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Abstract—In this paper we present the problem of optimizing
a business process model with the objective of finding the most
beneficial assignment of tasks to agents, without modifying the
structure of the process itself. The task assignment problem for
four types of processes are distinguished and algorithms for
finding optimal solutions to them are presented: 1) a business
process with a predetermined workflow, for which the optimal
solution is conveniently found using the well-known Hungarian
algorithm. 2) a Markovian process, for which we present an
analytical method that reduces it to the first type. 3) a non-
Markovian process, for which we employ a simulation method
to obtain the optimal solution. 4) the most general case, i.e. a non-
Markovian process containing critical tasks. In such processes,
depending on the agents that perform critical tasks the workflow
of the process may change. We introduce two algorithms for this
type of processes. One that finds the optimal solution, but is
feasible only when the number of critical tasks is few. The second
algorithm is even applicable to large number of critical tasks
but provides a near-optimal solution. In the second algorithm
a hill-climbing heuristic method is combined with Hungarian
algorithm and simulation to find an overall near-optimal solution
for assignments of tasks to agents. The results of a series of tests
that demonstrate the feasibility of the algorithms are included.

I. INTRODUCTION

Business process modeling refers to describing business
processes at a high abstraction level, by means of a formal
notation to represent activities and their causal and temporal
relationships as well as specific business rules that process
executions have to comply with [1]. Over the years, several
business modeling methodologies such as flow chart, data
flow diagram, control flow diagram, Gantt chart, and Unified
Modeling Language (UML) have been employed to model and
analyze different aspects of business processes. In recent years
Business Process Modeling Notation (BPMN) [2] has emerged
as a de facto standard for modeling organizations and business
processes [3]-[5].

BPMN is a graphical notation that provides organizations
the capability to document, analyze and communicate their
business procedures in a simple and standard manner. The
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graphical notation of BPMN is chosen to resemble the flow-
chart format. One of the objectives in the development of
BPMN has been to create a simple and understandable mech-
anism for creating business process models, while at the same
time being able to handle the complexity inherent in business
processes. For this reason the graphical notation is organized
into a small set of specific notation categories. While the reader
of a BPMN diagram can easily recognize the basic types of
elements and understand the diagram, additional variations and
information can be added within the basic elements to support
the requirements for complexity without dramatically changing
the basic look and feel of the diagram [2].

Even though one of the major goals of business process
modeling and BPMN is to express the business process
structure and provide the capability of understanding and
analyzing the business procedure, it is possible to extend
BPMN to cover other aspects of a process model. We suggest
extending the BPMN constructs with a performance metric
using characteristic of agents and the importance of these
characteristics in different activities. The ultimate goal of this
approach is to provide a means to estimate the quality of
outcome of the process and improve this outcome without any
major changes in the process model and only by reorganizing
human resources within the existing organizational structure.

The task to measure performance of business processes is
a challenging one and it is not possible to define a universal
measure of performance, which is applicable to all different
types of processes. Here, we are mainly interested in processes
performed by humans resources or agents. Measuring human
performance is generally more difficult than measuring per-
formance of non-human systems because of the versatility of
individual characteristics and unpredictable nature of human
beings. Our point of departure is the assumption that the qual-
ity of the output of a business process is highly dependent on
the degree of matching between the tasks and the capabilities
of agents that perform these tasks. Individual characteristics
like cognitive ability, motivation, mental models, expertise,
experience, creativity and mood all have critical impacts on
the performance of individuals.

In BPMN, the association of a particular action or set of



actions with a specific resource is illustrated through the use
of the Pool and Lane constructs, commonly called Swimlanes.
However, Wohed et al. show that the BPMN’s support for the
resource perspective is not sufficient [6]. To overcome these
limitations an extension using UML constructs is introduced
by Siegeris and Grasl and an example of process modeling for
a large-scale modeling effort using BPMN is provided [7].

To the best of our knowledge there are no published studies
on the evaluation of the performance of BPMN diagrams.
However, a related approach has been proposed by Magnani
and Montesi to evaluate the (monetary) cost of BPMN dia-
grams [8]. Two methods are suggested: cost intervals, in which
the cost of a task is expressed by its lower and upper limits,
and average cost in which, an average cost is assigned to each
task together with the probability of alternative paths. In both
methods costs are aggregated in an additive manner to the
overall cost of the entire process.

In the same manner, we suggest extending the BPMN
constructs such as Task and Activity with a performance metric
and provide a model to estimate this value using characteristics
of tasks and agents. In BPMN, activity is a generic term for
work that company performs, which can be either atomic (task)
or non-atomic (compound) [2]. Nevertheless, we use the terms
task and activity interchangeably throughout this paper.

We also suggest how to aggregate values added by agents to
tasks to obtain the overall performance of a business process
model. Considering this metric as an objective function an
optimization problem is defined and solution to the problem
is provided.

The outline of the rest of this paper is as follows. Section II
describes a model for estimating the performance of human
agents. In Section III we briefly suggest how performance of
agents should be aggregated to yield a single performance
measure for the business process model and the optimization
problem is formulated. In Section IV several algorithms for
finding the optimal and near-optimal solutions are presented.
Section V, discusses results from test scenarios. Section VI
concludes the paper and discusses future work.

II. A MODEL FOR MEASURING PERFORMANCE OF HUMAN
AGENTS

In a previous paper [9] we presented a model for estimating
performance of human agents in a business process. In this
model the performance or value added by an agent to a task
is defined as a function of the capabilities of the agent and
the importance of these capabilities for the task. Capabilities
of an agent and corresponding importance for the task are
assumed to be subjective assessments that are assigned by
domain experts and decision makers to the agents and tasks.
Furthermore, the influence of peripheral factors, such as work-
ing environment or access to adequate computer software and
tools on the performance of agents are discussed.

The model suggests that the weighted sum of agents’
contributions to tasks constitute an indicator of the quality
of a business process. This is based on the assumption that a

higher amount of qualified work yields an output that is more
thoroughly worked out.

The performers of activities are modeled as a collection of
agents. Each agent has a role, which defines the set of per-
missible positions in the organization, and several attributes,
which define the characteristics of the agent and its behavior.
Examples of agent attributes that influence the output are:

« Knowledge or expertise (competency and technical skills)

o Experience

o Cognitive ability (the ability to solve a problem)

o Creativity (the ability to find new and original problem
solutions)

o Communication (the ability to express knowledge)

¢ Mood (the psychological mood)

« Motivation or willingness

The effect of these characteristics on the performance de-
pends heavily on the nature of the work, e.g. creativity may
have a huge impact on a problem solving task, while it is less
important for work on a conveyor belt.

Considering m agents each having n attributes, the capabil-
ity matrix C = [¢;;]mxn, Where ¢;; is the attribute j of agent
i is defined. In the same way, given s tasks the weight matrix
W = [wji]nxs, where wj; is the weight of attribute j for task
l is defined. The weighted sum of attributes v;;, where v;; is
the value added by agent 7 to task [, is estimated by

n
vy = Zcijwjl~ (D
i=1

In this model, the numerical values of attributes c;; and
weights w;; are (subjective) values assigned by domain experts
and decision makers to individuals and tasks.

Other conditions such as environmental factors (e.g. high
noise levels) and fechnical aids (e.g. computers) may also
influence the performance of the agents.

We designate these factors by the common name periph-
eral factors, since they impact the performance indirectly by
strengthening or weakening one or more specific capabilities.
Defining the peripheral factor matrix P = [pg;|,xn, Where
Dk; 18 the effect of peripheral factor k on attribute j of agents,
one can say that the peripheral factors modify the capability
matrix, i.e. map the C to the modified capability matrix
G = [gijlmxn. Where g;; = H;Zl prjci;- If peripheral factors
have no effects on the capabilities, i.e. pr; = 1, Vpi; € P,
then G = C. By incorporating the peripheral factors (1) is
modified to

n

vy = Z(H PhjCij )Wji- 2

j=1 k=1

Expressing the above in matrix form, the value-added
matrix V = [v;;]mxs, Where vy is the value added by agent 4
to task [ is calculated by

YV =GWw. 3)



III. PROBLEM FORMULATION

Matrix V = [vji]mxs, as calculated in (3), defines the
values added by agents to a process for different tasks that
compose the process. In a Business Process Model (BPM),
each activity may be performed several times, something that
may be predetermined, modeled as a random number, or may
depend on how the tasks are performed (which agents have
performed the tasks). Moreover, the importance of different
tasks on the overall performance of the process may vary. In
aggregating values added by agents to a process at least the
following three factors should be considered.

1) How many times each activity is performed, we denote

this number by x; for activity [.

2) The impact factor of each activity on the overall perfor-
mance of the process denoted by g;.

3) The assignment of activities to agents. We denote this
assignment scheme by matrix Z = [2j]mxs, Where
zy = 1 if task [ is assigned to agent ¢ and O otherwise.

Hence, we define the total value added by agents to a process,
denoted by u(Z), as the sum of value added to each task
(vi1z5) weighted by the impact factor of the task (¢;) and
number of times the task is performed (x;). Generally number
of times a task is performed, i.e. x; is not a fix and prede-
termined number and it may be a random variable or depend
on the assignment scheme. Assuming that the performance of
a BPM is defined as above, the optimization problem can be
formulated as the following.

Given the objective function

u(Z) = Z Z z1(Z)qvazi, “4)

=1 i=1
find an assignment matrix Z, i.e. all z; € {0,1}, such that
u(Z) is maximized, subject to constraints

> za=1, foralll€{l,...5} (5)
=1
ZZ” =1, forallie{1,...m}. (6)
=1

Constraints 5 and 6 mean that each task is assigned to one
agent and each agent performs one task, implying that numbers
of tasks and agents are equal. Equality of the number of tasks
and agents does not imply any loss of generality, since these
numbers can always be balanced by adding dummy tasks or
agents, which do not add any value to the process.

IV. PROPOSED SOLUTION

In its most general case the objective function defined in (4)
incorporates a random element z;(Z) and there is no easy
way to find the optimal assignment. However, depending on
the type of the process, the problem may be reduced to
simpler problems which require less efforts to be solved. In
the following we discuss first less complicated cases and their
solutions, and finally introduce an algorithm for more general
cases.

A. Deterministic processes

When no randomness is involved in the process and the
value of x; for all [ is predetermined and independent of
Z, the problem is reduced to a standard assignment problem.
Equation (4) can be rewritten as u = Y ;_, >+, v}z, where
vl = Tqu.

With constraints 5 and 6, number of feasible solutions to
the task-assignment problem grows factorially in the number
of tasks (agents), which makes an exhaustive search method
practically impossible. However, the well-known Hungarian
algorithm solves the task-assignment problem in polynomial
time of the number of tasks. The Hungarian algorithm, also
known as Kuhn-Munkres algorithm, was originally developed
and published by Harold Kuhn [10] and had a fundamental
influence on combinatorial optimization [11]. Since we employ
this method as a part of our algorithms presented later, we
outline the key steps of the method here.

The matrix interpretation of Hungarian algorithm assumes
a non-negative matrix C = [cost;;]mxm, Where the element
cost;; represents the cost of assigning task [ to agent i, and
finds a minimum cost assignment of the tasks to the agents.
The algorithm consists of the following steps [12], [13].

1) Subtract the minimum value of each row from every
element of that row.

2) Subtract the minimum value of each column from every
element in that column.

3) Use as few lines as possible to cover all zeroes in the
matrix.

4) Add the minimum uncovered element to every covered
element. If an element is covered twice, add the mini-
mum element to it twice.

5) Subtract the minimum element from every element in
the matrix.

6) Cover the zero elements with lines again. If the number
of lines is not equal to the number of rows, return to
step 4.

7) Select a matching by choosing a set of zeroes so that
each row or column has only one selected.

Informally stated, the algorithm attempts to build a feasible
solution by identifying agents with minimal cost for each task
and tasks that are performed by minimal cost by each agent. If
these assignments are infeasible the algorithm will select the
second best mapping and tries to achieve a feasible solution,
while keeping the cost to a minimum. A solution is feasible
when every task has a unique agent assigned to it.

To find the maximum gain of assigning tasks to agents one
can subtract all elements of the matrix V' from a value which
is greater than all of them and apply the Hungarian algorithm
to find the assignment scheme that gives the minimum cost for
the obtained matrix. This solution gives the maximum gain for
the original matrix.

B. Markovian processes

In many business processes the workflow is not prede-
termined and may take different paths, depending on what



happens during the performance of activities. In such condi-
tions the value of the objective function u as defined by (4)
is a random variable and a natural approach is to find an
assignment scheme that maximizes the expected value E[ul.
If the uncertainty in the business process is modeled by fixed
probabilities assigned to alternative paths, then the business
process model can be considered as a Markov chain. BPMN’s
Activities will constitute transient states and End Events will be
absorbing states of the Markov chain. Using (4) the expected
value of the objective function is calculated by

S m
E(lu)) =YY Elwlquvaza. (7)

=1 i=1
It can be shown that E[x;] is the first row of the invertible
matrix (Z — Q)™ 1. Here Z is the identity matrix and Q is
obtained from the transition matrix of the Markov chain if we
strike off all rows and columns containing absorbing states [9].
In other words the expected value of the number of times each

task is performed can be calculated by

E[X] = (1,0,0,...)(ZT - Q) !, (8)

where X = [z1]1xs = [21,22,...,x;] is the number of times
each task is performed. Using (8) one can rewrite (7) as

Blul =YY vhza, )

=1 1i=1

where v}, = E[z;]qv;. The optimal solution to the obtained
objective function can be found by Hungarian algorithm.
These steps are summarized in Algorithm 1.

Algorithm 1: Optimal Assignment of a Markovian Process
given: agents A, tasks T, Business Process Model BPM
return: optimal assignment Z

V «— GW (Equation 3)
derive Markov chain M from BPM
E[X] « (1,0,0,...)(T — Q)™ (Equation 8)
for each task t; € T

for each agent a; € A

vy — Elxi]qua

end for
end for
Z «— Hungarian algoril‘hm(z:ls:1 Z:’;l vglzil)

O Co N QYN W N~

C. Non-Markovian processes

Although the presented analytical method in Section IV-B
is appealing, it can only be used for a Markovian process.
In modeling a real-world business process, the Markovian
constraint is usually too restrictive and not justified. The reason
is that the probability that the workflow takes a path generally
depends not only on the current state of the process but also
on the history of the workflow. For non-Markovian processes
there is no analytical solution and alternative approaches such
as simulation must be considered.

The simulation method follows the intuitive structure of the
BPMN diagram. Tokens are generated at Start Events and are

propagated along Sequence Flows, across Tasks, Activities, and
Gateways, being duplicated and merged when necessary, until
they are consumed by an End Event. An element holding a
token is considered to be active, which may result in updating
the values of some parameters. The simulation is repeated a
sufficient number of times so that the average values of the
desired parameters are calculated. Details of the simulation are
explained in a Master thesis [14] by one of the co-authors.

The aim of the simulation is to estimate FE[X], i.e. to
determine the average value of number of times each task
is performed. Once E[X] is estimated, the objective function
can be calculated as in (9) and the Hungarian algorithm can be
employed to efficiently find the optimal solution. The approach
is shown in Algorithm 2.

Algorithm 2: Optimal Assignment of a Non-Markovian Process
given: agents A, tasks T, Business Process Model BPM
return: optimal assignment Z

V — GW (Equation 3)
run simulation of the BPM
E[X] < average token through each task
for each task t; € T

for each agent a; € A

vy — Elxi]qua

end for
end for
Z «— Hungarian algorilhm(X:‘;:1 221 v 2i)

O Co N QY N Wi~

D. Assignment depended Processes

In all three cases discussed above, i.e. deterministic, Marko-
vian, and non-Markovian processes we have assumed that
there is no correlation between the assignment scheme and
the path of the workflow or on the probabilities of branches
at decision points. However, in many situations this is not the
case. For instance, assignment of a task to a less qualified agent
may increase the probability that the task is repeated several
times. In such scenarios some assignment combinations may
change the probabilities that govern the path of the workflow.
This means that z; in (4) is a function of the assignment matrix
Z. The algorithms as presented above do not result in a unique
value-added matrix anymore and are inadequate.

For this problem, we present two solutions shown in Al-
gorithms 3 and 4. The first one finds the optimal assignment
but is only feasible for scenarios where the number of tasks
that affect probabilities of the workflow is small. The second
algorithm finds near optimal solutions in the general case.

Both these algorithms are presented for the general non-
Markovian process, which require the simulation of the busi-
ness process model. Due to lack of space corresponding
algorithms for deterministic and Markovian processes are not
included here. They can be considered as special cases of
the presented algorithms. However, it is possible to modify
algorithms in Sections IV-A and IV-B to obtain simplified
versions of Algorithms 3 and 4.



Algorithm 3: Optimal Assignment of a Depended Process
given: agents A, critical tasks Te, non-critical tasks Thpe,
Business Process Model BPM
return: optimal assignment Z

1V« GW (Equation 3)
2 1 < number of tasks in T,
3 Q « all possible permutations of T agents € A
4 for each w € Q
5 max_gain «— 0
6 Z. «—assign tasks in T, to agents in w
7 run simulation of the BPM(Z.)
8 E[X] < average token through each task
9 for each task t, € T
10 for each agent a; € A
11 vl — Elzi]qva
12 end for
13 end for
14 Zne < Hungarian (Ty,., non-busy agents)
15 gain — u(Z. U Zp.)
16 if gain > max_gain
17 max_gain <— gain
18 Z— Z.UZp
19 end if
20 end for

In Algorithm 3 the steps of finding the optimal solution
for the case that assignment of just a few tasks affect the
workflow are shown. From now on, we call such tasks
critical tasks, and denote the set of these tasks by 7.. If
the set of all other non-critical tasks is denoted by T,
we have T,UT,,, =T and T, N T,. = 0. The basic idea of
the algorithm is that by partitioning the tasks in two parts
and employing the Hungarian algorithm to find the optimal
assignment for non-critical tasks, the run-time complexity of
the algorithm is kept relatively low. The complexity of the
algorithm is O((7. + Tye)!72./Tne!), where 7, and 7. are the
cardinalities of T}, and 7, respectively. Clearly, this algorithm
is feasible only for small values of 7.

A polynomial algorithm that finds near-optimal solutions is
presented in Algorithm 4. Like the one presented in Algorithm
3, this algorithm relies on partitioning tasks in two sets of criti-
cal tasks (7.) and non-critical tasks (7},.). The optimal solution
for non-critical tasks is found by the Hungarian algorithm,
while a heuristic optimization technique is employed to find a
near-optimal solution for critical tasks. The heuristic method,
which we use and is shown in Algorithm 4 is quite similar to
hill-climbing. The critical tasks 7T, are assigned to a random
feasible set of agents A, in line 2 of the algorithm. This
solution is improved in the main while-loop of the algorithm
between lines 5 — 31. The loop is stopped if it reaches a
local maximum and the result does not improve anymore or
the loop has iterated a sufficient number of times and the
stop_condition has been set to true. In each iteration of the
outer for-loop between lines 7 — 30 an assignment of a critical
task to an agent is removed and in the inner for-loop between
lines 10 — 28 this task is assigned to all non-busy agents. This
assignment is used to run a simulation of the BPM in line 13
to estimate the average number of times each task is performed
(line 14). Having the expectation of these numbers a standard

task-assignment problem is formulated in lines 15 — 19 and
Hungarian algorithm is used to find the optimal solution for
the non-critical tasks and so far non-busy agents (line 20). The
gain is calculated for the current assignments for critical and
non-critical tasks (line 21). The best assignment for the task
is distinguished in lines 22 — 27 and added to the assignments
of critical tasks (line 29).

Algorithm 4: Near-Optimal Assignment of a Depended Process
given: agents A, critical tasks Tc, non-critical tasks Thpe,
Business Process Model BPM
return: near-optimal assignment Z

VY «— GW (Equation 3)
Z. «— assign T, to a random feasible set of agents
Ay and mark all agents ap € Ay as busy
3 maz_gain <0
4  progressing «— true
5 while progressing and not stop_condition do
6 progressing < false
7 for each task t. € Tc
8 release agent ay performing task t.
9 Ze— Zo\ {(te, an)}
10 for each agent ay € A which is free
11 assign t. to ay and set ay as busy
12 Ztmphzcu{(tcvaf)}
13 run simulation of the BPM(Zpyp)
14
15
16
17
18
19
20

N~

E[X] « average token through each task
for each task t, € T
for each agent a; € A
/
vy — Elzi]qua

end for

end for

Zne < Hungarian (T, non-busy agents)
21 gain «— u(Zimp U Zne)
22 if gain > max_gain
23 mar_gain < gain
24 z — (te,ay)
25 Z — Zt'mp U ch
26 progressing «— true
27 end if
28 end for
29 Ze— Zimp U 2z
30 end for

31  end while

Our tests of the algorithm indicate that regardless of the
choice of the initial random assignment, the quality of the
near-optimal solutions are generally very high when T, < T,
i.e. they have a value above 90% of the value of the optimal
solution. However, having a smaller number of critical tasks
improves the performance of the algorithm. This is due to
the fact that the Hungarian algorithm always provides the
optimal solution for non-critical tasks. Algorithm 4 can easily
be modified to a random restart hill-climbing algorithm in
order to improve the result.

V. IMPLEMENTATION AND EXPERIMENT RESULTS

In order to test the algorithms suggested above we have
developed an application program in C'#, which takes advan-
tage of calling models developed in the simulation software
Arena [15]. We omit the details here and refer the reader
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Log:
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Runhing permutation [1, 8 locked), 1.7, 1. 7 (locked). 1. 1]
The best zolution is [Agent 7, Agent 8, Agent 2, Agent 3, Agent 1, Agent 6, Agent 5, Agent 4] with gain: 1022332
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The best zolution is [Agent 1, Agent 8, Agent 2, Agent 3, Agent B, Agent 5, Agent 7, Agent 4] with gain: 92.7639
Runhing permutation [1, 8 locked), 1.1, 1. 5 (locked), 1. 1]
The best solution iz [gent 1, Agent &, Agent 7, dgent 2, Agent B, Agent 4, Agent 5, Agent 3] with gain: 107,951
Runhing permutation [1, 8 locked), 1.1, 1. 4 (locked), 1. 1]

Run

Fig. 1.

The application program running for 8 tasks and agents.

Fig. 2. A process with 8 tasks. Gateways after tasks 2 and 6 may change
the workflow.

to the Master thesis by one of the co-authors [14]. The
aim of this application originally has been to provide a tool
that combines the strengths of simulation for constructing
the relation between agents and tasks, and the efficiency of
Hungarian algorithm to find out the optimal value. However,
with little modifications it has been used to test the above
algorithms. A screen shot of the application searching for the
optimal solution for a BPM consisting of 8 tasks is shown
in Fig. 1. The BPM developed in Arena is also shown in
Fig. 2. One of the features of the application developed in [14]
is a BPMN template developed for Arena, which provides a
convenient tool for modeling business processes. To run the
optimization problem one should first develop the BPM in
Arena and then start the application. The application reads
required data from the Arena model and runs the Arena
simulation when necessary.

T

-
1

|
|
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’—& Task 93 Task 94 Gateway Task95 |}—{ Task9 ;—

Fig. 3. A process with 96 tasks. Gateways after tasks 4i+2;1 =0, 1, ..., 23
may change the workflow.

A. Test of Algorithm 2

To test the performance of Algorithm 2 a series of experi-
ments with different problem sizes is conducted. In all these
simulations number of tasks is a multiple of 4, starting with
8 and up to 96 tasks. The workflow goes through all tasks
sequentially, however, Gateways after tasks 4142, ¢+ = 0,1, ...
may change the workflow and send the token upstream to task
4i+1. The probability of this event is chosen to be a decreasing
function of the number of times the token has already passed
tasks 4¢ + 1 and 47 + 2. This assumption means that the
process is not Markovian and has some kind of memory, i.e.
each failure to perform tasks 47 4+ 1 and 4¢ + 2 increases the
probability of succeeding in future trials.

Fig. 2 and Fig. 3 show the simulation models for 8 and 96
tasks respectively. All tasks are not shown in Fig. 3, due to
the lack of space. The values for agent attributes are randomly
chosen from a uniform distribution between 0 and 4. The
values for task attributes are chosen randomly from a uniform
distribution between 0 and 4 such that the constraint for the
sum of activity attributes is satisfied. The results of the test for
Algorithm 2 are summarized in TABLE I. For each problem
size, the gain for the optimal solution and minimum gain are
presented. The number of feasible solutions for each size is
also given. Execution time for the largest problem size with
96 tasks on a modest computer (Celeron 1.73 GHz processor
and 2GB RAM) is under 100 seconds.

B. Test of Algorithm 3

For test of Algorithm 3, we use models of the type
shown in Fig. 3. However we assume that task numbers
494+ 2,7 =0,1,... are critical, i.e. depending on the agent
performing these tasks the probability of alternative paths in
Gateways may change. The largest problem that can be solved
in a reasonable time by Algorithm 3 is one with 16 tasks.
The algorithm runs 16!/12! = 43680 simulations and the



TABLE I
RESULTS FOR ALGORITHM 2

Tnitial Random Assignments === [10,21, 3,14,35, 26,47, 28,19, 10, 11, 32]
to Critical Tasks: =---- [46,42,35,37,12,32, 38,45, 1,35,19, 16]
e [35,3) 14,38, 7,21, 2,19, 40, 44,48, 24]

250 T T T

Value of Objectve Function

150 1 1 1 1 1 1 1 1 1 1 1
0 13 26 39 52 65 78 91 104 117 130 143 156

Number of Simulations

Fig. 4. Result of Algorithm 4 on a model having 16 tasks showing
convergence of five initial random solutions toward the optimal one.

same number of instances of the Hungarian algorithms, which
can be compared with the number of required simulations
in an exhaustive search (2.09 x 10'3). An experiment on
a modest computer (Celeron 1.73 GHz processor and 2GB
RAM), which was not especially dedicated to this task was
completed in about one week and the value 215.37 for the
optimal assignment was obtained.

C. Test of Algorithm 4

The above result (215.37), obtained for 4 critical and 12
non-critical tasks is compared with the results of Algorithm 4
for the same problem. As shown in Fig. 4 all five initial random
solutions after a small (different) number of simulations reach
a local maximum, all near the optimal value 215.37. The rather
high values of the initial random solutions are due to the
fact that they are combined with the results of the Hungarian
algorithm for 12 non-critical tasks.

To evaluate the efficiency of Algorithm 4 on larger models
a series of tests on a model with 48 tasks is conducted and

Size | Min Gain | Max Gain | Nr. of Combinations Optimal olution [40, 818,29, 43, 5,36,22,30,41,33, 1]
8 46.80 103.71 4.03 x 101 g — — :
16 | 93.70 213.53 2.09 x 1013 650 g
24 124.34 323.13 6.20 x 1023 < 640
32 | 16225 435.38 2.63 x 1035 g o
40 203.30 554.92 8.16 x 1047 £ 620
48 249.52 655.53 1.24 x 1061 :E 610
56 | 298.37 77547 7.11 x 1074 S w0
64 | 32725 382.18 1.27 x 1089 g 0
72 393.78 1016.79 6.12 x 10103 z 0
80 451.29 1137.24 7.16 x 10118
88 | 506.57 125600 | 1.85 x 10134 >
96 556.60 1385.57 9.92 x 10149 3605 w4 I WE 15 Im 2% ms s a0 4
Number of Simulations
Initial Random Assignments ====~ [16,12, 7,13] -~ [13, 4, 5, 3]
to Critical Tasks: ===~ [13, 4, 5, 3] =[5, 7,15,11] Fig. 5. Result of Algorithm 4 on a model having 48 tasks showing
et sontion Fi, 1: 12 i]] convergence of three initial random solutions toward the optimal one.

the results are compared with the optimal solution. Obviously,
it is not feasible to find the optimal solution by Algorithm
3 for such a large model. Therefor, the model is deliberately
chosen such that it is possible to find the optimal solution by
Algorithm 2, i.e. it has no “real” critical tasks. The model has
the same configuration as the models in Fig. 3, i.e. the number
of “critical” tasks is 12 and the total number of tasks is 48.
As shown in Fig. 5 the three initial random solutions evolve
rather rapidly towards the value of the optimal solution. The
figure includes only the results for one execution of the main
loop of the algorithm. However, the results do not reach a
local maximum in this stage and continue to improve.

VI. CONCLUSION AND FUTURE WORK

In this paper we employed a model of human agents’
performance in a business process to estimate an overall
measure for performance of a BPM. This model is based
on the agents capabilities, the weight (importance) of these
capabilities for each task, and the effect of peripheral factors
on these capabilities. This performance metric is used to find
the optimal assignment of tasks to agents. Four types of
processes are distinguished.

1) Deterministic process with a predetermined workflow.
The optimal solution for this type of processes is found
by using the Hungarian algorithm in polynomial time.

2) Markovian process. We presented an analytical method
to calculate the number of times each task is performed
and reduced the problem to type one, which can be
solved using the Hungarian algorithm.

3) non-Markovian process for which we use a simulation
method to estimate the expected values of number of
times each task is performed. These values are used to
find the optimal solution.



4) non-Markovian process for which the probabilities of
alternative paths of the workflow are a function of
assignment of critical tasks to agents. Critical tasks are
those tasks that may affect the workflow. We introduced
two algorithms for this type of processes. The first
one finds the optimal solution, but is feasible only
when the number of critical tasks is few. The second
algorithm that is even applicable to rather large num-
ber of critical tasks, provides a near-optimal solution.
In this algorithm a hill-climbing heuristic method is
combined with Hungarian algorithm and simulation to
find an overall near-optimal solution for assignments of
tasks to agents. The Hungarian algorithm always finds
the optimal assignment for non-critical tasks and the
heuristic method tries to find near-optimal assignments
for critical tasks. Both these methods employ simulation
in order to deal with the uncertainty in the system.

A series of tests that demonstrate the feasibility of the dis-
cussed algorithms is conducted and the results are included.
These tests confirm that the algorithms are well-performing
for at least medium sized assignment problems.

One of the shortcoming of the method introduced in this
paper is the model of performance of human agents, which
does not take into account different aspects of team working
and interaction between agents. Incorporating various aspects
of team working in the model is our next step of the work,
which we have already initiated.
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