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Abstract

In this paper we develop a method
for clustering all types of belief
functions, in particular non-
consonant belief functions. Such
clustering is done when the belief
functions concern multiple events,
and all belief functions are mixed
up. Clustering is performed by
decomposing all belief functions
into simple support and inverse
simple support functions that are
clustered based on their pairwise
generalized weights of conflict,
constrained by weights of attraction
assigned to keep track of all
decompositions. The generalized
conflict and generalized
weight of conflict is
derived in the combination of
simple support and inverse simple
support functions.

Keywords: belief functions, Dempster-
Shafer theory, decomposition, clustering,
data fission.

1 Introduction

In earlier papers [1, 5−6] we developed
methods within Dempster-Shafer theory
[2, 10−11] to manage simple support
functions (SSFs) that concern different
events where the SSFs were mixed up. This
was the case when it was not known a priori
to which event each SSF was related. The
SSFs were clustered into subsets that should

be handled independently. This was based
on minimizing pairwise conflicts within
each cluster where conflicts served as
repellence, forcing conflicting SSFs into
different clusters.

This method was extended [7−8] into also
handling external information of an
attracting nature, where attractions between
SSFs suggested they belonged together.

In this paper we develop a method for
managing non-consonant belief functions
concerning different events where the belief

functions are mixed up1. This is the general
case where no a priori information is
available regarding which event the belief
functions refer to. This method is based on
the extension introducing attractions and a
decomposition method for belief functions.

First, all belief functions are decomposed
into a set of SSFs and inverse simple support
functions (ISSFs) [12], where an ISSF on a

frame of discernment is a function

characterized by a weight

and a focal element , such

that , and

 when .

Secondly, generalized weights of conflicts
are calculated for all pairs in the set of

c ∞– ∞,( )∈
J - ∞– ∞,( )∈

1 Consonant belief functions can be handled in
the same way as SSFs without the method
developed in this paper, by clustering the
consonant belief functions without any
decomposition using conflicts only [1].

Θ

m:2Θ ∞– ∞,( )→
w 1 ∞,( )∈ A Θ⊆

m Θ( ) w= m A( ) 1 w–=

m X( ) 0= X A Θ,{ }∉
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decomposed SSFs and ISSFs, except when
both originate from the same belief function.
Weights of attraction are assigned when they
do originate from the same belief function.

Finally, all SSFs and ISSFs are clustered
based on their pairwise generalized weights
of conflict where the weights of attraction
are used as constraints forcing SSFs and
ISSFs that originate from the same belief
function to end up in the same cluster. After
clustering, SSFs and ISSFs originating from
the same belief function may be exchanged
for the original belief function. The belief
functions within each cluster can then be
combined as a series of independent
subproblems.

The number of clusters in the clustering
process is outside the scope of this paper. It
can be managed with other methods, e.g.,
the sequential estimation method proposed
by Schubert and Sidenbladh [9].

The methodology developed in this paper is
intended to manage intelligence reports
whose uncertainty is represented as belief
functions with several alternative
nonspecific propositions. This can be the
case when handling human intelligence
(HUMINT) or for that matter sensor reports
from some advanced type of sensor.
Presumably, humans as information sources
will on average deliver fewer but more
complex intelligence reports than sensor
systems. Such complex intelligence can be
decomposed and managed with these
methods.

For a recent overview over different
alternatives to manage the combination of
conflicting belief functions, see [14].

We begin by describing the decomposition
method for belief functions (Section 2). In
Section 3 we study the characteristics of all
types of combinations of SSFs and ISSFs
and how generalized conflicts between SSFs
and ISSFs are mapped onto weights. We
demonstrate how to manage all SSFs and
ISSFs using these weights together with

logical constraints that keeps track of the
decomposition (Section 4). Finally, in
Section 5, conclusions are drawn.

2 Decomposition

All belief functions are decomposed using
the method developed by Smets [12]. We
include a short description here (rather than
just giving the reference) for completeness.

First, for any non-dogmatic belief function

Bel0, i.e., where , calculate the

commonality number for all focal elements.
We have

. (1)

Secondly, calculate for all

decomposed SSFs and ISSFs. We get

. (2)

For dogmatic belief functions assign

and discount all other focal

elements proportionally.

For further details and a nice example, see
[12]. For fast computation, take the
logarithm of the product terms in Eq. (2) and
use the Fast Möbius Transform [3].

3 Combining Simple Support
Functions and Inverse Simple Support
Functions

When combining two decomposed parts
from two different belief function we face
three different situations: The combination
of two SSFs, one SSF and one ISSF, or two
ISSFs. These situations are studied below.

However, let us first recall the meaning of

SSFs and ISSFs, [12]: A SSF

represents a state of belief that “You have
some reason to believe that the actual world
is in A (and nothing more)”. An ISSF

m0 Θ( ) 0>

Q0 A( ) m0 B( )
B A⊇
∑=

mi C( )

mi C( ) 1 Q0 A( ) 1–( ) A C 1+–

A C⊇
∏–=

mi Θ( ) 1 mi C( )–=

m0 Θ( ) ε 0>=

m1 A( ) 0 1,[ ]∈
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on the other hand,

represents a state of belief that “You have
some reason not to believe that the actual
world is in A”. Equivalently, in the

terminology of [12], where

and where , respectively.

Here, w is the mass assigned to Θ in m1 and

m2.

The ISSF can be understood as some

reason not to believe in A due to its
absorbing belief. A simple example is one

SSF , i.e., and =

, and one ISSF , i.e., =

and . Combining these

two functions = =

A1 (i.e., m12(Θ) = 1) yields a vacuous belief

function. Here,

and is the decombination operator

absorbing belief [12]. Thus, the ISSF

can be interpreted as reason not to
believe in A, since it precisely eliminates the

 support in A expressed by .

3.1 Two SSF

In this situation we have two SSFs where

 and .

When the two simple support functions are

combined we receive a conflict

whenever . A weight of conflict
is calculated by

(3)

where but will be constrained to

in our neural clustering process

[1, 8] for computational reasons. This will

ensure convergence. The weight will

work as repellence between m1 and m2 in the

clustering process.

This is the usual situation. It is proper that
two propositions referring to different
conflicting hypotheses are not combined
when they are highly conflicting. Using the
conflict we obtain such a graded measure
(see [5]).

3.2 One SSF and one ISSF

The situation when combining one SSF m1

with one ISSF m2 is interesting and

unproblematic. Here, we have where

as usual, and where

, i.e., in terms of mass functions

.

Thus, when we combine a SSF with an

ISSF we receive a generalized conflict

whenever . Using

eq. (3) we get a generalized weight of

conflict which will serve as a

weak attraction between m1 and m2. As

before we will constrain the generalized
weight of conflict for computational reasons,

here to .

The weak attraction is proper and rather
immediate. If you believe in a proposition A

( , 0 ≤ w ≤ 1) and you receive further

evidence indicating you have some reason

not to believe in B ( , w > 1),

, that is an indirect weak support
of A as some alternatives of the frame not
supported by m1 are disbelieved.

A simple example will demonstrate this.

Suppose you have an SSF and an ISSF

m2 A( ) ∞– 0,( )∈

A1
w w 0 1,[ ]∈

A2
w w 1 ∞),(∈

A2
w

A1
3 4⁄ m1 A( ) 1 4⁄= m1 Θ( )

3 4⁄ A2
4 3⁄ m2 A( )

1 3⁄– m2 Θ( ) 4 3⁄=

A1
3 4⁄ A2

4 3⁄⊕ A1
3 4⁄ A2

3 4⁄⊕−

Belx A1
y⊕ Belx= A1

1 y⁄⊕−

⊕−

A2
4 3⁄

1 4⁄

1 4⁄ A1
3 4⁄

m1 A( ) 0 1,[ ]∈ m2 B( ) 0 1[ , ]∈

c12 0 1,[ ]∈

A B∩ ∅=

J ij
- 1 cij–( )log–=

J ij
- 0 ∞),[∈

J ij
- 0 5,[ ]∈

J ij
-

A1
w

w 0 1,[ ]∈ B2
w

w 1 ∞),(∈
m2 B( ) ∞– 0 ),(∈

A1
w

B2
w

c12 ∞– 0 ],(∈ A B∩ ∅=

J 12
- ∞– 0 ],(∈

J ij
- 5– 0,[ ]∈

A1
w

B1
w

A B∩ ∅=

A1
1 2⁄
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. Combining them will result in a new

type of object, henceforth called a pseudo
belief function [12].

In standard notation  is

(4)

and  is

(5)

A straightforward combination of m1 and m2

yields a pseudo belief function

(6)

without normalization and

(7)

after normalization. This is an increase of
m1’s support for A from 1/2 to 3/4 and 3/5,

respectively, after combination with m2.

Note the interesting effect of normalization.
Usually mass on the empty set is distributed
proportionally among all focal elements by
weighting up the support of the focal
elements through normalization. When

, then instead, the support for each
focal element is weighted down to distribute
support to the empty set so as to make

.

This support for the focal elements of m12 is

different from the one we would have if we

instead had received support for Bc of 1/2,

. Assume we have

, (8)

then combining m1 and m3 yields

, (9)

i.e., support for A of 1/2, or 3/4 if Bc ≡ A.

When two conflicting belief functions are
decomposed, each into several SSFs and
ISSFs, the conflict between the SSFs
originating from different belief functions
will be higher than that between the two
belief functions. This is because the SSFs
have higher masses on their focal elements
than the corresponding belief function, now
that we also have ISSFs with negative mass.

A simple example will demonstrate the
situation. Let us assume two belief functions
ma and mb whose basic belief assignments

are

(10)

and

. (11)

The combination of ma and mb yields a

conflict in the intersection of each function’s

second focal element

of .

Using the decomposition algorithm, ma can

be decomposed into three functions. We get

two SSFs and , and one

ISSF , where .

B2
3 2⁄

A1
1 2⁄

m1 X( )
1 2⁄ X, A=

1 2⁄ X, Θ=



=

B2
3 2⁄

m2 X( )
1 2⁄– X, B=

3 2⁄ X, Θ=



=

m12 X( )

3 4⁄ X, A=

1 4⁄– X, B=

3 4⁄ X, Θ=

1 4⁄– X, ∅=







=

m12 X( )

3 5⁄ X, A=

1 5⁄– X, B=

3 5⁄ X, Θ=





=

m ∅( ) 0<

m ∅( ) 0=

A B∩ ∅=

m3 X( ) 1 2⁄ X, Bc=

1 2⁄ X, Θ=



=

m13 X( )

1 2⁄ X, A=

1 4⁄ X, Bc=

1 4⁄ X, Θ=





=

ma X( )

1 2⁄ X, A B,{ }=

3 10⁄ X, A C,{ }=

1 5⁄ X, Θ=





=

mb X( )

1 2⁄ X, A B,{ }=

3 10⁄ X, B D,{ }=

1 5⁄ X, Θ=





=

A C,{ } B D,{ }∩ ∅=

ma b⊕ ∅( ) 9 100⁄=

A B,{ }a1

2 7⁄ A C,{ }a2

2 5⁄

Aa3

7 4⁄ ma1
ma2

ma3
⊕ ⊕ ma=
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correct
Similarly, mb can be decomposed into two

SSFs and , and one

ISSF . Of the four pairs of SSFs (one

from each decomposed belief function) only

and are in conflict;

, see Figure 1.

Figure 1: Generalized conflicts between
SSFs and ISSFs originating from ma and mb.

Combining and (or for that matter

all four SSFs , , , and ) yields

a conflict , i.e., four

times as much conflict as in the combination

. This will be compensated with a

negative generalized conflict when including

the two ISSFs and in the picture.

We observe (in Figure 1) generalized

conflicts between and , and between

and , respectively, i.e,

.

3.3 Two ISSFs

The situation when combining two inverse
simple support functions (ISSFs) m1 and m2

is perhaps the most interesting case. Here,

we have two ISSFs and where

, i.e., in terms of mass functions

 and .

Assuming , we receive a

generalized conflict when

combining m1 and m2 that will serve as a

repellence. This is proper but perhaps not
immediately intuitive. Let us again look at

an example. Let us combine and ,

i.e., or in other

terms you have some (1/3) reason not to
believe that the actual world is A and B,

respectively, since

, where is the

decombination operator [12]. We have

(12)

and

. (13)

Combining m1 and m2 gives us

(14)

without normalization and

(15)

after normalization.

The positive conflict c12 = 1/4 will serve to

repel m1 and m2 which is proper since m1

and m2 contradict each other. This is

observed in the decrease of belief in X = A

and X = B where and

, i.e., the reason to doubt

that X = A increases.

When the generalized conflict is greater than
1 we can not use Eq. (3) to calculate a
generalized weight of conflict as the
logarithm is not defined for values less than

A B,{ }b1

2 7⁄ B D,{ }b2

2 5⁄

Bb3

7 4⁄

ma2
mb2

A C,{ } B D,{ }∩ ∅=

A B,{ }a1

2 7⁄ A B,{ }b1

2 7⁄

A C,{ }a2

2 5⁄ B D,{ }b2

2 5⁄

Aa3

7 4⁄ Bb3

7 4⁄

9/25

9/16

-9/20

ma2
mb2

ma1
ma2

mb1
mb2

ma2 b2⊕ ∅( ) 9 25⁄=

ma mb⊕

ma3
mb3

ma2
mb3

ma3
mb2

ma2 b3⊕ ∅( ) ma3 b2⊕ ∅( ) 9 20⁄–= =

A1
w B2

w

w 1 ∞),(∈
m1 A( ) ∞– 0 ),(∈ m2 B( ) ∞– 0 ),(∈

A B∩ ∅=

c12 0 ∞),(∈

A1
3 2⁄ B2

3 2⁄

m1 A( ) m2 B( ) 1 2⁄–= =

Belx A1
3 2⁄⊕

Belx= A1
2 3⁄⊕− ⊕−

m1 X( )
1– 2⁄ X, A=

3 2⁄ X, Θ=



=

m2 X( )
1– 2⁄ X, B=

3 2⁄ X, Θ=



=

m1 2⊕ X( )

3– 4⁄ X, A=

3– 4⁄ X, B=

9 4⁄ X, Θ=

1 4⁄ X, ∅=







=

m1 2⊕ X( )

1– X, A=

1– X, B=

3 X, Θ=





=

m1 2⊕ A( ) m1 A( )<

m1 2⊕ B( ) m2 B( )<
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0. We call this hyper conflicting. We note
that the “1” in Eq. (3) is however just a way

to map a mass in the interval to a

weight in the interval. As there is
nothing special about the “1” in Eq. (3)
other than being an upper limit for a
traditional conflict we can choose any other
value greater than 1 to map hyper conflicts
onto weights. One radical alternative would
be to adjust the value to each application by
choosing to map the interval

to the interval in

the case with two ISSFs or

to in the

general case. We could redefine Eq. (3) as

. (16)

However, we will not do so. While this
would work there are some drawbacks
involved in choosing such a solution. First,
if the maximum value is very high compared
to most other generalized conflicts, most
generalized weights of conflict would be
very small which would lead to a slow
convergence in the clustering process.
Secondly, having a generalized conflict
mapped into different generalized weights of
conflict depending on the application is not
attractive. Thirdly, we would like to
maintain consistency with clustering only
SSFs where two SSFs that flatly contradict
each other for a conflict of 1 also receives a

weight of conflict of  and nothing less.

Thus, we will map any hyper conflicting

generalized conflict > 1 to a weight of .
For generalized conflicts less than 0 there
are of course no problems. From this we
may redefine Eq. (3) as

. (17)

where . As before we will,

however, for computational reasons restrict
the generalized weight of conflict to

.

4 Clustering SSFs and ISSFs

Having decomposed all belief functions into
SSFs and ISSFs we may now cluster them
using the Potts spin [15] neural clustering
method extended with attractions [8].

The Potts spin problem consists of
minimizing an energy function

(18)

by changing the states of the spins Sia’s,

where Sia ∈ {0, 1} and Sia = 1 means that mi

is in cluster a. This model serves as a

clustering method if is used as a penalty

factor when mi and mj are in the same

cluster.

However, if mi and mj originate from the

same belief function we assign cij := 0 and

pij := 1, otherwise pij := 0. To assure smooth

convergence of the neural network is

restricted to [-5, 5], while belongs to

{0, 5} in this application.

Let us calculate the generalized weight of
conflict between mi and mj, taking the

restriction into account, Figure 2, as

(19)

and assign weights of attraction as

, (20)

enforcing the constraints that SSFs and

0 1,[ ]
0 ∞),[

0 max cij i j,∀{ },[ ] 0 ∞),[

∞– max cij i j,∀{ } ],( ∞– ∞,( )

J ij
- max cij i j,∀{ } cij–( )log–=

∞

∞

J ij
- 1 min 1 cij,{ }–( )log–=

J ij
- ∞– ∞,( )∈

J ij
- 5– 5,( )∈

E
1
2
--- J ij

- J ij
+–( )SiaS ja

a 1=

q

∑
i j, 1=

N

∑=

J ij
-

J ij
-

J ij
+

J ij
-

0, x.m∃ i m j, Belx∈
5– , x.m∀ i m j, Belx∉ ,

cij 1 e5–≤
ln– 1 cij–( ), x.m∀ i m j, Belx∉ ,

1 e5– cij 1 e 5––< <
5, x.m∀ i m j, Belx∉ ,

cij 1 e 5––≥













=

J ij
+ 5, x.m∃ i m j, Belx∈

0, x.m∀ i m j, Belx∉






=
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ISSFs originating from the same belief
function end up in the same cluster.

Figure 2: The generalized weight of conflict
 in Eq. (19) as a function of the

generalized conflict cij when .

The clustering of all SSFs and ISSFs is made
using the Potts spin neural clustering
method extended with attractions. The
minimization of the energy function, Eq.
(18), is carried out by simulated annealing.
In simulated annealing temperature is an
important parameter. The process starts at a
high temperature where the Sia change state

more or less at random taking little account
of the interactions (Jij’s). The process

continues by gradually lowering the
temperature. As the temperature is lowered
the random flipping of spins gradually come
to a halt and the spins gradually become
more influenced by the interactions (Jij’s) so

that a minimum of the energy function is
reached. This gives us the best partition of
all evidence into the clusters with minimal
overall conflict.

For computational reasons we use a mean
field model, where spins are deterministic

with , Via ∈ [0, 1], in order to

find the minimum of the energy function.
The Potts mean field equations are
formulated [4] as

(21)

where

(22)

In order to minimize the energy function
Eqs. (21) and (22) are iterated until a
stationary equilibrium state has been
reached for each temperature. Then, the
temperature is lowered step by step by a

constant factor until in the

stationary equilibrium state, Figure 3.

Figure 3: Clustering algorithm.
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J ij
-

mi m j, Belx∉

V ia Sia〈 〉=

V ia
e H ia– V[ ] T⁄

e H ib– V[ ] T⁄

b 1=

K

∑
-----------------------------------=

H ia V[ ] J ij
- J ij

+–( )V ja
j 1=

N

∑ γV ia α V ja.
j 1=

N

∑+–=

i a,∀ . V ia 0 1,=

INITIALIZE
K (the problem size); N = 2K − 1;
Calculate  using Eq. (19);

Assign  using Eq. (20);

s = 0; t = 0; ε = 0.001; τ = 0.9; γ = 0.5;
T0 = Tc (a critical temperature)

, where  and

 are the extreme eigenvalues of M,

where ;

;

REPEAT
• REPEAT−2
∀i Do:

;

;

;

;
UNTIL−2

;

• ;
• ;

UNTIL

;

RETURN

;

J ij
- i j,∀

J ij
+ i j,∀

1
K
---- max λmin– λmax,( )⋅= λmin

λmax
M ij J ij

- J ij
+– γδij–=

V ia
0 1

K
---- ε rand 0 1[ , ] i a,∀⋅+=

H ia
s J ij

- J ij
+–( )V ja

s 1 j i<,+
s j i≥,







j 1=

N

∑ γV ia
s a∀–=

Fi
s e

H ia
s– T

t⁄

a 1=

K

∑=

V ia
s 1+ e

H ia
s– T

t⁄

Fi
s

------------------ ε rand 0 1[ , ] a∀⋅+=

s s 1+=

1
N
---- V ia

s V ia
s 1––

i a,
∑ 0.01≤

T t 1+ τ T t⋅=
t t 1+=

1
N
---- V ia

s( )2

i a,
∑ 0.99≥

χa Si χa.∈ b a≠ V ia
s V ib

s>∀∀{ }
1434



After clustering, the set of SSFs and ISSFs
which originate from the same belief
function can be substituted by the original
belief function itself. Each cluster will now
be handled as an independent subproblem.

5 Conclusions

In this paper we have developed a
methodology which makes it possible to
cluster belief functions that are mixed up by
first decomposing the belief functions into
simple support functions and inverse simple
support functions and then adopting a neural
clustering algorithm intended for simple
support functions to handle both SSFs and
ISSFs while recording their decomposition
for postclustering recomposing. With this
method we may cluster any type of belief
function, and in particular non-consonant
belief functions.

Acknowledgements

I wish to express my sincere appreciation to
the late Prof. Philippe Smets. The idea to
decompose mixed up belief functions into
SSFs and ISSFs in order to cluster all pieces
was suggested by him [13].

References

[1] M. Bengtsson and J. Schubert (2001).
Dempster-Shafer clustering using potts
spin mean field theory. Soft Computing,
5(3), 215−228.

[2] A. P. Dempster (1968). A generalization
of Bayesian inference. Journal of the
Royal Statistical Society Series B, 30(2),
205−247.

[3] R. Kennes (1992). Computational
aspects of the Möbius transformation of
graphs. IEEE Transactions on Systems,
Man, and Cybernetics, 22(2), 201−223.

[4] C. Peterson and B. Söderberg (1989). A
new method for mapping optimization
problems onto neural networks.
International Journal of Neural Systems,
1(1), 3−22.

[5] J. Schubert (1993). On nonspecific
evidence. International Journal of
Intelligent Systems, 8(6), 711−725.

[6] J. Schubert (1996). Specifying
Nonspecific Evidence. International
Journal of Intelligent Systems, 11(8),
525−563.

[7] J. Schubert (2003). Clustering belief
functions based on attracting and
conflicting metalevel evidence. In
Intelligent Systems for Information
Processing: From Representation to
Applications, B. Bouchon-Meunier,
L. Foulloy and R. R. Yager (Eds.), pages
349−360, Elsevier Science, Amsterdam.

[8] J. Schubert (2004). Clustering belief
functions based on attracting and
conflicting metalevel evidence using
Potts spin mean field theory. Information
Fusion, 5(4), 309−318.

[9] J. Schubert and H. Sidenbladh (2005).
Sequential clustering with particle
filtering − estimating the number of
clusters from data. In Proceedings of the
Eighth International Conference on
Information Fusion, Paper A4-3, pages
1−8, Philadelphia, USA, July 2005.

[10] G. Shafer (1976). A Mathematical
Theory of Evidence. Princeton
University Press, Princeton, NJ.

[11] P. Smets and R. Kennes (1994). The
transferable belief model. Artificial
Intelligence, 66(2), 191−234.

[12] P. Smets (1995). The canonical
decomposition of a weighted belief. In
Proceedings of the Fourteenth
International Joint Conference on
Artificial Intelligence, volume 2, pages
1896−1901, Montréal, Canada, August
1995.

[13] P. Smets (2000). Private communication.

[14] P. Smets (2005, Mar.). Analyzing the
combination of conflicting belief
functions. [Online]. Available: http://
iridia.ulb.ac.be/~psmets/
Combi_Confl.pdf

[15] F. Y. Wu (1982). The Potts model.
Reviews of Modern Physics, 54(1), 235−
268.
1435


