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Abstract

Multi-sensor management concerns the control of environment perception activities by managing or coordinating the usage of

multiple sensor resources. It is an emerging research area, which has become increasingly important in research and development of

modern multi-sensor systems. This paper presents a comprehensive review of multi-sensor management in relation to multi-sensor

information fusion, describing its place and role in the larger context, generalizing main problems from existing application needs,

and highlighting problem solving methodologies. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multi-sensor systems are becoming increasingly im-
portant in a variety of military and civilian applica-
tions. Since a single sensor generally can only perceive
limited partial information about the environment,
multiple similar and/or dissimilar sensors are required
to provide sufficient local pictures with different focus
and from different viewpoints in an integrated manner.
Further, information from heterogeneous sensors can
be combined using data fusion algorithms to obtain
synergistic observation effects. Thus, the benefits of
multi-sensor systems are to broaden machine percep-
tion and enhance awareness of the state of the world
compared to what could be acquired by a single sensor
system.

With the advancements in sensor technology, sensors
are becoming more agile. Also, more of them are needed
in a scenario in response to the increasingly intricate
nature of the environment to be sensed. The increased
sophistication of sensor assets along with the large
amounts of data to be processed has pushed the infor-
mation acquisition problem far beyond what can be

handled by a human operator. This motivates the
emerging interest in research into automatic and semi-
automatic management of sensor resources for im-
proving overall perception performance beyond basic
fusion of data.

1.1. The fundamental purpose of sensor management

Multi-sensor management is formally described as a
system or process that seeks to manage or coordinate
the usage of a suite of sensors or measurement devices in
a dynamic, uncertain environment, to improve the per-
formance of data fusion and ultimately that of percep-
tion. It is also beneficial to avoid overwhelming storage
and computational requirements in a sensor and data
rich environment by controlling the data gathering
process such that only the truly necessary data are col-
lected and stored [60]. The why and what issues of both
single-sensor and multi-sensor management were thor-
oughly discussed in the papers [1,7,53,54,56]. To reiter-
ate, the basic objective of sensor management is to select
the right sensors to do the right service on the right
object at the right time. The sensor manager is respon-
sible for answering questions like:

• Which observation tasks are to be performed and
what are their priorities?

• How many sensors are required to meet an informa-
tion request?
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• When are extra sensors to be deployed and in which
locations?

• Which sensor sets are to be applied to which tasks?
• What is the action or mode sequence for a particular

sensor?
• What parameter values should be selected for the op-

eration of sensors?

The simplest job of sensor management is to choose
the optimal sensor parameter values given one or more
sensors with respect to a given task, see for example, the
paper [72]. This is also called active perception where
sensors are to be configured optimally for a specific
purpose. More general problems of (multi-)sensor man-
agement are, however, related to decisions about what
sensors to use and for which purposes, as well as when
and where to use them. Widely acknowledged is the fact
that it is not realistic to continually observe everything
in the environment and therefore selective perception
becomes necessary, requiring the sensor management
system to decide when to sense what and with which
sensors. Typical temporal complexities, which must be
accommodated in the sensor management process, were
discussed in [46].

1.2. The role of sensor management in information fusion

Sensor management merits incorporation in infor-
mation fusion processes. Although terminology has not
yet fully stabilized, it is generally acknowledged that
information fusion is a collective concept comprising
situation assessment (level 2), threat or impact assess-
ment (level 3) and process refinement (level 4) in the so-
called JDL model of data fusion [76]. As pointed out in
[70], in addition to intelligence interpretation, informa-
tion fusion should be equipped with techniques for
proactive or reactive planning and management of own
collection resources such as sensors and sensor plat-
forms, in order to make best use of these assets with

respect to identified intelligence requirements. Sensor
management, aiming at improving data fusion perfor-
mance by controlling sensor behavior, plays the role of
level 4 functions in the JDL model.

Sensor management indeed provides information
feedback from data fusion results to sensor operations
[7,54]. The representation of the data fusion process as a
feedback closed-loop structure is depicted in Fig. 1,
where the sensor manager on level 4 uses the informa-
tion from levels 0–3 to plan future sensor actions. The
feedback is intended to improve the data collection
process with expected benefits of earlier detection, im-
proved tracking, and more reliable identification, or to
confirm what might be tactically inferred from previ-
ously gathered evidences. Timeliness is a necessary re-
quirement on the feedback management of sensors for
fast adaptation to environment changes. That is to say,
a prompt decision on sensor functions has to be made
before the development of the tactical situation has
made such a decision obsolete.

As a categorization of process refinement, Steinberg
and Bowman [68] classified responses of resources
(including sensors) as reflexive, feature-based, entity-
relation based, context-sensitive, cost-sensitive, and re-
action-sensitive, in terms of input data/information
types. This categorization is viewed as an expansion of
Dasarathy’s model [18] in which data fusion functions
are subdivided considering merely data, features and
objects as possible input/output types.

1.3. Multi-sensor management architectures

The architecture of a multi-sensor management sys-
tem is closely related to the form of data fusion unit.
Typically there are three alternatives for system struc-
ture, namely,

1. Centralized. In a centralized paradigm the data fusion
unit is treated as a central mechanism. It collects in-

Fig. 1. Feedback connection via sensor manager in a data fusion process.
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formation from all different platforms and sensors
and decides jobs that must be accomplished by indi-
vidual sensors. All commands sent from the fusion
center to respective sensors must be accepted and fol-
lowed with proper sensor actions.

2. Decentralized. In a decentralized system data are
fused locally with a set of local agents rather than
by a central unit. In this case, every sensor or plat-
form can be viewed as an intelligent asset having
some degree of autonomy in decision-making. Sensor
coordination is achieved based on communication in
the network of agents, in which sensors share locally
fused information and cooperate with each other.
Durrant-Whyte and Stevens [23] stated that decen-
tralized data fusion exhibits many attractive proper-
ties by being:

• scalable in structure without being constrained by
centralized computational bottlenecks or commu-
nicational bandwidth limitations;

• survivable in the face of on-line loss of sensing
nodes and to dynamic changes of the network;

• modular in the design and implementation of fu-
sion nodes.

However, the effect of redundant information is a seri-
ous problem that may arise in decentralized data fusion
networks [16]. It is not possible, within most filtering
frameworks, to combine information pieces from mul-
tiple sources unless they are independent or have known
cross-covariance [36]. Moreover, without any common
communication facility, data exchange in such a net-
work must be carried out strictly on a node-to-node
basis. A delay between sender and receiver could result
in transient inconsistencies of the global state among
different parts of the network, causing degradation of
overall performance [28].
3. Hierarchical. This can be regarded as a mixture of

centralized and decentralized architectures. In a hier-

archical system there are usually several levels of hier-
archy in which the top level functions as the global
fusion center and the lowest level consists of several
local fusion centers [56]. Every local fusion node is re-
sponsible for management of a sensor subset. The
partitioning of the whole sensor assembly into differ-
ent groups can be realized based on either sensors’
geographical locations or platforms, sensor functions
performed, or sensor data delivered (to ensure com-
mensurate data from the same sensor group).

Two interesting instances of hybrid and hierarchical
sensor management architectures are given in the fol-
lowing for illustration.

The macro/micro architecture proposed by [7] can be
classified as a two-level hierarchical system. It consists of
a macro sensor manager playing a central role and a set
of micro sensor managers residing with respective sen-
sors. The macro sensor manager is in charge of high-
level strategic decisions about how to best utilize the
available sensing resources to achieve the mission ob-
jectives. The micro sensor manager schedules the tactics
of a particular sensor to best carry out the requests from
the macro manager. Thus it is clear that every managed
sensor needs its own micro manager.

Another hybrid distributed and hierarchical ap-
proach was suggested in [60] for sensor-rich environ-
ments exemplified by an aircraft health and usage
monitoring system. The main idea is to distribute the
management function across system functional or phys-
ical boundaries with global oversight of mission goals
and information requests. One such model for man-
agement of numerous sensors is shown in Fig. 2. At the
top of the model is the mission manager tasked with
converting mission goals to information needs, which
are then mapped by the information instantiator into a
set of measurement patterns in accordance with those
needs. The role of the meta-manager is to enable natural
subdivision of a single manager into a set of mostly

Fig. 2. A distributed and hierarchical sensor management model for a sensor rich environment (cited from [60]).
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independent local resource managers each being re-
sponsible for a particular sensor subset. Occasionally,
these local managers need to be coordinated by the
meta-manager if there is a request for information,
which cannot be satisfied by a single sensor suite. A
major difficulty in implementing this hybrid architecture
of sensor management lies with the meta-manager. It is
not yet obvious how to best translate global functional
needs into a set of local resource managers and how to
coordinate the disparate local managers distributed
across functional or physical boundaries.

1.4. Classification of multi-sensor management problems

Multi-sensor management is a broad concept refer-
ring to a set of distinct issues of planning and control of
sensor resource usage to enhance multi-sensor data fu-
sion performance. Various aspects of this area have been
discussed in papers in the open literature. Generally,
these problems fall into three main categories, i.e., sen-
sor deployment, sensor behavior assignment, and sensor
coordination.

1.4.1. Sensor deployment
Sensor deployment is a critical issue for intelligence

collection in an uncertain dynamic environment. It
concerns making decisions about when, where, and how
many sensing resources need to be deployed in reaction
to the state of the world and its changes. In some situ-
ations, it should be beneficial to proactively deploy
sensing resources according to a predicted situation de-
velopment tendency in order to get prepared to observe
an event, which is likely to happen in the upcoming
period.

Sensor placement [59] needs special attention in sensor
deployment. It consists of positioning multiple sensors
simultaneously in optimal or near optimal locations to
support surveillance tasks when necessary. Typically it is
desired to locate sensors within a particular region de-
termined by tactical situations to optimize a certain
criterion usually expressed in terms of global detection
probability, quality of tracks, etc. This problem can be
formulated as one of constrained optimization of a set
of parameters. It is subject to constraints due to the
following factors:

• sensors are usually restricted to specified regions due
to tactical considerations;

• critical restrictions may be imposed on relative posi-
tions of adjacent sensors to enable their mutual com-
munication when sensors are arranged as distributed
assets in a decentralized network;

• the amount of sensing resources that can be posi-
tioned in a given period is limited due to logistical re-
strictions.

In simple cases, decisions on sensor placement are to
be made with respect to a well-prescribed and stationary
environment. As examples, we may consider such ap-
plication scenarios as:

• placing radars to minimize the terrain screening effect
in detection of an aircraft approaching a fixed site;

• arrangement of a network of intelligence gathering
assets in a specified region to target another well-
defined area.

In the above scenarios, mathematical or physical
models such as terrain models, propagation models, etc.
are commonly available and they are used as the basis
for evaluation of sensor placement decisions.

More challenging are those situations in which the
environment is dynamic and sensors must repeatedly be
repositioned to be able to refine and update the state
estimation of moving targets in real time. Typical situ-
ations where reactive sensor placement is required are:

• submarine tracking by means of passive sonobuoys in
an anti-submarine warfare scenario;

• locating moving transmitters using ESM (electronic
support measures) receivers;

• tracking of tanks on land by dropping passive acous-
tic sensors.

1.4.2. Sensor behavior assignment
The basic purpose of sensor management is to adapt

sensor behavior to dynamic environments. By sensor
behavior assignment is meant efficient determination and
planning of sensor functions and usage according to
changing situation awareness or mission requirements.
Two crucial points are involved here:

1. Decisions about the set of observation tasks (referred
as system-level tasks) that the sensor system is sup-
posed to accomplish currently or in the near future,
on grounds of the current/predicted situation as well
as the given mission goal;

2. Planning and scheduling of actions of the deployed
sensors to best accomplish the proposed observation
tasks and their objectives.

Owing to limited sensing resources, it is prevalent in
real applications that available sensors are not able to
serve all desired tasks and achieve all their associated
objectives simultaneously. Therefore a reasonable com-
promise between conflicting demands is sought. Intu-
itively, more urgent or important tasks should be given
higher priority in their competition for resources. Thus a
scheme is required to prioritize observation tasks. In-
formation about task priority can be very useful in
scheduling of sensor actions and for negotiation between
sensors in a decentralized paradigm.
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To concretize this class of problems, let us consider a
scenario including a number of targets as well as mul-
tiple sensors, which are capable of focusing on different
objects with different modes for target tracking and/or
classification. The first step for the sensor management
system should be to utilize evidences gathered to decide
objects of interest and to prioritize which objects to look
at in the time following. Subsequently, in the second
step, different sensors together with their modes are al-
located across the interesting objects to achieve best
situation awareness. In fact, owing to the constraints on
sensor and computational resources, it is in general not
possible to measure all targets of interest with all sensors
in a single time interval. Also, improvement of the ac-
curacy on one object may lead to degradation of per-
formance on another object. What is required is a
suitable compromise among different targets.

It is worth noting that although several distinct terms
appear in the literature such as sensor action planning
in [41], sensor selection in [25,37,38], as well as sensor-
to-task assignment in [52,53], these terms inherently
signify the same aspect of distributing resources among
observation tasks, thus belong to the second issue of this
problem class. In this paper we present the more general
concept sensor behavior assignment, which involves not
only the arrangement of operations for individual sen-
sors but also inferences about system-level tasks and
objectives to be accomplished. Actually, specification of
tasks at the system level can be considered as postulating
expected overall behaviors of the perception system as a
whole, while planning and scheduling of sensor actions
defines local behaviors residing with specific sensors.
Dynamic information associated with time-varying
utility and availability serves here as the basis for deci-
sion making about sensor behaviors.

1.4.3. Sensor coordination in a decentralized sensor
network

There are two general ways to integrate a set of sen-
sors into a sensor network. One is the centralized para-
digm, where all actions of all sensors are decided by a
central mechanism. The other alternative is to treat
sensors in the network as distributed intelligent agents
with some degree of autonomy [74]. In such a decen-
tralized architecture, bi-directional communication
between sensors is enabled, so that communication
bottlenecks possibly existing in a centralized network can
be avoided. A major research objective of decentralized
sensor management is to establish cooperative behavior
between sensors with no or little external supervision.

An interesting scenario requiring sensor coordination
is shown in Fig. 3 where five autonomous sensors co-
operatively explore an area of interest. The sensing ran-
ges of the sensors are shown as shaded circles in the
figure and Vi denotes the velocity vector of sensor i. That
is, every sensor has its own dynamics, can perceive only

part of the area and thus has its own local view of the
world. These local views can be shared by some members
of the sensor community. Intuitively, a local picture from
one sensor can be used to direct the attention of other
sensors or transfer tasks such as target tracking from one
sensor to another. An interesting question is how par-
ticipating sensors can autonomously coordinate their
movements and sensing actions, on grounds of shared
information, to develop an optimal global awareness of
the environment with parsimonious consumption of time
and resources.

1.5. Organization of the paper

Following the overview of multi-sensor management
issues given above, Section 2 of this paper presents a
general perspective on sensor management problem
solving. We will discuss principles and methodological
foundations upon which sensor management systems
may be based and then suggest a hierarchical top-down
procedure for sensor managers to solve a complex per-
ception control problem requiring comprehensive func-
tionality.

Nevertheless, there is no single mechanism capable of
accomplishing all functional activities of all levels of the
sensor management hierarchy. Although some published
papers in the open literature incorporate the term sensor
management in their titles, only one topic within this
general field is usually discussed by each individual
paper. In the following sections, we will therefore discuss
known approaches for sensor management in terms of
separate issues such as principles of sensor placement
(Section 3), observation task evaluation (Section 4),
measurement policies for information collection (Section
5), sensor resource allocation (Section 6), and sensor
behavior cooperation (Section 7). Section 8 concludes
the paper and discusses issues for future research.

We will not dwell on sensor parameter control and
sensor job (time) scheduling, since these topics seem
more relevant to single-sensor rather than multi-sensor
systems on which our paper is mainly focused.

Fig. 3. A team of mobile sensors cooperatively observing an area of

interest.
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Approaches to sensor scheduling will be briefly men-
tioned when discussing level 1 management activities in
the top-down problem solving procedure (Section 2).

2. A perspective on sensor management problem solving

2.1. Principles and methodological considerations

Inherently the purpose of sensor management is to
optimize the data fusion performance by feedback
control of sensor resources. The performance index was
called figure of merit in [7]. Its definition depends on
what one wishes to optimize, typical quantities including
probability of target detection, track/identification ac-
curacy, probability of loss-of-track, probability of sur-
vival, probability of target kill, etc. Basically, we desire
the performance index established for optimization to
transcend the diversity of sensors and to be analytically/
computationally tractable. Further, in order to avoid
potentially myopic sensor management strategies, a
prospective figure of merit should take into account
both short-term and long-term interests so as to arrive
at a good balance in final outcomes. Optimization
according to long-term objectives is critical to the de-
velopment of global improvements of the perception
process with respect to an evolving scenario. Recent
interesting research efforts to realize non-myopic sensor
management functionality can be found in [35,71,73,77].

From the viewpoint of decision theory, sensor man-
agement is a decision making task to determine the most
appropriate sensor action to perform in order to achieve
maximum utility. Such a decision problem was treated
in [41] based upon a Bayesian decision tree where dis-
tinct perception actions were assessed against each other
in terms of combined costs and benefits. Fung et al. [24]
and Musick and Malhotra [54] discussed the applica-
bility of influence diagrams as a graphical modeling
technique in support of decision analysis for the selec-
tion of sensor action. Decision making for sensor
management tends to be a sequential process in the
sense that intermediate decisions have to be made while
a dynamic situation evolves and where penalties and
awards of decisions made are only revealed over time. It
has been recognized that in many cases sensor man-
agement can be modeled as a Markov decision problem
subject to uncertainty, solutions to which were studied
by Castanon [14,15] based on stochastic dynamic pro-
gramming. Although dynamic programming offers a
mathematically tractable structure to find the optimum
sequence of decisions, it is likely to suffer from combi-
natorial explosion when solving practical problems of
even moderate size.

By viewing sensors as constrained communication
channels [33], sensor management is intended to control
the functions of such channels to provide the maximum

quantity of useful information within a limited time
period. That is to say, we would like to optimize the
information passed through sensor channels by proper
arrangement of their operations. Since uncertainty
about the environment is reduced by means of a mea-
surement, each sensor action has the potential merit of
contributing information as it is performed. The key
point here is how to assess the relative merits of candi-
date sensing plans in terms of information gained or
uncertainty reduced. One direct means serving this
purpose is to borrow the concept of entropy from in-
formation theory as a measure of the uncertainty about
the state of the environment. In this way, we can
quantify the amount of information gained due to ac-
complishment of a sensing plan as either entropy change
(in Shannon’s definition) or cross-entropy (in Kullback–
Leibler’s definition), see Section 6.2.

In recent years, entropy-based information metrics
have been adopted in many studies of sensor manage-
ment in various scenarios, including: controlling a single
sensor to track multiple targets [33], sensor-target pair-
ings in multi-sensor and multi-target tracking [19,61,62],
search area determination [39], and search versus track
trade-offs in a simulated environment [49]. However, all
these papers consider only the amount of informa-
tion rather than the value of information. They aim to
maximize the quantity of information provided by sen-
sors without taking into account whether the informa-
tion derived is useful or interesting. Occasionally, this
might lead to directing sensor attention to be paid to
non-significant aspects of the environment in order to
reach a superficial maximum of information attainment.
Further research is thus needed to develop more com-
prehensive information measures, in order to drive
sensor management towards optimization in terms of
the utility of obtained information with respect to mis-
sion goals rather than merely the gained amount of in-
formation [3]. Regarding recent efforts in this direction
we note the attempts by [32,48], in which goal lattices
were employed to prioritize observation tasks in terms
of their mission-accomplishing value rather than the
quantity of obtained information.

As sensor management plays the role of feedback
controlling sensor resources, the development of opti-
mal control laws and strategies suitable for real appli-
cations is a challenging problem. Pre-designing a
management algorithm ensuring best control behavior
at all times is desirable but can be extremely difficult due
to high uncertainty and complexity of the environment
to be sensed. A perhaps more feasible way of achieving
optimality of sensor management performance is to in-
corporate machine learning techniques to enable sensor
managers to learn from experience. In principle, there
are two general classes of machine learning useful to
arrive at optimal management strategies, namely, off-
line learning and on-line learning. Off-line learning, as
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practiced in [40,65,66], attempts to generalize valuable
control (management) knowledge from a sufficient
amount of examples. It is actually a form of inductive
learning, which desires a comprehensive training dat-
abase of scenarios covering a wide range of situations.
Using a database with only a small number of scenarios
could result in a sensor manager that will be effective in
some cases but ineffective in others. On the other hand,
on-line learning represents the idea of the sensor man-
ager directly learning to manage sensing assets through
its interactions with the environment. This mode of
learning is more difficult to realize than off-line learning
in that an assessment signal has to be created for every
sensing action conducted, in order for management
strategies to be immediately updated upon completion
of a perception. In particular, reinforcement learning
techniques [8,47] were found effective for on-line learn-
ing of sensor search strategies for static targets. Gener-
ally speaking, despite some preliminary work done (as
mentioned above), machine learning for sensor man-
agement is still an under-researched area and much
room remains for further study in this direction.

In addition, in the authors’ view, behavior-based ar-
tificial intelligence [13] could be a useful asset in infor-
mation fusion process refinement. As it is known that
behavior-based systems [2] exhibit strong robustness and
flexibility against a dynamically changing world, incor-
porating reactive skills in sensor management would
enable the perception system to have reflexes for coping
with eventual deviations and to recover instantaneously
from unexpected events. In realizing this purpose, a
deliberative-reactive architecture needs to be established
in the process refinement level for integration of abstract
planning and behavior-based reactive control in a co-
herent manner.

2.2. Top-down problem solving by a sensor manager

As we know, sensor management is a complex pro-
cedure intended to guide the information collection
process with respect to a broad range of activities. It is
not realistic for a sensor manager to solve its complete
problem by a single mechanism, because the huge and
perplexing space of possible alternatives tends to make
this goal infeasible in real time. On the other hand,
problem solving for sensor management can be made
much easier and more effective by partitioning tasks into
activities along different layers. Thus, a sensor manager
might follow a top-down policy and proceed step by step
from meta-issues to detailed reasoning. The following
five activity levels would be characteristic of a sensor
management system having a comprehensive function-
ality along these lines:

Level 4 (mission planning). This is the highest level of
sensor management responsible for deciding system-

level tasks based on information generated internally or
externally. It concerns meta-sensor management issues
such as:

• Which services to perform (e.g. search, target track-
ing or target updating)?

• Which accuracy level (e.g. desirable error covariance)
to aim at?

• How frequently to measure?
• On which area of the environment to focus?
• Which targets to select?
• How to rank the importance or priorities of the re-

quired tasks?

Mission planning plays the role of indirectly managing
the behavior of the sensor system but does not deal with
implementation details. Meta reasoning is required here,
to be conducted according to results from other data
fusion functions. At the same time it must also provide
access to human operators, enabling them to impose
their special requests when necessary.

Level 3 (resource deployment). This management level
is needed for surveillance purposes in a dynamic, un-
certain environment. In such cases, new extra sensing
devices have to be deployed whenever necessary in order
to upgrade sensing capabilities or to catch up with quick
environment changes. This involves proactive or reac-
tive planning of sensor assets to be deployed in a sce-
nario. More concretely, the level of resource deployment
is responsible for answering questions such as:

• When are extra sensors required and how many?
• Where to place the newly required sensors?

Level 2 (resource planning). The purpose of this level
is to propose requests on individual sensors by deciding
what jobs/actions are expected to be performed by them.
Typical activities on this level are:

• sensor selection for multi-sensor multi-target track-
ing;

• sensor allocation for simultaneous classification of
numerous objects;

• sensor cueing (sensor handing over, target acquisition
by another aiding sensor);

• movement planning for mobile sensors and plat-
forms;

• negotiation and cooperation between sensors in a de-
centralized sensor network.

Level 1 (sensor scheduling). This level has the role to
set up a timeline of commands for every sensor to carry
out based on sensor availability and capabilities, given
job/action requests from level 2. Each sensor is assigned
with a detailed schedule on what to do in each time
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interval. This is a non-trivial problem considering the
distinct characteristics of jobs/actions to be performed,
such as hard or fluid deadlines, as well as varying job/
action priorities. As important solutions to scheduling
we refer to such methods as brick packing [7], best first
[7], genetic search [17], OGUPSA [78], and the enhanced
version of OGUPSA [51] with its usage demonstrated in
a sensor management simulation [50].

Level 0 (sensor control). At the lowest location in the
hierarchy, this level is in charge of controlling every
degree of freedom of the sensor under a given command.
It involves definition of all parameters that specify the
details for realization of that command. For example, a
multi-functional radar accepts general commands such
as search, target tracking or target updating. Each of
these command categories, in turn, is equipped with a
set of degrees of freedom. It is the task of the sensor
control on level 0 to determine the concrete sensor pa-
rameters appropriate for carrying out commands sub-
mitted by sensor scheduling, in order to optimize the
performance of the overall system.

The possible layers of sensor management discussed
above are illustrated in Fig. 4, where typical issues are
marked beside their corresponding levels. It should be
noted, however, that the purpose of this discussion on
levels of sensor management is intended only for better
understanding and more convenient description of the
general policy of top-down problem solving by a sensor
manager. It is not the intention of this paper to give a
generic prescription for system design, recognizing that
functional requirements on sensor management are al-
ways problem dependent.

We note that this five-layered sensor management
procedure does not exclude the use of feedback mech-

anisms. Indeed, situation awareness explicitly delivered
to level four represents all feedback information from
data fusion. Although not directly indicated in Fig. 4,
we understand that required fusion results should be
forwarded to other levels of the top-down procedure to
support control and decision making therein.

This top-down problem solving procedure for sensor
management is a kind of process model, describing the
sequence of steps to be performed. Therefore it has only
loose correspondence with the JDL function model. A
set of resource management levels that more closely
correspond to the JDL data fusion levels has been pre-
sented in [67], as an extension of the data fusion/re-
source management duality [11].

3. Principles of sensor placement

3.1. General description

As stated in the problem description in Section 1.4.1,
sensor placement is viewed as a parameter optimiza-
tion problem possibly subject to constraints. Two basic
points are of concern here, namely, the goal function
for placement and the strategy to find optimal or near-
optimal solutions. In order to keep pace with environ-
ment changes, e.g., the movements of targets, the
optimization algorithms adopted must not impose a
high computational load. Three optimization algorithms
that have been employed for real-time sensor placement
are gradient descent used in [57,58], greedy local search in
[77], and simulated annealing in [59]. Worth noting is the
fact that both greedy search and simulated annealing
have the sometimes-important merit of requiring no
derivatives of the objective function in their search
procedures. Various optimization criteria for sensor
placement have been suggested. Generally they can be
classified into short-term and long-term strategies de-
pending on whether future performance is taken into
account in the objective function.

Short-term sensor placement seeks to optimize some
performance measure of the fusion system at the current
stage but does not consider its future behavior. In view
of this, sensor positions are determined simply accord-
ing to one of the following criteria:

• maximizing the probability of detection of the target
[57,58],

• minimizing the standard deviation in the target esti-
mates [58],

• maximizing the figure of merit for the sensor net [59].

Long-term sensor placement seeks to prolong the usage
of deployed sensor(s) by taking care of possible future
paths. Such an attempt complies with the general prin-
ciple that sensor management should ‘‘value long-termFig. 4. Top-down problem solving by a sensor manager.
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goals of survival and success, not just accuracy and
identity’’ [54]. Two examples of long-term placement are
described in [34,35,71] and [77], respectively. They both
aim to find sensor locations such that the expected
variance of the target state will be kept below a pre-
scribed limit for as many consecutive time steps as
possible after the present one. However, they differ in
the state estimation methods used. The work by the FOI
group applies Kalman filtering to identify target states
so that it is computationally more efficient. On the other
hand, the method by Williams may be more generally
applicable due to the employment of particle filtering
methodology.

It bears mentioning that sensor placement in this
context only refers to the issue of determining the po-
sitions where sensors are initially located. It does not
involve planning the movements of mobile sensors after
their deployment, which we believe is a kind of sensor
behavior assignment rather than sensor deployment. By
the same token, motion planning for movable sensors
should be a function belonging to level two (resource
planning) of the top-down procedure for sensor man-
agement proposed in Section 2.2. This is an under-
addressed topic but challenging for future research.

3.2. Signal filtering related to sensor placement

In target tracking applications, the sensor placement
algorithm is inherently related to the filtering algorithm
used for state estimation. The most commonly used is
the Kalman filter, which assumes linear system models
with additive Gaussian noise. A more recently investi-
gated alternative is the particle filter [27] employed by
[58,77] for sensor placement in submarine tracking. The
latter has the advantage of being able to handle any
functional non-linearity and any distribution of system
or measurement noise. Despite seeming quite different,
both filtering approaches can be formulated within the
general framework of recursive Bayesian estimation.

The Bayesian signal filter consists of essentially two
stages: prediction and update, in order to construct the
probability density function (pdf) of the state based on
all available information. The prediction stage uses the
system model to make prediction of the state at the next
time step, and later the predicted state pdf is modified in
the update stage using the newly acquired data from
measurement. The update operation is an application of
Bayes’ theorem, which provides a mechanism to update
prior knowledge in light of new evidence.

The goal is to derive the pdf of the current state xk
given the full set of measurements Dk ¼ fy1; . . . ; ykg.
Suppose the required pdf pðxk�1 jDk�1Þ of the preceding
time step k � 1 is available. Then depending on the
system model the prior pdf of the state at time k can be
obtained by

pðxk jDk�1Þ ¼
Z
pðxk jxk�1Þpðxk�1 jDk�1Þdxk�1; ð1Þ

where pðxk jxk�1Þ is the probabilistic model of the state
evolution, defined by the system equation and known
statistics of the system noise. Given a measurement
at time k, the predicted prior pdf may be updated via
Bayes’ rule as:

pðxk jDkÞ ¼
pðyk jxkÞpðxk jDk�1ÞR
pðyk jxkÞpðxk jDk�1Þdxk

: ð2Þ

Likewise, pðyk jxkÞ is another probabilistic model defined
by the measurement equation and the known statistics
of the measurement noise.

The recurrence relations (1) and (2) constitute the
formal solution to the recursive Bayesian estimation
problem. Unfortunately, analytic expressions of con-
crete results are only available under certain restrictions
of the system and measurement models. For the linear-
Gaussian estimation problems, the required pdf remains
Gaussian at each iteration of the filter, and the Kalman
filter can be used as a rigorous, explicitly formulated
solution to the Eqs. (1) and (2) by propagating and
updating the mean and variance of the state distribu-
tion. In other cases with non-linear or non-Gaussian
nature, however, there is no general analytic (closed
form) expression available for the required pdf.

Particle filtering is indeed a functional approximate
implementation of the general recursive Bayesian filter
utilizing a random sample based representation of the
state pdf. Given a set of independent random samples
fxk�1ðiÞ : i ¼ 1; . . . ;Ng drawn from the pdf pðxk�1 jDk�1Þ,
the particle filter is a mechanism of propagating and
updating these samples to get a set of new values
fxkðiÞ : i ¼ 1; . . . ;Ng which are approximately distrib-
uted as independent random samples of pðxk jDkÞ. In
view of this, the equations of prediction and update in
the original Bayesian filter need to be approximated
accordingly to comply with the sample representation
requirement. The basic strategies for prediction and
update used in the standard form of particle filtering are
given in the following.

Prediction. Considering the prior pdf pðxk jDk�1Þ to be
approximated as

pðxk jDk�1Þ ¼
Z
pðxk jxk�1Þpðxk�1 jDk�1Þdxk�1

� N�1
XN
i¼1

pðxk jxk�1Þ ¼ xk�1ðiÞ ð3Þ

its required sample set fx	kðiÞ : i ¼ 1; . . . ;N 	g can be
generated by repeating N 	 times of the procedure below.

(a) uniformly resample with replacement from the set
of values fxk�1ðiÞ : i ¼ 1; . . . ;Ng;
(b) pass the resampled value through the systemmodel
to produce a sample x	kðiÞ from the prior at time step k.
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Note that N 	 is not necessarily greater than N.
Update. On receipt of the measurement yk, evaluate a

normalized weight, qi, for each sample from the prior
using the measurement model

qi ¼
pðyk jx	kðiÞÞPN	

j¼1 pðyk jx	kðjÞÞ
: ð4Þ

This defines a discrete distribution over fx	kðiÞ : i ¼ 1;
. . . ;N 	g with probability mass qi associated with sample
x	kðiÞ. Now resample N times from the discrete distri-
bution to produce samples fxkðiÞ : i ¼ 1; . . . ;Ng such
that ProbfxkðjÞ ¼ x	kðiÞg ¼ qi. In this way we obtain a set
of samples that tend in distribution to the posterior pdf
pðxk jDkÞ as N tends to infinity. The justification for the
update phase of the particle filter was given in [64],
where it was proved that the Bayesian theorem can be
implemented as a weighted bootstrap.

A major drawback associated with the particle filter is
its heavy computational demand due to the necessity of
simulating the behavior of a large cloud of particles. Only
recently with the availability of high speed computers
have applications of this methodology become possible.
On the other hand, many techniques have been proposed
to improve the computational performance and/or accu-
racy of the particle filter method, one interesting among
them being the Rao-Blackwellised version [20].

4. Observation task evaluation

Specification of importance (priorities) of different
observation tasks, based on the current tactical situa-
tion, is significant to adapt sensor operations to chang-
ing environments. Information about task priorities can
be very useful in scheduling sensor actions and for ne-
gotiation among sensors in a decentralized architecture.

4.1. Evaluation based on fuzzy decision trees

Molina Lopez et al. [53] developed a symbolic rea-
soning process to infer numeric evaluations of defense

surveillance tasks using fuzzy decision trees. Each node
in the decision tree is a linguistic variable with its pos-
sible values being fuzzy subsets in the universe of dis-
course for its corresponding concept, and the relations
between nodes are defined by fuzzy if–then rules.
Starting from information provided by situation assess-
ment and/or other data fusion processes, the inference
engine proceeds through the tree by generating inter-
mediate conclusions, until the task priority associated
with the root node has been drawn. A tool based on
parser generator technology was described in [69] for
creating a fuzzy decision tree from rules (or grammar
clauses).

A decision tree presented in [53] for search task pri-
ority is redrawn in Fig. 5 with small simplification. The
root node of this tree is search task priority, which is
directly affected by the nodes: Vulnerability of Sector,
Danger of Sector, and Targets in the Last Search. Fur-
ther, among the three concepts directly related to the
root node, there are two intermediate conclusions (vul-
nerability and danger) whose values are to be deduced
from leaf nodes.

Five fuzzy labels: very low, low, medium, high, and
very high are used to characterize Vulnerability of Sector
and Danger of Sector, while the concept Targets in the
Last Search corresponds to another three fuzzy labels:
normal, many, and too many. Taking into account every
AND combination of these fuzzy labels, a rule set
consisting of 5
 5
 3 ¼ 75 linguistic rules has been
available to describe the dependence of the search task
priority on the three nodes directly related to it. A rule
in this rule base is of the type:

Ri : IFðvulnerability ¼ Ai1Þ and ðdanger ¼ Ai2Þ
and ðtargets ¼ Ai3Þ THEN ðPriority ¼ BiÞ

ði ¼ 1; 2; . . . ; 75Þ:

In the above example, Ai1, Ai2 are labels from {very low,
low, medium, high, very high}and Ai3 one label from
{normal, many, too many},and Bi is a fuzzy set for search
task priority with its membership function Bi (y) defined

Fig. 5. A decision tree to determine the value of search task priority (modified from [53]).
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on the domain of priority degrees Y. Under the Mam-
dani model of fuzzy reasoning the output fuzzy set Fi,
inferred by the ith rule is

FiðyÞ ¼ si ^ BiðyÞ; ð5Þ

where si denotes the firing strength of the ith rule, de-
fined for given crisp values of vulnerability, danger, and
targets by

si ¼ Ai1ðvulnerabilityÞ ^ Ai2ðdangerÞ ^ Ai3ðtargetsÞ: ð6Þ

The output fuzzy sets Fi, inferred by the individual
rules are then aggregated by an OR aggregating opera-
tor resulting in an overall output fuzzy set F for search
task priority, where

F ðyÞ ¼ _
75

i¼1
FiðyÞ ¼ _

75

i¼1
½si ^ BiðyÞ�: ð7Þ

Finally, the crisp value of search task priority is ob-
tained by defuzzification of the output fuzzy set F de-
riving a crisp representation of it. Usually we have two
methods available for implementing this purpose. The
first is calculation with the Center of Area (COA)
method, i.e.,

yCOA ¼
Z
Y
yF ðyÞdy=

Z
Y
F ðyÞdy: ð8Þ

The other alternative is to define the value of priority as
the Mean of Maxima of the membership function F ðyÞ.
That is

yMOM ¼
X
yj2G

yj=CardðGÞ; ð9Þ

where G is a subset of Y consisting of those elements in
the domain which have maximum value of F ðyÞ thus

G ¼ fy 2 Y jF ðyÞ ¼ max
y
F ðyÞg: ð10Þ

At this point we have outlined all the necessary steps
to derive the priority value based on the three nodes
directly related to the root node. The intermediate
conclusions like Vulnerability of Sector and Danger of
Sector in the decision tree can be inferred from their
respective leaf nodes using the same procedure as above.

4.2. Evaluation using neural networks

Komorniczak and Pietrasinki [40] proposed to assign
target priorities using a neural network, which accepts
features of detected targets as its inputs and offers im-
portance levels of these targets as its outputs. Given
sufficient learning examples, the neural network can be
built via offline training based on a learning algorithm
such as back propagation. The authors utilized a rather
simple neural network for this purpose as shown in
Fig. 6, where each input is multiplied with the corre-
sponding weight Wi and these products are summed up
yielding a net linear output u. The activation function to
compute target importance levels is of the form:

f ðuÞ ¼ 1=ð1þ expð�buÞÞ ð11Þ

with b being a parameter determining the slope of the
function.

However, to create the required training set, an ex-
perienced human operator is needed to evaluate be-
forehand target importance levels with respect to a large
number of various situations. An issue could be whether
it is possible or convenient to collect sufficient examples
for the network training.

In addition, in our view, identifying significant fea-
tures as inputs before neural network modeling could be
advantageous in order to filter out irrelevant features,
alleviating computational demands and reducing the
risk of overfitting in data-based training. This motivates
including the dashed block feature selection in Fig. 6 as a
potentially desirable component, although this issue was
not addressed in the cited paper.

4.3. Evaluation based on goal lattices

A goal-lattice-based methodology was addressed in
[32,48] with the purpose of quantifying the relative
contribution of actual observation tasks in the context
of a complex mission. In doing this, one has to identify
all goals relevant to that mission and then define an
ordering relation among them, leading to the construc-
tion of a partially ordered set. The ordering relationship
used is a precedence ordering induced by the simple

Fig. 6. Neural network for (target) priority assignment.
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statement ‘‘this goal is necessary in order for the other
goal to be satisfied’’. The established partially ordered
set can be represented as a lattice, allowing for straight-
forward apportionment of goal values from higher rel-
atively abstract goals to lower increasingly concrete
goals. At each layer of the lattice, each goal gets a value
as the sum of the values received from the (higher) goals
from which it is included. On the other hand, a goal also
distributes its value among the (lower) goals that it in-
cludes. In particular, the bottom layer of the lattice
comprises the nodes for actual observation tasks with
the apportioned values reflecting their relative impor-
tance to accomplish the mission. A web browser im-
plementation of a goal lattice constructor has recently
been reported in [30].

An illustrative example was presented in [48] applying
the goal lattice approach to an Air Force mission in an
‘‘in harm’s way’’ scenario. Seventeen goals relevant to
the ‘‘in harm’s way’’ situation were identified with as-
sociated interrelations among them as shown in Table 1.
The resulting goal lattice is depicted in Fig. 7, where the
value of each goal is uniformly distributed among its
included goals presuming that all included goals con-
tribute equally to their including goal. The bottom layer
corresponds to three fundamental observation tasks:
tracking, identifying, and searching with importance
degrees of 0.36, 0.46, and 0.18, respectively. As a further
aside, the 17 goals listed in Table 1 constitute a subset of
applicable Air Force Doctrine goals. In publications of
the United States Air Force, totally 90 Air Force mis-
sion goals were defined within the six mission areas
Offensive Counterair, Defensive Counterair, Air Inter-
diction, Battlefield Air Interdiction, Close Air Support,
and Suppression of Enemy Air Defenses. A global goal

lattice for the whole set of mission goals was also es-
tablished in [48].

One major difficulty involved with the goal lattice
approach lies in the distribution of goal values. A uni-
form distribution as shown in Fig. 7 is easy to imple-
ment but may be a gross distortion of the true nature of
the underlying problem, since it is likely that some in-
cluded goals contribute more or are more important for
the accomplishment of the including goal than others.
Weights of arcs in the lattice reflect the preferences of
some goals over others and these preferences can change
between different phases of a mission. It is doubtful
whether it is realistic for an operator to define an exact
distribution function for every goal and in every mission
stage, particularly in real-time. Perhaps (fuzzy) expert
system technology could be incorporated to automate
the process of determining arc weights during a mission,
in response to changes of information provided by data
fusion. However, the issue of how to define distribution
functions for individual goals was not addressed by the
authors.

5. Measurement policies for information collection

What measurement policies to follow for the collec-
tion of adequate information is an issue which needs to
be taken into account by the sensor manager, involving
the type (pattern) of measurement to be used, the fre-
quency of observation on targets, the strategy of target
detection by sensors, etc. It was suggested in [31] that the
proper measurement type may be determined on the
basis of information requests posed by mission goals or
human operators. The term information instantiation

Table 1

‘‘In Harm’s Way’’ goals

Goal

number

Goal Included

goals

1 To obtain and maintain air superiority 2, 3, 4, 5

2 To minimize losses 6, 7, 8

3 To minimize personnel losses 6, 7, 8

4 To minimize weapons expenditure 6, 8

5 To seize the element of surprise 8

6 To avoid own detection 9, 10

7 To minimize fuel usage 10, 11

8 To minimize the uncertainty about the

environment

12, 13

9 To navigate 15, 16

10 To avoid threats 15, 16

11 To route plan 15, 17

12 To maintain currency of the enemy order of

battle

14, 16

13 To assess state of the enemy’s readiness 14

14 To collect intelligence 15, 16, 17

15 To track all detected targets

16 To identify targets

17 To search for enemy targets

Fig. 7. Lattice of the ‘‘In Harm’s Way Goals’’ (cited from [48]).
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was used to signify a collection of methods, which map
information needs to measurement functions. The
problem of sensor-target detection is another significant
topic related to measurement policies in the context of
target searching. Inherently, a strategy to detect an un-
known target can be viewed as a measurement se-
quencing process under uncertainty, which has been
addressed by some researchers using stochastic dynamic
programming and reinforcement learning (RL) tech-
niques, see [8,14,47]. In the following, we will detail
sensor measurement policies in terms of measurement
pattern, target observation frequency, and target detec-
tion strategy, respectively.

5.1. Which measurement pattern to use

In the case of search, the characteristics of various
measurement patterns include high- or low-bearing
resolution, high- or low-range resolution, direct velocity
measurement (Doppler), or any combination of these
capabilities. A general idea proposed by [31] is to de-
termine the measurement pattern in two steps. The first
step is to down-select from all available measurement
options that can be performed by the sensor system to
the admissible ones, subject to constraints. Then a local
optimization criterion can be applied in the second step
to make a choice from the set of admissible solutions,
maximizing the incidental information value of the
pattern to be performed.

In response to requests of object identification, table
look-up was suggested in [31] for deciding what pattern
of measurement will enable the desired identification.
For instance, if only the type of target is needed, it is
sufficient to use electronic support measures (ESM) to
observe signals emanating from the platform and then
make classification of the target in terms of the elec-
tronic order of battle (EOB). Facing a more detailed
task of hull-to-emitter correlation, however, we would
have to arrange a longer observation period due to
certain characteristics of ESM sensors. Such prior
knowledge along with numerous identification tech-
niques, their applicability, and operational constraints
have to be stored in a predetermined list for real-time
usage during decision making.

5.2. When to observe a tracked target

When to make observations is an important issue af-
fecting the accuracy of target tracking. Since the uncer-
tainty of the target position is increasing in the absence of
measurements, one has to update the track before the
development of uncertainty exceeds an acceptance limit.
Assuming the use of a Kalman filter as the tool for state
estimation, the error covariance matrix can be adopted
as an indicator of the state variance. The problem is

therefore to find out the latest time for the next mea-
surement, which still results in an updated covariance
matrix falling within the specified constraint. According
to [31], the maximum number of intervals between two
successive measurements can be derived as follows.

The starting point of the analysis is related to the
error covariance prediction equation

P ðk jk � 1Þ ¼ F ðk � 1ÞP ðk � 1 jk � 1ÞF ðk � 1ÞT

þ Qðk � 1Þ ð12Þ
and the error covariance update equation

P ðk jkÞ ¼ I½ � KðkÞHðkÞ� � P ðk jk � 1Þ; ð13Þ
where

KðkÞ ¼ Pðk jk � 1ÞHðkÞT HðkÞP ðk jk
h

� 1ÞHðkÞT þ RðkÞ
i�1

ð14Þ
with F ðkÞ, HðkÞ denoting the state evolving matrix and
the system observation matrix, respectively. QðkÞ is the
system noise covariance and RðkÞ the measurement noise
covariance.

Providing no measurement was performed at time
k � 1, the observation matrix Hðk � 1Þ becomes null so
that we have

P ðk � 1 jk � 1Þ ¼ P ðk � 1 jk � 2Þ ð15Þ
and

Pðk jk � 1Þ ¼ F ðk � 1ÞPðk � 1 jk � 2ÞF ðk � 1ÞT þ Qðk � 1Þ:
ð16Þ

Similarly to Eq. (12), the predicted error covariance at
time k � 1 can be written as

P ðk � 1 jk � 2Þ ¼ F ðk � 2ÞP ðk � 2 jk � 2ÞF ðk � 2ÞT

þ Qðk � 2Þ: ð17Þ
Substituting (17) into (16) results in

P ðk jk � 1Þ ¼ F ðk � 1ÞF ðk � 2ÞP ðk � 2 jk � 2Þ

 F ðk � 2ÞTF ðk � 1ÞT þ F ðk � 1ÞQðk � 2Þ

 F ðk � 1ÞT þ Qðk � 1Þ: ð18Þ

Supposing now that nt intervals have been skipped
without observation until the time step k, we can re-
process Eq. (18) backwards to step k � nt, getting the
following recursive expression

P ðk jk � 1Þ ¼ P
nt

j¼1
F ðk

�
� jÞ

�
P ðk � nt jk � ntÞ


 P
nt

j¼1
F ðk

�
� nt � jþ 1ÞT

�

þ
Xnt�1

j¼1

P
nt�j

m¼1
F ðk

��
� mÞ

�
Qðk � nt þ j� 1Þ


 P
nt�j

m¼1
F ðk

�
� nt þ jþ m� 1ÞT

��
þ Qðk � 1Þ: ð19Þ
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Given that the upper limit of the updated error covari-
ance is known, the allowed maximum covariance before
update is derived from

P ðk jkÞ�1 ¼ P ðk jk � 1Þ�1 þ HðkÞTRðkÞ�1HðkÞ: ð20Þ
Finally, having obtained the allowed maximum Pðk jk�
1Þ and the last updated error covariance matrix P ðk�
nt jk � ntÞ, we can acquire the maximum value of nt
from Eq. (19).

In our opinion, identification of the maximum time
between successive track updates while maintaining the
desired uncertainty level is the most valuable contribu-
tion of the paper [31]. The connotation is that obser-
vation of the target at every time step is not a
compelling demand. The question of when it is neces-
sary to make the next measurement is answered by Eq.
(19). This provides a rigorous and useful guidance for
reduction of sensor resources usage, which is of partic-
ular significance for target rich but sensor poor appli-
cations.

5.3. In what sequence to detect an unknown target

In the target detection problem, one maintains a vec-
tor of probability estimates: ½p1ðtÞ; p2ðtÞ; . . . ; pkðtÞ; . . .�
for all cells in the frame, with pkðtÞ denoting the con-
ditional probability of a target being located in cell k
given all the previous measurements made in that cell.
At every stage t a noisy measurement is made on a
certain cell k reporting whether detection was made or
not, and the prior probability estimate pkðt � 1Þ for cell
k is thereby updated based on Bayes’ theorem by

pkðtÞ ¼

ð1� PMDÞ � pkðt � 1Þ
ð1� PMDÞ � pkðt � 1Þ þ PFA � ð1� pkðt � 1ÞÞ ;

if reporting detection;

PMD � pkðt � 1Þ
PMD � pkðt � 1Þ þ ð1� PFAÞ � ð1� pkðt � 1ÞÞ ;

if reporting no detection;

8>>>>>>><
>>>>>>>:

ð21Þ

where PFA ¼ P ðfalse alarmÞ ¼ P ðdetect jabsentÞ; PMD ¼
P ðmissed detectionÞ ¼ P ðnot detect jpresentÞ

Combined with this problem we need a target detec-
tion strategy, which determines the sequence of cells to
measure such that the sensor(s) can focus on a proper
area in every stage to get the best final result. So far the
following three strategies have been available to suit this
purpose.

1. Direct detection. This is an uninformed detection pat-
tern, which advances through the whole frame in a
predetermined cell sequence. Upon completing the
frame, the procedure of measurements is repeated
again in the same order as the previous one. In order

to ensure that equal attention is dedicated to each
cell, the total number of measurements is usually cho-
sen to be a multiple of the number of cells in the
frame so that incomplete frames of measurements
are obviated. Indeed, because of its low efficiency this
mode of detection is only used as a default mode in
some field systems.

2. Index rule detection. This strategy chooses the most
likely cell (i.e. the cell with the highest probability es-
timate) to be measured at every stage. At the begin-
ning, all cells are assumed to be equally probable,
therefore a random cell is selected for measurement
as an initialization of the detection procedure. Later
with probability updates per Eq. (21), measurements
are expected to gradually congregate on the target cell
whose probability estimate becomes dominating over
others’, due to repeated sensor reports of target detec-
tion there. Castanon [14] analyzed this detection
strategy using concepts from stochastic dynamic pro-
gramming and concluded that the probability to find
the target is maximized by a simple index rule under
the condition of symmetric measurement densities.
Since available information is made use of by the in-
dex rule, the time required to correctly locate a target
is shortened in comparison with direct detection.

3. RL detection. As a machine learning technique, rein-
forcement learning (RL) attempts to arrive at optimal
system performance by trial and error through inter-
actions with the environment. Certainly there may be
several possibilities of using RL techniques to learn to
conduct target detection tasks. The scheme proposed
in [47] is to employ an RL-detection network for each
cell to evaluate the reward of making a measurement
there. The inputs to the one-cell network include the
probability estimate pkðtÞ for the cell and the number
of measurements that have been performed therein.
Based on the network’s outputs this strategy selects
the cell with the largest predicted reward to receive
the next measurement. At the beginning, the net-
work’s weights are set randomly, so that their pre-
dicted reward values are incorrect. But upon taking
a new measurement, one can acquire an updated
probability distribution of the target location using
the Bayesian evidence rule and then calculate the ex-
pected reward value of this sensory action in terms of
a predefined metric. The difference between the ex-
pected reward value and that, which is predicted by
the network, provides useful information for correct-
ing the weights of the network by means of a back-
propagation algorithm.

6. Sensor resource allocation

Given that the tasks of observation have been pos-
tulated at the system level, the sensor manager should be
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able to distribute available sensing resources across
them to best satisfy the information requests as a whole.
Frequently, an observation task cannot be accomplished
by a single sensor and thus a sensor combination must
be applied to it, giving rise to the sensor selection
problem. In other cases like multiple object classifica-
tion, we may need dynamic allocation of sensors to
achieve best identity accuracy after a certain number of
measurement stages. In the sequel, existing approaches
to this subject are summarized from a viewpoint of
methodology.

6.1. Search-based approaches to sensor selection

The selection of a sensor subset to be applied to a
given task can be considered as a search problem in
combinatorial space. The goal is to find the most ap-
propriate solution among all possible sensor combina-
tions. Hence a key point involved is how to evaluate
trials in the problem space.

Sensors’ suitability was assessed in [25] using fuzzy set
theory to establish a sensor preference graph, based on
which the best sensor subset for a given task can be
explored. Molina Lopez et al. [52] introduced some
heuristics to be associated with nodes of the search tree
for sensor subset evaluation in terms of sensor load and
sensor suitability. The sensor load constitutes an esti-
mate of the sensor resources required to accomplish a
task, while the sensor’s suitability to perform a task is
defined as a function of the necessity of fulfilling the task
and the ability of the sensor to perform it. The objective
function for a search algorithm should be constructed in
a proper manner to reflect a good balance between the
two factors.

In multi-sensor multi-target tracking applications, the
problem of sensor selection simply means to decide
suitable sensor combinations to be applied to measure-
ment of different targets. Application of all sensors to
all targets is usually not possible due to constraints
in sensing and/or computational resources. Kalandros
and Pao [37] proposed the so-called covariance control
strategy for the purpose of maintaining a desired co-
variance level on each target while reducing system re-
source requirements. The covariance controller, as
shown in Fig. 8, is responsible for determining a sensor
combination for each target to meet the desired co-
variance level, while the sensor scheduler prioritizes the
sensing requests from the covariance controller and is-
sues commands regarding which actions are to be exe-
cuted during every scanning interval.

Assume that the target and its measurements can be
described by the equations:

xðkÞ ¼ F ðk � 1Þxðk � 1Þ þ wðk � 1Þ; ð22Þ

yjðkÞ ¼ HjðkÞxðkÞ þ vjðkÞ: ð23Þ

In the above expression xðkÞ is the current state of the
target; F ðkÞ, HjðkÞ are system matrices; and yjðkÞ de-
notes the measurements of the target from the jth sensor
in the sensor combination ;i. wðkÞ and vjðkÞ represent
the system noise and measurement noise, respectively,
both of which are assumed to have zero-mean, white,
Gaussian probability distributions. Based on the above
assumptions, the sequential Kalman filter performs a
separate filtering for each sensor in the combination and
then propagates its estimate to the next filter. Therefore
we write:

x̂x1ðk jkÞ ¼ F ðk � 1Þx̂xðk � 1 jk � 1Þ þ K1ðkÞðy1ðkÞ � H1ðkÞ

 F ðk � 1Þx̂xðk � 1 jk � 1ÞÞ;

x̂xjðk jkÞ ¼ x̂xj�1ðk jkÞ þ KjðkÞðyjðkÞ � HjðkÞx̂xj�1ðk jkÞÞ ð24Þ
j ¼ 2; . . . ; k;ik;

x̂xðk jkÞ ¼ x̂xkUikðk jkÞ;

where

P ðk jk � 1Þ ¼ F ðk � 1ÞP ðk � 1 jk � 1ÞF ðk � 1ÞT þ Qðk � 1Þ
and

K1ðkÞ ¼ P ðk jk � 1ÞH1ðkÞT½H1ðkÞPðk jk � 1ÞH1ðkÞT

þ R1ðkÞ��1
;

KjðkÞ ¼ Pj�1ðk jkÞHjðkÞT½HjðkÞPj�1ðk jkÞHjðkÞT þ RjðkÞ��1

j ¼ 2; . . . ; k;ik
ð25Þ

with QðkÞ and RjðkÞ denoting the system noise covari-
ance and the measurement noise covariance of the jth
sensor (in the sensor combination), respectively.

The updating of state covariance for each filter is
performed by

P1ðk jkÞ ¼ ðI � K1ðkÞH1ðkÞÞPðk jk � 1Þ;
Pjðk jkÞ ¼ ðI � KjðkÞHjðkÞÞPj�1ðk jkÞ j ¼ 2; . . . ; k;ik;
Pðk jkÞ ¼ PkUikðk jkÞ:

ð26Þ
Alternatively, the covariance of state estimates can be
calculated in a single step [4] by:

Fig. 8. Covariance control for sensor selection (modified from [37]).

N. Xiong, P. Svensson / Information Fusion 3 (2002) 163–186 177



P ðk jkÞ�1 ¼ P ðk jk � 1Þ�1 þ
Xk;ik
j¼1

HjðkÞTRjðkÞ�1HjðkÞ:

ð27Þ

Defining Ji ¼
Pk;ik

j¼1 HjðkÞ
TRjðkÞ�1HjðkÞ as the sensor in-

formation gain corresponding to ;i, the demand on
covariance requires that the value of Ji be as close to rP
as possible,where

rP ¼ PdðkÞ�1 � P ðk jk � 1Þ�1 ð28Þ

with PdðkÞ being the desired covariance for the target. As
the Ji matrix for each sensor combination can be com-
puted offline and stored in a library, only one matrix
inverse P ðk jk � 1Þ�1

needs to be calculated in each scan.
On the other hand, the number of sensors applied to a
target should be kept small in order to avoid an exces-
sive computational burden. Considering both factors
concurrently, the following three optimization objectives
were suggested in [37] for the covariance controller to
assign a desirable sensor combination to a target.

1. Eigenvalue/sensors. Use the sensor combination with
the smallest number of sensors while maintaining all
eigenvalues of the matrix Ji �rP positive. Selecting
the fewest possible sensors ensures elimination of re-
dundant sensor allocations, which was stressed by
[54] as one of the general principles of sensor manage-
ment.

2. Matrix norm. Use the sensor combination, which
minimizes the norm of the covariance error
PdðkÞ � P ðk jkÞ. The argument for this optimality cri-
terion is to consider positive eigenvalues in the co-
variance error as excess resources applied to a
target and negative eigenvalues as insufficient re-
sources applied to that target. However, finding the
minimum norm of the covariance error does not
guarantee that the resulting covariance Pðk jkÞ will al-
ways stay within the desired limit.

3. Norm/sensors. Use the sensor set with the fewest sen-
sors while keeping the norm of the covariance error
within a predefined boundary.

The preferred merits of the strategy of covariance
control decompose the sensor allocation problem into
independent sub-problems for individual targets, each
dealing with target-specific covariance goals. If the de-
sired covariance changes for a target, then only the
sensor set for that target needs to be reassigned. How-
ever, such a strategy is based on the assumption that
sequential Kalman filtering is used to identify the states
of targets and is therefore not applicable to cases where
other filtering techniques, such as particle filtering, are
involved. Additionally, the sensing requests from the
covariance controller occasionally have to be delayed by
the sensor scheduler due to resource constraints. The

influence of possible execution delays on tracking per-
formance remains for further study.

Once the search objective for a given task has been
established, the second important issue for sensor se-
lection is to determine which search algorithm to em-
ploy. The simplest attempt, as practiced in [52], is to
examine every sensor combination that is capable of
performing a given task before deciding on the best one.
This mechanism was termed global search algorithm in
[38] and its computational complexity was given as
Oð2NSn3Þ for target tracking problems, where NS denotes
the total number of available sensors and n is the size of
the state vector of the target. In order to avoid the
prohibitively high computational burden associated
with global search, Kalandros and Pao [38] discussed
two heuristic search algorithms that can reduce the
computational demand at the cost of choosing a non-
optimal sensor combination:

1. Greedy search. Pick the best sensor into the combina-
tion at each iteration, until no improvement of the
evaluation value can be acquired. The computational
complexity of this algorithm is at most
Oððn3=2ÞðN 2

S þ NSÞÞ for target tracking applications.
2. Randomization and super-heuristics. Begin with a base

sensor combination (usually obtained with a priori
knowledge or heuristic methods) and then generate
alternative solutions via random perturbations to
the initial combination. As a descendant of the su-
per-heuristics technique introduced in [42], this search
algorithm requires random perturbations to be per-
formed on a non-uniform distribution, so as to
increase the chance of finding a near-optimal combi-
nation in a few trials. Heuristic information such as
Frequency-of-Selection and the solution from the
greedy algorithm can be used to bias the random
search towards those sensor combinations that are
more likely to be good enough candidates for a given
task.

6.2. Information-theoretic approaches to sensor selection

The idea of using information theory in sensor
management was first proposed in [33]. From the in-
formation-theoretic point of view, sensors are applied to
observe the environment in order to increase the infor-
mation (or reduce the uncertainty) about the state of the
world. It is the task of the sensor management system to
make a reasonable allocation of sensing assets among
various tasks such that the greatest possible amount of
information is obtained at every measurement oppor-
tunity. In surveillance scenarios, information is gained
when localizing a target or increasing the accuracy of the
state estimate of a target being tracked. Observation of
the target by sensor(s) enables the probability density
distribution of the target location estimate to be up-
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dated, reducing the uncertainty about the target loca-
tion. To quantify the information gained (uncertainty
reduced) about a target due to sensor observation, two
measures are available, based on Shannon’s entropy and
Kullback–Leibler’s cross-entropy, respectively.

6.2.1. Information gain based on Shannon’s entropy
According to the information theory of Shannon, the

entropy of a random process is computed by

Hx ¼ �K
X
i

pðXiÞ log pðXiÞ for the discrete case

¼ �K
Z
pðX Þ log pðX ÞdX for the continuous case

ð29Þ

with K being any positive constant and pð�Þ denoting the
probability density (mass) function for the continuous
(discrete) case. Particularly for the n-variate and normal
distribution, Shannon’s entropy (with K ¼ 1) becomes:

Hx ¼
n
2
logð2peÞ þ 1

2
logðjP jÞ; ð30Þ

where jP j is the determinant of the covariance matrix P.
Interpreting this entropy as a measure of uncertainty,

information can be quantified as the difference of the
entropy between two given probability distributions of a
random process. In view of this, we express the infor-
mation gain, I, achieved on a target per measurement as

I ¼ Hbefore observation � Hafter observation ð31Þ
Further under the assumption of a normal distribution
of the target state, the information gain in Eq. (31) is
established by

IðP2; P1Þ ¼
n
2
logð2peÞ þ 1

2
logðjP1jÞ

� n
2
logð2peÞ

�
þ 1

2
logðjP2jÞ

�

¼ 1

2
log

jP1j
jP2j

� �
; ð32Þ

where P1 and P2 are the covariance matrices before and
after the measurement, respectively.

6.2.2. Discrimination gain based on Kullback–Leibler’s
cross-entropy

The discrimination between the target’s predicted
density before observation, p1ðX Þ, and the updated
density after observation, p2ðX Þ, is defined in terms of
Kullback–Leibler’s cross-entropy as

Dðp2; p1Þ ¼
Z
p2ðX Þ logðp2ðX Þ=p1ðX ÞÞdX : ð33Þ

Suppose both p1ðX Þ and p2ðX Þ are Gaussian vectors
with means M1 and M2, and covariance P1 and P2, the
discrimination gain of p2ðX Þ with respect to p1ðX Þ is
given by

Dðp2; p1Þ ¼
1

2
tr P�1

1 ðP2
h

� P1 þ ðM2 �M1ÞðM2 �M1ÞTÞ
i

� 1

2
log

jP2j
jP1j

: ð34Þ

Using either of the information measures described
above, we can now develop a control paradigm for
sensor selection in a multiple target situation. The pur-
pose is to make decisions from a global information
perspective by maximizing the amount of information
gained across all targets. Given the expected informa-
tion/discrimination gain for every pair of sensor subset
and target, this problem can be addressed using a linear
programming formulation as follows.

Let the sensors be indexed from 1 to NS and the
targets from 1 to NT. Each sensor k has its own tracking
capacity kk, representing the maximum number of tar-
gets that can be sensed by the sensor at each scan. De-
noting the information/discrimination gain by Gij when
sensor subset i ði ¼ 1 . . . 2NS � 1Þ is allocated to target j,
then the sensor selection problem is given by

Maximize Gain ¼
X2NS�1

i¼1

XNT

j¼1

Gijxij ð35Þ

subject to constraints :
X2NS�1

i¼1

xij6 1

for j ¼ 1; . . . ;NT; ð36Þ

X
i2JðkÞ

XNT

j¼1

xij6 kk for k ¼ 1 . . .NS ð37Þ

with xij 2 f0; 1g for all pairs i, j, where JðkÞ is the integer
set containing all the indices of the sensor subsets in
which sensor k is included.

In the literature both information measures have been
shown useful for sensor selection in multi-sensor and
multi-target tracking applications. Shannon’s entropy
was adopted in [49,61] where the expected information
gain can be derived by extrapolating the Kalman filter
state covariance and then calculating the updated co-
variance matrix after a measurement. On the other
hand, Schmaedeke and Kastella [62] and Dodin et al.
[19] applied Kullback–Leibler’s cross-entropy to mea-
sure the discrimination of information in combination
with the Interacting Multiple Model Kalman Filter. For
the time being, however, we have no knowledge about
the comparative performance of the two entropy mea-
sures in sensor management applications.

In comparison with the covariance control strategy,
information-theoretic approaches provide a globally
optimal solution obeying all resource constraints so that
a later scheduling of sensing requests is not needed. On
the other hand, a higher computational burden should
be expected when using them, owing to the required
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calculation of a large amount of information/discrimi-
nation gains at every cycle.

6.3. Decision-theoretic approaches to sensor planning

Kristensen [41] treated the problem of choosing
proper sensing actions from a family of candidates as
one of decision-making, and developed a framework
based on Bayesian decision analysis (BDA) for its solu-
tion. It was strongly suggested in his thesis that uncer-
tainty has to be dealt with in sensor planning since the
ultimate purpose of performing sensory actions is to
reduce uncertainty about the external world. On the
other hand, BDA offers a powerful mechanism for
representing and reasoning under uncertainty. The the-
ory of BDA was primarily applied in the area of eco-
nomics to evaluate various actions, e.g., investments,
against each other.

Fig. 9 shows the decision tree which was used in [41]
for sensor action planning, where we can see two
different types of nodes: boxes and circles. A box is a
decision node followed by paths decided by the system,
while a circle corresponds to a chance node with its
branches determined by chance. The root decision node
is associated with sensory actions such as Ai, which
produces random output xj related to the report chance
node. The second decision node, called actuator node,
represents the consequence type of action, e.g. ak, lead-
ing to completion of the task. Furthermore, the state
chance node corresponds to the world state after an
actuator action, with Uðak; zlÞ denoting the utility or
payoff for completing a given task. From the viewpoint
of buying information about an uncertain world state,

BDA was used to evaluate distinct sensory actions
against each other in a cost/benefit manner. To account
for the increase in expected utility per cost unit com-
pared with no sensing, the measure EISI (expected in-
terest from sample information) was defined as:

EISIðAiÞ ¼
Pn

j¼1 P ðxjÞEUðxjÞ � EUðA0Þ
CðAiÞ

; ð38Þ

where EUðA0Þ;EUðxjÞ denote the expected utilities of no
sensing and of receiving report xj, respectively, P ðxjÞ the
probability of receiving xj and CðAiÞ the cost of per-
forming the sensory action Ai. Finally, the Bayesian de-
cision rule simply selects the one with the maximum EISI
value as the sensory action to be performed. That is,

Aopt ¼ argmax
Am

Ai¼A0
EISIðAiÞ: ð39Þ

Although the method outlined above provides an
explicit, coherent and theoretically well founded
framework to plan sensory actions under uncertainty,
the construction of decision trees is still problem-
dependent, in particular with respect to the subjective
definition of utilities for completing a task. Whether it is
possible to devise appropriate utilities in various appli-
cations remains for future investigation. The other po-
tential difficulty that may occur is how to formulate
actuator actions in the decision tree. It was noted in [41]
that such actions are not restricted to operations of real
actuators in the traditional sense but refer to somehow
productive actions marking the completion of a task.
However, we are not clear about what should be treated
as actuator actions in accordance with the Bayesian

Fig. 9. Bayesian decision tree for sensor action planning (cited from [41]).
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decision tree when designing sensor managers for sur-
veillance purposes.

Closely related to the work of Kristensen is the paper
[43], which was based on the novel idea of learning the
utility of using a sensor and which addressed the prob-
lem of how to find a set of sensors, which solves a given
problem in cheapest possible fashion. Another decision-
theoretic approach to so-called deliberate sensing was
proposed in [21]. However, its authors did not give im-
plementation details but pointed out that decision the-
ory itself does not constitute a solution to the problem.

6.4. Fuzzy logic resource manager

Gonsalves and Rinkus [26] described an intelligent
fusion and asset management processor with its fourth
level being a fuzzy logic collection manager, which is
responsible for mapping the current situation state and
enemy track information into (job) requests on sensing
assets. The mapping depends on prior knowledge of
sensor capabilities and enemy tactical doctrine. How-
ever, this paper does not explain how to incorporate
fuzzy logic in the knowledge representation and rea-
soning.

A somewhat similar work to that of Gonsalves, called
fuzzy-logic based resource manager, was presented in [65]
which aims at optimal allocation of various resources
distributed over many dissimilar platforms. A fuzzy
decision tree for resource management was constructed
via codifying related military expertise, with parameters
of root concept membership functions being optimized
by a genetic algorithm. The fitness function for the
genetic algorithm was established based upon various
considerations of geometry, physics, engineering and
military doctrine. A later paper [66] by the same authors
extends the idea of the former paper [65] by incorpo-
rating data mining techniques [6], which are generally
understood as efficient discovery of valuable, implicit
knowledge and information from a large collection of
data, for performance optimization of the fuzzy decision
tree. In particular, a genetic algorithm was applied in the
data mining process to yield parameters of the root
concept membership functions based upon a database of
scenarios. Two possible ways to construct a database of
good quality were discussed. A comprehensive scenario
database is beneficial for the data mining technique to
extract knowledge covering a wide range of behaviors
and providing robust strategies to resource allocation.
Otherwise a small data set containing a narrow spec-
trum of scenarios could result in a resource manager
effective in some cases but ineffective in others.

6.5. Markov decision for sensor allocation in classification

For simultaneous classification of a number of un-
known objects, it is important to properly distribute

available sensors across different objects. The dynamic
sensor allocation problem consists of selecting sensors of
a multi-sensor system to be applied to various objects of
interest using feedback strategies. Mathematically this is
a partially observed Markov decision problem [44,75] as
formulated in the following.

Consider a problem of N objects with xi 2 f1; . . .Kg
denoting the true class of object i. It is assumed that xi are
modeled as independent random variables with discrete
values in a finite space. Moreover each object i is asso-
ciated with a prior probability distribution representing
the a priori knowledge obtained on its class variable.
Now in order to obtain further information about the
state of each object, appropriate sensors should be as-
signed to various objects at the time intervals
t 2 f0; 1; . . . ; T � 1g. The collection of sensors applied to
object i during interval t is represented by a vector

UiðtÞ ¼ ½ui1ðtÞ . . . uiMðtÞ�; ð40Þ
where

uijðtÞ ¼
1 if sensor j is used on object i at interval t;
0 otherwise



ð41Þ

and M is the total number of sensors in the sensing
system. Because of limited resources sustaining the
whole system, the planned sensor distributions must
satisfy the following constraint for every t 2 f0; 1; . . . ;
T � 1g
XN
i¼1

XM
j¼1

rijðtÞuijðtÞ6RðtÞ; ð42Þ

where RðtÞ is the maximum amount of resources that can
be consumed by the whole sensor system during interval
t and rij denotes that quantity of resources consumed by
sensor j on object i.

Here, the goal of sensor allocation is to achieve an
accurate classification of all the objects after T stages.
Let ½v1; v2; . . . ; vN � be the final classification decision and
cðxi; viÞ the error function representing the penalty of
classifying an object of xi as type vi. Sensor allocation can
be defined as a problem to find a sequence of decisions
fu	ijðtÞ; v	i j i ¼ 1; . . . ;N ; j ¼ 1; . . . ;M ; t ¼ 0 . . . T � 1g,
which minimizes the expected total cost Ju in (43), sub-
ject to the constraint (42).

Ju ¼ E
XN
i¼1

ciðxi; viÞ
( )

: ð43Þ

The above problem is a special case of the finite-state,
finite-observation, partially observed Markov decision
problems addressed in [44,75].

In principle, problems of this kind can be solved by
means of stochastic dynamic programming (SDP). We
can, in particular, convert the partially observed Mar-
kov decision problem into a standard fully observed one
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by defining the problem state in terms of its conditional
probability distribution given the available information
about the sensors applied and the measurement data
acquired. Bertsekas [5] presented an SDP recursion to
solve this problem. The main idea is to select prospective
decisions at every stage in order that the expected value
of the cost-to-go function at the next stage can be
minimized. Unfortunately, the presence of the con-
straint equation (42) makes it impossible to decompose
the whole task of decision making into smaller problems
for individual objects. As a result, the dynamic pro-
gramming algorithm must perform its job on the entire
problem space and the associated computation becomes
prohibitive even for a moderate number of objects.

The near-optimum feedback strategy proposed in [15]
might possibly be useful to alleviate the computational
burden associated with strict solutions to sensor allo-
cation using SDP. By relaxing a hard constraint like that
in (42) to an average resource constraint, the suggested
approximate solution is based on the use of Lagrangian
relaxation to decompose the multi-object optimization
problem into many single object problems that are co-
ordinated through introduced Lagrange multipliers. In
this way, the relaxed sensor allocation problem is de-
coupled hierarchically into two levels. At the lower level,
the sensors for single objects are determined using the
SDP algorithm, under the given values of Lagrange
multipliers. At the higher level, based on the lower level
solutions, the values of Lagrange multipliers can be
optimized via certain non-differentiable optimization
techniques. The advantage of this approximate strategy
is the reduction of computational complexity by de-
composing the whole decision problem into decoupled
sub-problems at the lower level. However, this benefit is
earned at the cost of accepting a weak condition that the
average amount of consumed resources does not exceed
that, which is available. It is controversial whether the
proposal of relaxed resource constraint has practical
value, since it allows violation of the original constraint
in quite a few cases.

In addition to dynamic programming, state-based
search methods were discussed in [10] for fully observ-
able and non-observable Markov decision processes. In
particular, it was pointed out that search techniques can
be applied to partially observable problems as well, by
searching the space of belief states [9], for example. The
presented methodology of state-based search may be
worth investigation in the context of sensor allocation,
to achieve potentially more effective and efficient deci-
sions about sensor distributions in real-time.

7. Towards cooperative sensor behavior

A team-theoretic formulation of multi-sensor systems
was presented in [29] with sensors being considered as

members or agents of a team, able to offer opinions and
to bargain in group decision situations. Coordination
and control under this structure was analyzed and dis-
cussed based on a theory of team decision-making. It was
assumed that a manager/coordinator makes group de-
cisions according to criteria of maximum team utility.
The most general form of team utility is to incorporate
utility measures of both team member and joint team
actions to combine local and global objectives. Alter-
natively, in some cases, the team utility function can
disregard individual team member opinions, thereby
allowing the manager to make optimum decisions re-
gardless of individual team member losses. It is clear,
however, that since a team utility represents group
preference with respect to an underlying problem in a
specific scenario, its definition is situation dependent.
Thus, establishing a comprehensive function for assess-
ing team utility may become difficult if not impossible in
complex applications.

Bowyer and Bogner [12] analyzed the issue of inte-
grating distributed sensor assets based on the concept of
cooperating machines. It was argued that heterogeneous
sensors in a multi-sensor system should be treated as
cooperative members of a community. Here, the concept
of community refers to a plastic association rather than
a rigid connection of sensors, considering the possible
departure of a previously participating sensor as the
situation unfolds. The authors also pointed out that
certain social behavior principles are desired of a sensor
network to foster cooperation between individual
members and to enhance their mutual awareness. Such
considerations led to the proposal of exploiting agent
technology for managing temporal requirements and
implementing the desired social behaviors within a
community of sensors. A multi-agent based architecture
was suggested for this purpose, allowing agents to in-
teract with the sensor system. As indicated by the pro-
posed agent system shown in Fig. 10, the information
from an existing sensor is wrapped up by its local sensor
agent, which then communicates and negotiates with
other agents via a suitable communication medium.

A multi-agent resource management system was also
studied by Luo et al. [45] to support the integration of
data from multiple sensors and associated important
sensory information located in different agents. Two
kinds of agents were involved in this study, with service
agents handling local sensor information and a global
decision agent conducting necessary coordination ac-
tivities to achieve cooperative behavior of the whole
system. An Internet-based network architecture was
used for communications between service agents and the
global decision agent.

Although approaches based on intelligent agents
seem to offer a useful framework to realize autonomous
cooperation between different sensors, few concrete
policies have been reported in the literature answering
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the question how such agents could coordinate their
decisions in a complex environment. However, for the
simple problem of switching between sensors when
tracking a moving target, a fuzzy controller has been
designed for the cueing process [55] and shown to be
very successful in simulations.

Currently, the Argus project [22] is carried out by the
Australian Centre for Field Robotics in Sydney, to de-
velop a decentralized ground-based sensor network. The
nodes include vision, multi-spectral cameras, lasers, and
(in the future) radars. The Argus network will be used
for both air-target tracking and hand-off of ground
targets from air to land sensors.

8. Conclusion and discussion

This paper highlights the emerging area of multi-
sensor management from the perspective of multi-sensor
information fusion. Characteristics of three problem
classes of multi-sensor management are elaborated.
Furthermore, a general perspective on problem solving
for sensor management is presented in terms of certain
methodological considerations and a top-down working
procedure. As a collection of activities controlling in-
formation gathering, the scope of sensor management is
wide and many problems involved seem to be case-
specific. In view of this, this paper discusses the state-
of-art in terms of solutions to specific problems.

Research in sensor management is still in its infancy.
Recent early work on this topic has been largely focused
on sensor scheduling and sensor resource allocation.
With the advances of information fusion systems into
more and more complex environments, an increasing
demand will likely occur for sensor management func-

tions on high levels such as mission planning, sensor
deployment and sensor coordination. Unfortunately,
these issues have not yet been extensively addressed.

Contemplating sensor management requirements on
high levels leaves us with the sense that methods of
qualitative reasoning may be needed as complementary
tools, to deal with abstract but imprecise information. In
general, highly strategic decisions in sensor management
might require the involvement of human operators, who
are expected to ‘‘discuss’’ and ‘‘negotiate’’ with the
software for working out intelligent solutions. Usually
human operators tend to express their opinions in the
form of propositions formulated in natural language
and they will also want to receive information as lin-
guistically understandable descriptions. Moreover, tol-
erance of imprecision seems a necessary requirement
when making high-level decisions for achieving tract-
ability, robustness, low computational cost, and better
rapport with the inexact nature of human thinking.

We feel that the term sensor management is becoming
inappropriate to capture what it really means to cope
with increasingly high-level functionality in the future.
This term was originally put forward to refer mainly to
single sensor scheduling and control. It does not accu-
rately capture the nature of process refinement in the
context of information fusion. Indeed what we are now
talking about is a procedure to manage data acquisition
from the external world driven by information requests.
Whether a new term is necessary or beneficial to better
reflect the gist of this fast developing area is open for
debate and discussion by the information fusion com-
munity.

Future research work can be conducted on several
interesting but under-researched problems, including:

• Combined sensor placement and sensor selection in
multi-sensor and multi-target applications. So far in
the literature these two problems have been addressed
in isolation of each other. Some papers discuss sensor
selection for various targets under the assumption of
known fixed sensor locations, whereas other papers
focus on sensor placement in tracking a single target,
so that sensor selection is not required. However, in
real applications of multi-sensor and multi-target
tracking we frequently have to solve these two prob-
lems in combination.

• Management of movable sensor assets or platforms
such as unmanned air vehicles for surveillance pur-
poses. An interesting problem may be planning
time-constrained movements of sensor(s) to keep
track of moving targets in a dynamic environment.

• Cooperation between sensors in a decentralized para-
digm. Cooperation is particularly needed for a team
of sensors and platforms that collectively perform
surveillance tasks across a region. Each team member
is expected to make its own decision about where to

Fig. 10. A multi-agent based architecture for sensor integration (cited

from [12]).
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go and what to sense. But these decisions must be co-
ordinated with other sensors and platforms to arrive
at a globally optimal perception for the system as a
whole. Further, in the case of failure of one or more
sensors or platforms, the system should be able to
reconfigure the control and coordination of sensor
behaviors.

• Sensor management under multiple objectives. Preva-
lent in military applications is that there may be other
objectives to be accounted for, such as remaining co-
vert and recognizing enemy spoofing, in addition to
information fusion quality. Sometimes such demands
conflict with each other, requiring on one hand mea-
suring in a highly covert way and on the other hand
getting as much information as possible. In order to
achieve a good balance between different objectives,
an appropriate arbitration mechanism is needed.

• Adaptive signal filtering with respect to sensor place-
ment. Up to now Kalman filtering and particle filter-
ing are used in sensor placement for target state
estimation. Both techniques have advantages and
weaknesses. An adaptive mechanism is desirable to
decide which filter to use based on the situation and
the mission goal. Moreover, both Kalman and parti-
cle filters give average performance of state estima-
tion. However, in some cases we may want to
ensure the worst-case accuracy, especially in military
applications. This could make it advantageous to use
so-called H1 filtering (indeed Kalman filtering is
also termed H2 filtering). H1 filtering minimizes the
‘‘worst-case’’ estimation error and assumes no priori
knowledge of noise statistics [63]. Automatic switch-
ing among the three filters could be valuable for im-
plementation of adaptive signal filtering.
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