methods typically check each combination
of parameter choices using cross validation, and the parameters
with best cross-validation accuracy are chosen. The final
model, which is used for testing and for classifying new
data, is then trained on the whole training set using the selected
parameters. Cross validation will be studied in future work.

Fig. 9 show the examples from using a lower dimensional
training set from section III. The figure show a projection
down to 2 dimensions, x showing the positive vectors and +
showing the negative, and o represents the support vectors. The
visualization is very hard to do in two dimensions for a 5-
dimensional problem.

 Fig. 9. Learning hyper plan boundaries. Examples from using
some lower dimensional training set filter.

E. Classification with more than two classes

Using a hyper plane to separate the feature vectors into two
classes’ works when there are only two target categories, but
how do we handle the case where we have more than two
classes? The two most used methods are: (1) “one against
many” where each category is split out and all of the other
categories are merged; and, (2) “one against one” where

 models are constructed where k is the number of
categories. The case of many classes is left to future work.

V. USING HYPERPLANES AS INDICATORS

When representing the classification border by the SVM
optimal hyper plane, each dimension has a bound for the
corresponding action in the plan. Using the SVM decision
function in (27), each activity can be evaluated by its presence
in the tested plans presented to the decision function. Based on
equation (28) a plan P will be classified as A or B;

(28)

This way we can correct our bad plans to be good plans by
simply change the bad activities.

Thus, the hyper plane will serve as a warning bell when the
execution of an operational plan approach the boundary
beyond which its performance can deteriorate drastically, and
where radical dynamic replanning may become necessary.

VI. CONCLUSIONS

In this paper we conclude that it is possible to learn
indicators from simulated data of partial plan instances that
describe a military operational plan, by using a series of
computational processing steps, such as

• calculating distances between all pairs of partial plan
instances,

• clustering plan instances with Potts spin neural
clustering,

• projecting plan instances to the most differentiating
factors using evidential screening of factors,

• learning support vectors from clusters of projected
classified plan instances,

• deriving hyper plans from support vectors as
indicators.

Before we have a useful tool, a thorough parameter study is
needed for the SVM analysis. This is important for reliability.

VII. REFERENCES

[1] J. Schubert, F. Moradi, H. Asadi, P. Hörling, and E. Sjöberg, “Simulation-
based decision support for effects-based planning,” in Proceedings of the
2010 IEEE International Conference on Systems, Man and Cybernetics,
October 2010. Piscataway, NJ: IEEE, 2010, pp. 636−645.

[2] F. Moradi and J. Schubert, “Modelling a simulation-based decision
support system for effects-based planning,” in Proceedings of the NATO
Symposium on Use of M&S in: Support to Operations, Irregular Warfare,
Defence Against Terrorism and Coalition Tactical Force Integration
(MSG-069), paper 11, pp. 1−14, October 2009.

[3] F. Y. Wu, “The Potts model,” Reviews of Modern Physics, vol. 54, pp.
235−268, January 1982.

[4] C. Peterson and B. Söderberg, “A new method for mapping optimization
problems onto neural networks,” International Journal of Neural
Systems, vol. 1, pp. 3−22, May 1989.

[5] M. Bengtsson and J. Schubert, “Dempster-Shafer clustering using Potts
spin mean field theory,” Soft Computing, vol. 5, pp. 215−228, June 2001.

[6] J. Schubert, “Clustering belief functions based on attracting and
conflicting metalevel evidence using Potts spin mean field theory,”
Information Fusion, vol. 5, pp. 309−318, December 2004.

[7] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer, 1995.

[8] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, pp. 273−297, September 1995.

[9] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ: Princeton
University Press, 1976.

[10] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
Systems Technical Journal, vol. 29, pp. 147−160, April 1950.

[11] M. Aizerman, É. M. Braverman, and L. I. Rozonoér, “Theoretical
foundations of the potential function method in pattern recognition
learning,” Automation and Remote Control, vol. 25, pp. 821–837, 1964.

[12] P. Wolfe, “The simplex method for quadratic programming,”
Econometrica, vol. 27, pp. 382−398, July 1959.

γ ε

w 2

γ ε

Φ x()

0

1

1

1

1

1

k k 1–() 2⁄

P

A
qi qj, 2

σ2
-------------------–

 
 
 

exp y i
αi b+ 0>,

B
qi qj, 2

σ2
-------------------–

 
 
 

exp y i
αi b+ 0<,










=

1332

	fusion118.pdf
	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

