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ABSTRACT

Thomas M. Strat has developed a decision-theoretic apparatus for Dempster-Shafer
theory (Decision analysis using belief functions, Intern. J. Approx. Reason. 4(5/6), 391-
417, 1990). In this apparatus, expected utility intervals are constructed for different
choices. The choice with the highest expected utility is preferable to others. However, to
find the preferred choice when the expected utility interval of one choice is included in that
of another, it is necessary to interpolate a discerning point in the intervals. This is done by
the parameter ρ, defined as the probability that the ambiguity about the utility of every
nonsingleton focal element will turn out as favorable as possible. If there are several
different decision makers, we might sometimes be more interested in having the highest
expected utility among the decision makers rather than only trying to maximize our own
expected utility regardless of choices made by other decision makers. The preference of
each choice is then determined by the probability of yielding the highest expected utility.
This probability is equal to the maximal interval length of ρ under which an alternative is
preferred. We must here take into account not only the choices already made by other
decision makers but also the rational choices we can assume to be made by later decision
makers. In Strats apparatus, an assumption, unwarranted by the evidence at hand, has to
be made about the value of ρ. We demonstrate that no such assumption is necessary. It is
sufficient to assume a uniform probability distribution for ρ to be able to discern the most
preferable choice. We discuss when this approach is justifiable.
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1.    INTRODUCTION

To make rational decisions under uncertainty is somewhat complicated in
Dempster-Shafer theory (Dempster [1], Shafer [2]) because of the interval
representation. In [3] Nguyen and Walker discussed different approaches to
decision making with belief functions. They found three different basic models.
The first is based on the Choquet integral that yields the expected utility with
respect to belief functions;

where F is a belief function defined on 2Θ by  and
 is a class of probability measures on Θ. This leads to the

pessimistic strategy of ranking alternatives by their minimal expected utility.
In the second basic model the decision maker uses some additional information

or subjective views. Instead of searching for the alternative that maximizes
expected utility, the utility function will be supplemented by some new function
dependent on the utility and some other parameter corresponding to the additional
information or subjective views. An article by Strat [4] is an example of the
second basic model.

The third basic model consists of models using the insufficient reason principle
or equivalently the maximum entropy principle. As an example, Smets and
Kennes [5] have developed a two-level model of credal belief and pignistic
probability, called the transferable belief model (TBM).

On the credal level of this model the reasoning process takes place in the usual
manner as within Dempster-Shafer theory. Here beliefs are held by belief
functions and combined by Dempster’s rule. When a decision must be taken, the
belief on the credal level is transformed to a probability at the pignistic level by a
pignistic transformation based on Laplace’s insufficient-reason principle;
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where  is the pignistic probability we should use to ‘bet’ with in a utility
maximization process. Here  is the set of all propositions. It is called the betting
frame.

The pignistic probability regarding some proposition A depends on the
organization of the betting frame . But regardless of the organization of the
betting frame we always have .

Further discussions on decision making with belief functions can be found in

This article is concerned with a method that has recently been developed by
Strat [4]. In this method an expected utility interval is constructed for each choice;

[E*(x), E*(x)]
where E*( ) and E*( ) are defined as

and

Θ is a frame of discernment, i.e., an exhaustive set of mutually exclusive
possibilities, and mΘ is a basic probability assignment (bpa), a function from the
power set of Θ to [0, 1]:

whenever

and

The frame of discernment is here the set of all possible utilities of the outcomes.
We will call E* the lower expected utility and E* the upper expected utility.

Our preference among different alternatives will depend upon their expected
utility. Let the expected utility be defined as

where ρ is defined as the probability that the ambiguity about the utility of every
nonsingleton focal element will turn out as favorably as possible, i.e. the
probability that nature will turn out as favorably as possibly towards us as
decision makers.
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Strat gives an example involving a carnival wheel (Figure 1). This wheel is
divided into 10 equal sectors, each one having a payoff of either $1, $5, $10, or
$20. One of the sectors is hidden from view. He asks: How much are we willing to
pay to play this game?

The frame of discernment Θ is {$1, $5, $10, $20}. Assume that

m({$1}) = 0.4,

m({$5}) = 0.2,

m({$10}) = 0.2,

m({$20}) = 0.1,

m({$1, $5, $10, $20}) = 0.1.

Calculating the expected value interval we have

E(x) = [E*(x), E*(x)]

= [0.4 × $1 + 0.2 × $5 + 0.2 × $10 + 0.1 × $20 + 0.1 × $1,

0.4 × $1 + 0.2 × $5 + 0.2 × $10 + 0.1 × $20 + 0.1 × $20]

= [$5.50, $7.40].

Thus, we would be willing to pay at least $5.50, but certainly not more than
$7.40. But should we be willing to play for $6?

Obviously, when we are searching for the most preferable choice we can
immediately disregard those choices where the upper expected utility is less than
the highest lower expected utility among all choices. Furthermore, if both interval

$5

$10

$20 $10

$1

$1

$1

$1
$5

??

Figure 1. Carnival wheel.
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limits of the utility interval are higher for one alternative than for another, i.e.
 and , then the first one, choice i, is always preferable regardless

of the value of ρ. In fact, if we receive the choices in decreasing order of the
magnitude of their upper expected utility we can immediately disregard any
choice whose lower expected utility is less than any lower expected utility of the
previous choices. Only if the expected-utility interval of one choice is included in
the interval of another choice will our preference depend on the assumed value of
ρ. As a result, we will end up with a set of expected utility intervals ordered by
interval inclusion, . Here we have
renumbered the choices by the order of interval inclusion, i.e. the order of
increasing interval length. In the following we will only consider choices ordered
and renumbered by interval inclusion.

Strat argues that instead of first assuming a value for ρ and then calculating the
choice that results, one might ask the reverse question. At what value of ρ would I
be willing to change my decision?

Let us study the choice between x1 and x2 where ;

choice 1: ,

choice 2: .

Here choice 1 is preferred when

We find that the two choices are equally preferable if

Let us call this value ρ12. Since choice 1 has the higher lower expected utility of
the two choices, it is preferred when , and choice 2 is preferred when

.
Let choice 1 be the decision not to play, and choice 2 the decision to play:

choice 1: E(x) = [$6.00, $6.00],

choice 2: E(x) = [$5.50, $7.40].
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When we compare these two choices, we find that choice 1 is preferable to
choice 2 when

Thus, when ρ < 0.263 we will not play the game, but when ρ > 0.263 we will.
Furthermore, this might best be seen as an indication of whether we need to

gather more information or are ready to make a decision. If ρ is close to 0 or 1, we
might be willing to make a decision right now, but if, on the other hand, it is
around 0.5, we would prefer to gather additional information before making a
decision.

However, at times we might be forced to make a decision right now regardless
of the value of ρ. Rather than trying to estimate ρ in this situation, we might
choose a different route.

In this article we will establish an alternative to making an outright, and often
unwarranted, assumption about ρ. This alternative is to accept a uniform
probability distribution for ρ.

Adopting a uniform probability distribution for ρ requires two conditions being
fulfilled. Firstly, there certainly must not be any evidence at hand regarding the
value of the probability ρ. Such evidence could, for example, be in the form of
domain knowledge, direct evidence regarding the value of ρ or knowledge that the
decision situation is controlled by either the decision maker or an adversary. It
would seem to be commonplace that there is no direct evidence available
regarding the value of ρ. The situation we are looking for is then a business like
situation in a field with poor domain knowledge where the outcomes are not
controlled by either the decision maker or an adversary, i.e. a decision situation
without evidence regarding the value of ρ. Secondly, it must be a decision
situation where the decision maker is not only interested in minimizing the
expected loss regardless of the possible gains or interested in maximizing the
expected gain regardless of the possible losses. In these two situations he would
choose to adopt ρ = 0 or ρ = 1, respectively, even if there is no available evidence
regarding the value of ρ. This would be the situation if the decision maker were
forced to play a game he thinks is unfavorable. Then he would try to minimize the
expected loss, i.e. choose ρ = 0. If, on the other hand, the decision maker is forced
to obtain a lot of value by playing a particular game, he may try to maximize the
expected gain, i.e. choose ρ = 1. This eliminates the extreme situations where the
decision maker is forced into a game by one reason or another, i.e. situations
where it is not possible to avoid a choice. What is remaining is the “normal”
businesslike decision situations where we do not have a reason to choose one

ρ12
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value for ρ over another: when there is not any evidence at hand regarding the
value of ρ.

As Strat points out in his article, if we make an assumption about the value of ρ
we should not confuse our assumption about ambiguity with our risk preference.
Our risk preference is handled by adopting utilities.

The methodology in this article was developed as the decision part of a
multiple-target tracking algorithm (Schubert [8], Bergsten and Schubert [9]) for
an antisubmarine intelligence analysis system.

In Section 2 we will discuss points of preference change and in Section 3 the
uniform probability distribution for ρ. In Section 4 we will study decision making
with a uniform probability distribution for ρ, and the different objectives decision
makers might have when there are several decision makers competing. Finally,
conclusions are drawn in Section 5.

2.    THE PREFERRED CHOICE

When we have several choices they may be preferred in different intervals of ρ.
If we calculate all ρij’s and order them by increasing magnitude we can calculate
the expected utility of every choice for a point in each interval of the ordered ρij’s.
The choice with the highest expected utility in each interval is then the preferred
choice for that interval. However, we already know that choice 1 is preferred
when ρ = 0, since this choice has the highest lower expected utility among all
choices, and it will remain the preferred choice while ρ is less than mini ρ1i, the
smallest of all ρij’s and the first point of preference change. Beyond this point,
choice i will be preferable over choice 1. Since choice 1 will never again be
preferred in any other interval, we may now disregard all other ρ1j, , even
though they represent points of possible preference change. The reason for this is
obvious, choice 1 can never again be the most preferable choice for any interval
above mini ρ1i since it is not even preferred to choice i beyond that point. Thus,
these points of possible preference change will never represent an actual change
of the current preference. Continuing, choice i will now be preferred up to the
point where ρ = minj ρij, and beyond this point choice j will be preferred up until
ρ = mink ρjk, etc. Thus, by iteration we find that the choices are each preferable in
the following intervals:

choice 1: [0, mini ρ1i],

choice i: [mini ρ1i, minj ρij],

choice j: [minj ρij, mink ρjk],

...

choice n: [ρmn, 1].

j i≠
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Alternatively, for any choice j that is preferable somewhere, its interval of
preference can be described as

choice j: [maxi ρij, mink ρjk].

If two or more ρij’s are equal in a minimization, minj ρij, the next preferred
choice will be ambiguous. In this case we take the choice with the highest number.
If not, we would end up with one or more choices preferred under a zero interval
length of ρ before we would get this choice anyway.

3.    A UNIFORM PROBABILITY DISTRIBUTION FOR ρ

All we know about the value of ρ is that it is a parameter the belongs to the set
of real numbers between 0 and 1, ρ ∈ [0, 1], i.e. we know that a frame of all
possible values of ρ is that same set of numbers, Θ = [0, 1]. Thus, apart from
knowing the frame for ρ we do not know anything at all. We have a vacuous bpa
where m(Θ) = 1. In order not to reduce the overall nonspecificity of this initial
state when making an assumption about the probability distribution about ρ, we
might ask that any such assumption about ρ should yield the same nonspecificity
as what we have now. We define the nonspecificity as

which is a generalization of Hartley’s information [10].
Calculating the nonspecificity I(m) of this initial state where  and

m(Θ) = 1, we have

and since Θ is the infinite set of real numbers between 0 and 1, we obtain an
infinite nonspecificity.

If we make a single-point assumption about ρ where  and
, we obtain a nonspecificity of
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and for any pointwise distribution for ρ where  we get

Obviously, our distribution needs a continuous part to reach the infinite
nonspecificity of the initial state. Any such distribution with just one continuous
part, B, will reach infinite nonspecificity. We have

where  and B is an interval of real numbers included in
[0, 1]. If B is of infinite size we have an infinite nonspecificity.

Furthermore, we might also demand that the nonspecificity of our new
distribution should be equal to the original assignment for any size of the frame.
Let , where the Bi’s are intervals included in [0,
1]. We must then have

Here , and thus we may write , where

and

We have

From this it immediately follows that
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Since  for every A and  for every αA, we must have that
 for every A. But since  and Θ is the entire frame, it follows

that , i.e., that we have only one focal element .
This means that we have only one continuous part of the probability distribution

for ρ, and that it covers the entire interval from 0 to 1, i.e. a uniform probability
distribution.

4.    DECISION MAKING

4.1.    Decision Making With a Uniform Probability Distribution for ρ

If we refrain from making an unwarranted assumption about the value of ρ, we
might instead accept a uniform probability distribution for ρ, i.e. the assumption
that all values of ρ are equally probable. Any of the above choices that are
preferable somewhere might now be preferred. However, the probabilities for the
choices to be preferred are not equal. This probability varies with the length of the
interval over which it is preferred.

If we are only interested in simple maximizing of utility then adopting a
uniform probability distribution for ρ yields the same result as setting ρ = 0.5.
Then, for simplicity, we might as well set ρ = 0.5 and choose the alternative that
yields the highest expected utility as our decision.

However, in a situation with several different decision makers, we might
sometimes be more interested in having the highest expected utility among the
decision makers rather than only trying to maximize our own expected utility.
Thus, rather than actually making a random assumption about ρ in order to find a
preferable choice, it makes sense to prefer the choice that would most likely be
preferred if the value of ρ were determined at random. Assuming the uniform
probability distribution for ρ, this is obviously the choice that is preferred under
the maximum interval length of ρ. This might be according to the principle “it is
better to choose what is most likely the best alternative rather than to gamble for
it.” The interval length under which a choice is preferred, Pref( ), is here defined
as

where mink and maxi
If the number of alternatives is equal to the number of decision makers, then all

we have to do is to choose the alternative that is preferred under the maximal
interval length. That will be the choice with the highest probability of giving us
the highest expected utility.

The situation becomes more complex when the number of decision makers is
less than the number of choices.

m A( ) 0> log 2αA 0≤
αA 1= A αA Θ=

A Θ= F Θ{ }=

.

∆Pref xj( ) max 0 mink ρjk maxi ρij−,( )=

ρnk 1∆= ρi1 0.∆=
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4.2.    An Example

Let us consider an example with four choices whose expected utility intervals
are ordered by interval inclusion:

choice 1: [0.5, 0.6],

choice 2: [0.4, 0.7],

choice 3: [0.3, 0.9],

choice 4: [0.2, 1.0].

Calculating the points of preference change gives us

and by the same formula ρ13 = 0.4, ρ14 = 0.43, ρ23 = 0.33, ρ24 = 0.4, ρ34 = 0.5. We
find by iteration that the choices are preferable in the following intervals of ρ:

choice 1: [0, mini ρ1i] = [0, ρ13] = [0, 0.4],
choice 3: [0.4, minj ρ3j] = [0.4, ρ34] = [0.4, 0.5],
choice 4: [0.5, 1],

and are preferred for the following interval lengths:

Pref(x1) = 0.4,

Pref(x2) = 0,

Pref(x3) = 0.1,

Pref(x4) = 0.5.

In this case choice 2 will never be preferred, regardless of the value of ρ. If an
unwarranted assumption is made about ρ, any of the other three choices could be
preferred. If, on the other hand, we only assume a uniform probability distribution
for ρ, choice 4 will be considered preferable, since it is preferred for the maximum
interval length of ρ.

4.3.    An Algorithm for Finding the Preferred Choice

We may now find the preferred choice given a uniform probability distribution
by the following algorithm.

ρ12
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ALGORITHM Let S be the empty set.
1.Order and renumber all choices by falling magnitude of upper expected

utility.
2.For i = 1 to n do

2.1.Add all choices whose expected utility interval belongs to the set
of intervals ordered by interval inclusion; if Ei* > Ei-1* then S :=
S + {[Ei*, E*i]}.

3.Renumber all choices in S in order of increasing interval length
magnitude.

4.For all combinations of pairs in S calculate

5.ρc := 0, i := 1, maximum_preference := 0.
6.Calculate the intervals of preference for each choice and find the most

preferable choice;
While  do

6.1.ρ’c := minj ρij, where mink
6.2.Pref(xi) = ρ’c - ρc.
6.3. If Pref(xi) > maximum_preference then

6.3.1.maximum_preference := Pref(xi), preferred_choice := i.
6.4. i := j.
6.5.ρc := ρ’c

7.Answer preferred_choice.

4.4.    Possible Refinements

Instead of changing from the strongest possible assumption of a point value for
ρ to the weakest possible assumption of a uniform probability distribution, we
may occasionally have a reason to assume some other probability distribution for
ρ (Figure 2).

ρij
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.=
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f(ρ)

ρ

f(ρ)

ρ

f(ρ)

ρ

Figure 2. A point-valued, arbitrary and uniform probability distribution for ρ.
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We might for instance have some knowledge regarding a lower and upper bound
for ρ. Let us call these bounds the lower ambiguity probability ρ* and the upper
ambiguity probability ρ*, respectively. These bounds force a simple change in the
definition of preference, Pref( ):

where mink and maxi
To incorporate the new definition of preference into the algorithm we make the

following change in step 6.2.,

6.2. Pref(xi) = max(0, min(ρ*, ρ’c) - max(ρ*, ρc)),

giving all choices preferred in intervals outside the bounds of lower and upper
ambiguity probability a preference of zero.

Obviously, we must be able to assume any probability distribution f(ρ) for ρ. We
can make a general definition of preference as

where mink and maxi
Finally, we change the computation of preference in step 6.2 of the algorithm to

where

4.5.    Two Decision Makers Searching for the Most Preferable Choice

When two decision makers compete for the highest utility, the preference of
each alternative is determined by the chance of having the alternative that is
preferred for the maximal interval length of ρ after our opponent has also made
his choice. If we assume we have the first choice, then our opponent will make his
choice taking into account the choice we made. Since our goal is to have the
highest possible probability of having the best alternative, we must also take into
account the best choice our opponent can make. It is found by choosing the
alternative with the highest preference as defined by

.
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Here  is the preference for choice j when our opponent chooses his best
alternative k where k > j and  is the preference for choice j when our
opponent chooses his best alternative i where i < j.

If, on the other hand, we are the second of the two decision makers, the
situation is even simpler. We just have to find the choice with maximal preference
as defined by

where k is the alternative already chosen by our opponent.

4.6.    Several Decision Makers

When the number of decision makers is less than the number of choices, the
situation becomes much more complex. We must here take into account not only
the choices already made be other decision makers, but also the rational choices
we can assume to be made by later decision makers. This is because the length of
the preference interval for any alternative depends on the other choices that are
made. If I* is the set of all choices made by previous decision makers, the
preference of a choice xj may be calculated as

where I*(I*, j) is the set of rational choices the later decision makers will make
given our choice j. For any decision maker we want to find the alternative that
maximizes his preference, i.e.

where I is the set of all possible choices.
This problem is solved starting with the final choice made by the last of the n

decision makers, and for all possible sets of earlier choices I*. Here
and . We find the earlier choices by stepping backwards through all
possible sequences of choices made by different decision makers until we reach
the first choice made by the first decision maker.

This can be seen as going “up” a tree with one decision maker at each level until
we reach the first decision maker at the root of the tree. Each branch at a certain
level of the tree corresponds to a different sequence of choices made by the earlier
decision makers. The edges going “down” from each node at this level
corresponds to the possible choices that can be made by the decision maker at this
level.

min k ρjk
1 max i ρij−

Pref xj k,( )
ρjk j k<,

ρkj j k>,

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=
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k I* I* I* j,( )+∈

max ρij

i I* I* I* j,( )+∈
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5.    CONCLUSION

We have demonstrated that it is not necessary to make a point-value assumption
about ρ in Strat’s decision-theoretic apparatus of Dempster-Shafer theory. In fact,
it is sufficient to assume a uniform probability distribution for ρ to be able to
discern the most preferable choice. We have given an algorithm for finding the
most preferable choice based on an iterative search of points of preference change
among choices ordered by interval inclusion. We discuss the ability to assume any
probability distribution for ρ.

We also discussed the more complex problem of several decision makers
competing for the highest expected utility. The preference for each alternative to
some decision makers was shown to be the probability that the alternative has the
highest expected utility after all decision makers have made their choices, where
we take into account both the choices already made be other decision makers and
the rational choices we can assume to be made by later decision makers.
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