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Abstract— We address the issue of autonomously planning a
flight path for a remotely controlled surveillance aircraft when
control is lost due to jamming. An optimization problem arises
where we want the aircraft to continue surveying in the jammed
area so that a possible attack does not go unnoticed, but we
want the aircraft to leave the jammed area (and report any
collected information) while there is still time to respond and
take defensive measures.

We formulate this as a stochastic approximation problem,
involving state parameters and a discrete set of path options
(specifying candidate Bezier curves), and train on simulated
data from realistic scenarios. The result is a discussion how to
acquire a policy which considers both realistic tactical scenarios
with varying initial values and simulated sensor characteristic.

I. INTRODUCTION

Remotely piloted aerial systems (RPAS) are dependent on
a stable data link to maintain remote control and payload
data feedback. A defense task for such a RPAS is territorial
surveillance where the payload is a radar system capable of
detecting hostile cruise missiles.

A malevolent adversary launching an attack with cruise
missiles is interested in disrupting the RPAS surveillance
task by jamming the radio link to mitigate the uplink
remote control and the down-link of sensor data2. When the
communication is jammed, the aircraft effectively becomes
an unmanned aerial system (UAS) and has to operate au-
tonomously.

A standard approach for a RPAS that has lost its commu-
nication link is to travel to a pre-specified location (such as
the home base) where the operators are thought to be able
to reconnect with the platform. This location is preferably
selected with care so that the aircraft causes as little damage
as possible if it runs out of gas or battery.

This simple autonomous behavior can be very useful
in many cases, but becomes problematic if the automatic
abortion of the mission is the primary goal of the adversary.
Hence, an adversary can take control of the RPAS (in the
sense of sending it to its pre-specified location) simply by
jamming the communication.

What we are considering here is a situation where the
RPAS is performing a routine surveillance task over sea
along a coast line to make an early detection of cross-border
attacks. Human uplink control is typically not necessary
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but the downlink of sensor data is monitored continuously.
During the task execution, the RPAS will be jammed by
an adversarial force, i.e., a boat with jamming equipment at
sea, and the communication link is lost and the autonomous
behavior engages. About the same time, the adversary initi-
ates an attack by cruise missiles on strategic targets in the
defended country.

It would be desirable if the aircraft, while moving out
of the jammed area, continue to survey for attacks. Any
detected cruise missiles will be reported by the aircraft as
soon as the border of the jammed area is reached. We make
the simplifying assumptions that the UAS can locate the
jamming boat, the transmission strength of the jammer, and
that a boundary between the jammed and non-jammed area
can be calculated.

UAS path planning is hardly a new problem. It has for
instance been applied for cooperative search and localiza-
tion [1] and offensive attacks in hostile environments [2].
However, as far as we know, our particular problem of path
planning to autonomously recover from intentional jamming
has not been addressed.

We approach this problem by looking for a policy, i.e.,
a function that given a situation description outputs rec-
ommended control parameters that define a flight path for
the aircraft. To find a suitable policy for all circumstances
is, however, challenging as many complex conditions are
involved including the initial location of the aircraft when it
is being jammed, how many cruise missiles are attacking, and
radar features. We capture the variations in these conditions
by computer simulation using the FLAMES simulator3.

To find a policy, we propose a machine learning method
based on stochastic approximation. However, given the con-
ditions of the project, in the paper we ultimately don’t
recommend and evaluate a certain policy. Instead of making
too many assumptions about priorities aircraft operator, we
settle with reasoning about how to look for an appropriate
policy in the methodology that we propose.

Section II presents our machine learning approach. In Sec-
tion III, we model the problem of representing aircraft flight
paths mathematically. Section IV explains the simulations.
Section V, presents the results of appying the methodology,
and Section VI some conclusions.

II. MACHINE LEARNING APPROACH

In this paper, we choose to approach UAS flight path
planning by learning a policy. Alternatively, a tactical expert
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or aircraft operator could possibly specify a policy man-
ually. However, conditions are complex, even for experts:
the aircraft may be equipped with advanced sensors with
hard-to-grasp properties, and style of attacks may vary. In
the learning approach, experts have a possibly easier and
more appropriate contribution. They can help design attack
scenarios, by specifying adversarial doctrine and selecting
sensor types for simulation.

A policy is a function p : S → A, where S is a set of
system states and A a set of actions. In our case, we look for
a policy that maps world states (S) to flight path parameters
(A).

A popular machine learning method to use for policy
learning is reinforcement learning (RL) [3]. RL prescribes
a sequential decision making, i.e., that the system makes
repeated decisions, and that for each decision only the current
state is considered (not the earlier states and decisions),
i.e., the Markovian property. Now, say that states in our
case mean locations of the aircraft and actions mean aircraft
heading. Then, since past actions are not considered, if we
were to use the RL policy we would risk ending up with
erratic paths. To avoid erratic paths, instead of selecting a
sequence of small heading corrections, we suggest to select a
full flight path directly in just one decision (from a restricted
family of reasonable paths).

We find RL to be on the one hand unnecessarily expressive
and complex to solve our problem and on the other hand,
as argued, we may end up with unpredictable flight times
to the border of the jammed area. Instead we turn to a con-
ceptually more simpler stochastic approximation formulation
[5]. The objective with stochastic approximation is to solve
optimization problems when sampled functional values are
noisy. It could involve a function F (x, ξ) which represents a
utility function, where x is selectable value and ξ a random
or unknown value which affects the utility value.

In our case, we define the generic utility by F (ξ; s, a),
where
• F - utility of a flight path out of the jammed area
• s - UAS state
• a - flight path parameters
• ξ - random variable affecting the outcome
The utility of a flight path will not be deterministic given

only the state of the UAS and a selected action, since other
factors such as difference in attack scenario affects the result.

We now define the policy in the following way:

p(s) = maxa∈AEp(ξ) [F (ξ; a, s)] , (1)

i.e., given a UAS state s, select an action that maximizes the
expected utility. Since p(ξ) is unknown, we use simulations
to pick samples of F to approximate Eq. 1.

When defining the state and action sets, we first note that
the learning time will increase with the number of options of
A and S. Hence there is a trade-off between a large number
of options (which provides flexibility and richness) and a
small number (faster learning).

When it comes to the number UAS states, although there
surely are advantages to divide the flight area of the UAS

into several different regions, we didn’t see a natural way
to divide the region into subregions, especially since the
autonomous flight path will be created dynamically based
on the location of the jammer. Instead we decided to remove
the parameter s from F and, hence, simplify it to F (ξ; a),
which results in the same path parameters regardless of the
state of UAS. Although the learned policy action is constant
and indifferent to the current location of the UAS, the actual
path generation uses the selected option a will integrate the
UAS location, as we will discuss in the next section.

III. FLIGHT PATH MODELING

In the previous section, we suggested learning a policy
described in Eq. 1. The policy should be applied in the
case the UAS loses its radio link to its base station. In this
section, we describe the set of options for the set of flight
path parameters, A.

We first consider the type of flight paths to consider.
Different types of paths are considered in the literature, some
included in [4]. Among the possible options, we select one
(the family of Bezier curves [6] named after Renault engineer
Pierre Bézier) which turn out to be useful for our purpose.

Bezier curves are characterized by their control points,
P0, . . . , Pn, where P0 and Pn define the end points. A Bezier
curve of the n-th order can be denoted by Bn(t), 0 ≤ t ≤ 1,
Bn, and Bn(0) = P0 and Bn(1) = Pn. Bezier curves (B-
curves) typically don’t pass through any of the other control
points. An example of a 2nd order B-curve, a so called
quadratic B-curve, is shown in Fig. 1.

Fig. 1. The boundary of the jammed area is modeled as the line
r(l) = r0 + lv. We plan a flight path, a quadratic Bezier curve, from the
aircraft’s current location (P0), using a learned direction (P1), and the end
point (P2) constrained by the line r(l) = r0 + lv.

In our work, we only consider quadratic B-curves (Eq. 2).
Higher order B-curves can express more complex paths, but
are at the same time more difficult to use with their additional
degrees of freedom. A consequence of higher-order B-curves
is that there might be multiple solutions for the same flight
parameters which introduces additional uncertainty in the
learning process.

B2(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2 (2)



Now we finally arrive at the problem of defining the action
parameters of A. Note that in our case, P0 denotes the
current location of the aircraft at the time it is beginning
to be jammed, and P2 should be on the boundary of the
jammed area. We have however no obvious selection of P1

and the boundary of the jammed area is not known until the
jamming starts. Also the distance between the aircraft and
the boundary is not known in advance and it is therefore
not appropriate to learn P2 from data as they can only be
determined at the time of jamming.

We include the control point P1 as part of the action
option which we believe is suitable as the attack can only
come from a few different directions. This is illustrated in
Fig. 2 with a red colored jamming boat in the middle and
the aircraft with a planned path in the left bottom corner.
Surrounding the surveillance area is a circle (the whole
circle is not shown here) consisting of a limited number of
directions. In our experiments, we use ten direction points,
i.e., Directions = {D0, . . . , D9}.

Fig. 2. Illustration of simulation scenario. D0-D9 corresponds to direction
points, the triangle in lower left corner is home base antenna, and the
triangle on right hand side is an adversarial jamming antenna. The dashed
lines visualize the separation vector from the base antenna to the jamming
antenna, perpendicular to this (located along the vector according to the
relative strength of the antennas) is the separation line between jammed
and non-jammed areas. The UAV is illustrated heading on a Bezier curve
towards the cross, according to principles of Fig. 1.

The direction point is one part of our action parameters,
the other is flight time, i.e., how long time the aircraft
travels in the jammed area before it leaves it can report
any observations to the base station. Also in this case,
we discretize and let time = {17, 19, . . . , 33}, where the
numbers represent flight time in minutes. Hence, our set of
action options A consists of all combinations of direction
points and flight times, i.e., A = Directions× time.

In summary, if the UAS becomes jammed, it selects the
learned action parameters (consisting of flight direction D∗

and time τ∗) that was learned through training and calculates
a flight path based on those parameters.

Since the number of action options is limited by our
definition of A, viz. |A| = |Directions| · |time| = 90, we
decided not to explore the action space (as would be typical
for reinforcement learning) but to exhaustively investigate the
performance of each possible action option. For each attack
scenario and action option investigated, we ran 50 simula-
tions4 (with pre-generated random scenario parameters) and
measured the number of detected cruise missiles.

We still need to show how the path is generated from
selected action parameters. As mentioned, the P0 B-curve
endpoint is directly given by the current aircraft position, P1

is the direction point of the selected action a, but we still
need to calculate the end point P2. We furthermore assume
that the jamming source can be located, Pd in Fig. 1, and
the base station, Pb. We make the simplifying assumption
that boundary of the jammed area is in the middle between
the jammer and the base station, represented by the middle
point r0 and the perpendicular vector v. This constrains the
possible values of P2 to the line r(l) = r0 + lv, where the
selection of P2 is defined by the value of l ∈ (−∞,∞).

A pseudo-algorithm for calculating P2 (Alg. 1) is included
in the Appendix. Finding the parameter l is dealt with in a
separate algorithm (Alg. 2) after transforming the selected
allowed travel time τ∗ to a path length c∗ (assuming an
average speed). Then the l∗ that generates the sought path
length can be found.

For quadratic B-curves, an analytic solution for their
length exists but the solution is complicated and difficult to
differentiate (we need to differentiate in order to find a solu-
tion for l∗ as explained below) [7]. Instead, we approximate
the B-curve by a polygon which intersects the B-curve at
certain points. L(B, k) represents this approximation for the
length of the B-curve B which sums the distances between k
equidistant points from B(0) ending in B(1). P2 is replaced
by r0+ lv, where l is the line parameter that we are looking
for (to derive a P2). The 2-D points have components with
x and y subscripts, e.g., P0 = (P0,x, P0,y). We let L(l;B, k)
denote the approximated length of a B-curve B divided into
k segments (and where P2 has been replaced by r(l)).

L(l;B, k) =

k−1∑
i=0

||B(
i

k
)−B(

i+ 1

k
)|| =

= . . .

=
1

k2

k−1∑
i=0

((
αix + lβix

)2
+
(
αiy + lβiy

)2)1/2
,

where αi• = P0,•(1− 2(k − i)) + . . .
. . .+ P1,•2(k − 2i− 1) + r0,•(2i+ 1)

and βi• = v•(2i+ 1)
(3)

Note that all parts of L(l;B, k) in Eq. 3 are constant except
for the line parameter l. Now that we can calculate the length
of the path to the jamming boundary for each possible B-
curve that ends on r(l), we will look for an l∗ that satisfies
the equation f(l) = L(l;B, k)− c∗ = 0.

4Hence, in total 4500 simulation runs per attack scenario.



The equation cannot be solved analytically, so we apply
the numerical approximate Newton-Raphson method [8]
which uses the derivative of the function (i.e., f ′(l)) and
looks iteratively for a solution until an acceptable one is
found (Eq. 4).

ln+1 = ln −
f(ln)

f ′(ln)
(4)

IV. SIMULATION

Estimating the policy expressed in Eq. 1 involves running
simulations to approximate the estimated value of the utility
function F .

We use the FLAMES simulation tool (version 12.0) to
create those simulations we need to learn the UAS policy.
FLAMES provides flexibility to tailor a scenario and those
models that we need for our simulations and learning.
Some basic useful simulations models are provided with
FLAMES, that can be adapted by custom C/C++ coding.
This flexibility allowed us to create our own models for,
e.g., the autonomous behavior and radar, and other aspects
of our scenario such as adversarial cruise missiles and
communication jamming.

The purpose of this work has been on the development
of autonomous behavior and the simulation modeling has
focused on making reasonable rather than realistic models.
Some selected simulation values follow here:
• The aircraft was modeled as a MALE (medium altitude

long endurance) platform having a top speed of 100
m/s, operating at an altitude of 8 km.

• The jammer breaks the radio communication, but the
radar is unaffected and can detect targets of interest up
to 100 km distance.

• The cruise missiles have a radar cross section that is
0.5 m2 and a speed of 240 m/s. The missiles fly in five
groups of three missiles each (hence a maximum of 15
can be detected by the UAS).

• Three different attack scenarios are modeled.

V. RESULTS

As stated in previous sections, for each attack scenario we
ran 50 simulations for each of the 90 possible action options,
hence 4500 simulations for each scenario. The number of
detected cruise missiles during each simulation was logged
(the maximum number of detectable missiles were 15 in
each simulation). In some simulations, results could not be
achieved, because either no possible path existed (within the
given time limit) or possible paths had to go outside the
jammed area. The raw results of the simulations for each
attack scenario is shown in Fig. 3, 4, and 5. In this paper,
we leave it open to the responsible operator to decide what
would consistute an appropriate utility (and, hence, policy).
It could be, e.g., to detect as many missiles as possible during
the time spent in the jammed area or, alternatively, to report
the first detected missile as soon as possible.

The results in Fig. 3, 4, and 5 are presented in the same
way. In the front, along the x-axis (of the x-y-plane) the

action options (e.g., direction P1 and time 31 mins) are
enumerated. Along the x-axis all options which yielded some
detection are included, others may be left out. Along the y-
axis (moving away from the reader) are discrete slots for the
number of missiles detected stacks from 0 to 15. The stacks
in each position (stretching out along the z-axis) show the
ratio of simulations for the option in question that resulted
in that exact number of detections. The darker stacks depict
simulations with few detections and the light ones more
detections. Note that some options have no stacks at all due
to that they did not result in any flight paths.

For scenario 1 (Fig. 3), (P3, 33 mins) would be a policy
that optimizes Eq. 1 if the utility is expressed in only the
number of detected missiles. That option, however, requires
a lot of travel time before the results can be reported. Instead,
if reporting time is of essence, the option (P2, 25 mins) is
a better choice with many observations in shorter time and
with few failed attempts to plan a path.

The result in Fig. 3 can be compared to using the non-
adaptive default behavior of simply flying straight back to
the home base which results in (our simulations) all missiles
being detected in 24% of the simulations while none is
detected in 58% of the cases which is worse than the
presented cases in Fig. 3.

Fig. 3. The simulation result for Attack scenario 1.

The results for scenario 2 (Fig. 4) are less spread out
for each option, i.e., either a lot of missiles are detected
or none. That directions P0 and P1 yielded rich paths has
to do with that those paths are close to the intended missile
target. This result suggests that expected time to impact could
be estimated and be part of the utility. Scenario 3 (Fig. 5)
yielded very few successful paths. It could be that our B-
curve paths are insufficient for this scenario and that other
types of path are necessary.

VI. CONCLUSIONS

Our suggested approach consists of applying a machine
learning approach to find options for path planning param-
eters. Although our scenario is military surveillance, there
is no reason that it shouldn’t be useful to jamming in
commercial or other civilian applications. Our approach of
simulation-based policy estimation allows a subject matter



Fig. 4. The simulation result for Attack scenario 2.

Fig. 5. The simulation result for Attack scenario 3.

expert to design the relevant scenarios to study as well as
the mission objective function.

A large amount of simulations are used to form a decision
basis where the subject matter expert can select a trade off
between the different goal parameters. In our case, such goal
parameters could involve to 1) assure to report at least one
cruise missile (if any exist) in as short time as possible; 2)
report as many cruise missiles as possible; or 3) to maximize
the number of detections for a given flight time.

APPENDIX

Alg. 1 describes how to calculate the end point, P2, of the
quadratic Bezier curve. A part of that algorithm is to find the
l-parameter of the line that constrains the possible values of
P2. Finding l is dealt with separately in Alg. 2.

Algorithm 1: Calculate P2 of the Bezier curve
Input: P0 Bezier start position. P1 Bezier
control parameter. Pd is the position of the
radio jammer. Pb position of the homebase.
time the allowed time.
Output: A 2-D point P2

CALCULATEP2(P0, P1, Pd, Pb, time)
# find start position to look for P2

(1) r0 ←
Pb + Pd

2
# define rotation matrix

(2) rot−π/2 ←
[

0 −1
1 0

]
# vector for P2 solutions

(3) v ← Pd − Pb
||Pd − Pb||

· rot−π/2

# travel time to curve length trans-
formation

(4) len← time · avgspeed
# Call to Alg. 2

(5) l← FINDL(r0, v, P0, P1, len)
(6) return r0 + l · v

Algorithm 2: Find a parameter l (defining P2)
that results in a Bezier curve of about length len that is
constrained by P0, P1, and P2(l) = r0 + lv.
Input: P0, P1 are two quadratic Bezier curve parameters, as
2-D points. r0 and v are parameters on the line that defines
possible P2, i.e., P2 = r0 + lv.
Output: A real value l. len is the desired length of the Bezier
curve.
FINDL(r0, v, P0, P1, len)

# perform Newton-Raphson to find l
# intialize l

(1) l← 0
# Maximum number of iterations

(2) maxiter ← 20
# Iteration counter

(3) iter ← 0
# How large error in meters that we can accept

(4) tolerance← 5
# how many parts the Bezier should be divided into

(5) k ← 10
# Algorithm does not check if a solution exists!

(6) while iter < maxiter and |L(l;B, k) − len| >
tolerance

(7) nom← L(l;B, k)− len
(8) denom← d

dl (L(l;B, k))
(9) if denom = 0

# deal with bad start value
(10) l← l + 0.01
(11) continue
(12) q ← nom/denom
(13) l← l − q
(14) iter ← iter + 1
(15) return l



Finally, the required derivative derivative of the path length
f ′(l) = d

dlL(l;B, k) which appears in line (8) of Alg. 2 is:

d
dlL(l;B, k) =

{
xi(l) , αix + βixl, yi(l) , αiy + βiyl

}
=

1

k2

k−1∑
i=0

(
xi(l)

2 + yi(l)
2
)−1/2 · . . .

. . . · (x′i(l)xi(l) + y′i(l)yi(l))
(5)

αi• and βi• are defined in Section III.
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