
Abstract. In multi-criteria decision making the decision maker need to assign
weights to criteria for evaluation of alternatives, but decision makers usually find
it difficult to assign precise weights to several criteria. On the other hand, decision
makers may readily provide a number of preferences regarding the relative
importance between two disjoint subsets of criteria. We extend a procedure by L.
V. Utkin for ranking alternatives based on decision makers’ preferences. With
this new method we may evaluate and rank partial sequences of preferences
between two subsets of criteria. To achieve this ranking it is necessary to model
the information value of an incomplete sequence of preferences and compare this
with the belief-plausibility of that sequence in order to find the partial ranking of
preferences with maximum utility.

Key words: belief function, Dempster-Shafer theory, preferences, multi-criteria
decision making, pairwise comparison, ranking.

1 Introduction

In multi-criteria decision making (MCDM) decision makers needs to evaluate and rank
different alternatives using several criteria (e.g., measures of effectiveness; MOEs). To
be able to rank the alternatives they usually seek a weighting of these criteria, but
weights may be unavailable and decision makers may find it impossible to assign
precise weights to all criteria. An initial step can be to filter all alternatives under
consideration by Pareto filtering [6, 16]. This will eliminate all alternatives that can
never be selected regardless of which weight assignment is adopted for the criteria. This
will reduce the problem size, but the same problem with assigning weights remains.
However, it is often possible for decision makers to express an order of importance
between all different criteria, or at least to express a preference between two different
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subsets of all criteria.
In this paper we develop an extension to a procedure by Utkin [20] for ranking

alternatives based on multiple decision makers’ preferences in MCDM. We let a group
of decision makers express any number of preferences regarding the relative
importance between any two disjoint subsets of criteria. We derive a method for finding
a partial preference order of all measures of effectiveness. This method will accept any
preference expression about the MOEs from multiple decision makers. For example,
expressions such as “measure of effectiveness MOEi is more important than measure of
effectiveness MOEj”; MOEi MOEj, or expressions regarding two different subsets of
all measures such as “measures MOEi and MOEj are more important than measures
MOEk and MOEl”; {MOEi, MOEj} {MOEk, MOEl}. As we extend the preference
assignment approach developed by Utkin we combine it with a preference ranking
approach by Schubert [12] to derive a partial ranking of all MOEs. When the best
sequence of preferences (of measures of effectiveness) is found we can weight all
alternatives and select the best alternative with the highest value. This alternative can
be further analysed to explain the cause of success [14].

Another approach is provided by Masson and Denœux [11] that extends a
methodology by Tritchler and Lockwood [19]. In [19] simple support functions
regarding each singleton pair of preferences  are assigned on individual frames 
by experts. After all assignments are extended to a common frame of discernment and
combined the most plausible linear ordering of all preference is found. In [11] a linear
programming approach is proposed to solve the problem in an efficient way. The
methodology is further extended to some partial rankings of preferences where a
hierarchical clustering approach selects which partial orders of preferences are
evaluated based on plausibility. The final choice of preferred partial order is left to the
user.

In Sec. 2 we assign basic belief masses based on all decision makers’ pairwise
preferences of any two subsets of all measures of effectiveness. In Sec. 3 we calculate
a decision maker’s belief and plausibility in partial sequences of preferences. In Sec. 4
we derive the information value of a partial sequence of preferences. Based on the
results of the previous two sections we calculate the utility of each partial sequence of
preferences as a product of two functions corresponding, on the one hand, to belief and
plausibility in the proposition and, on the other hand, the information value of the
proposition (Sec. 4). Finally, conclusions are drawn (Sec. 5).

2 Assignment of Decision Makers’ Preferences

We will keep track of all preferences expressed by all decision makers. This includes
both preferences about the order of importance among single measures and among
subsets of measures. For each expression we count the number of decision makers
giving the same preferences and sum-up the total number of assigned preferences by all
decision makers

, (1)

mΘi j Θi j

cAB MOEi{ }i A∈( MOEj{ }j B∈ )
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where , i.e., A and B are subsets of and index set I of indices
corresponding to the set of all MOEs. Any number of these cAB may be equal to zero
due to a lack of assigned preferences regarding some subsets of MOEs.

The preferences assigned between two subsets of measures can be simplified to a set
of preferences among single pairs of measures [20]. We have,

. (2)

From the counts of assigned preferences (1) we derive a basic belief assignment
within belief function theory [3, 4, 17]. In this setting of our problem representation, the
frame of discernment (i.e., the set of all possible preference rankings) is

. (3)

However, only a subset of  corresponding to chains of preferences will be under
investigation in this approach (see (8) in Sec. 3).

We have the following basic belief assignment, using (1),

(4)

where N is the total sum of all counts

. (5)

While it is possible to change the representation in (4) and (5) using (2), it is not
possible to divide the basic belief mass among the different preferences in

as we have no information on how to divide it among the
different preferences. Instead the entire mass must remain on the whole set. 

3 A Decision Maker’s Belief in Preferences

From the basic belief assignments (4) we may calculate belief and plausibility for any
element of the frame of discernment.

While it is possible to calculate belief and plausibility in each single measures of
performance such as,

(6)

where  (as was done in [15]) we will instead calculate belief and
plausibility in incomplete rankings of all measures. Utkin [20] considered complete
rankings B of all measure as an alternative approach to calculating belief and
plausibility in (6) where plausibility was calculated for a sequence of preferences

, (7)

containing all preferences once. Here belief in any complete sequence is zero as we only
have basic belief assignments in sets of preference relations (4) that are all proper

∅ A B i{ }i 1=
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supersets to (7) even in the case when the supported set in (4) is a singleton set, as (7)
is a sequence of intersections (not unions).

We will derive an extension of (7) where we allow any sequence that is an
intersection of subsets of all preference relations, including but not limited to singleton
sets,

, (8)

where  is a subset of all measures  such that the intersection
 and .

Using the representation of (8) we have focal elements  for many (but not
necessarily all) indices ij, ik, and may calculate belief and plausibility in . We get
beliefs,

, (9)

(10)

where belief in any nonsingleton preferences is always zero (as mentioned above), and
may in addition calculate plausibility in any partial sequence of preference as

(11)

where the sum is taken over all focal elements , , , that are
included in .

Given the calculated belief and plausibility we may compare all partial sequences of
preferences . If the belief intervals of two different sequences of partial preferences
are not overlapping then clearly the higher believed sequence is more preferred.

When an interval  is fully included in an interval
 it is not immediately clear which is the preferred partial sequence

of preferences;  or . We can interpolate with a parameter  in each
belief-plausibility interval in order to find the preferred partial sequence of preferences
[12]. However, we have no information regarding the value of ρ, and any assumption
about ρ will be unwarranted.

Instead we may calculate the point ρjklm where the two partial sequences of
preferences  and  are equally preferred. When

(12)

we have

. (13)

If ρjklm < 0.5 then  is more preferred than . The requirement that we must
have ρjklm < 0.5 is equivalent to having the mid-point in the belief-plausibility interval
of  is higher than that of .

This implies that we can obtain an exact order of all partial sequence of preferences
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(of measures of performance) using a standard sorting algorithm based on the belief-
plausibility interval mid-points for each sequence.

It is obvious from the representation of  (8) that there is of partial sequence of
preferences with sequence length 1 (n = 2)

(14)

where | | = 1,  and , i.e.,  and 
are exclusive and exhaustive.

When

(15)

we have

. (16)

This makes it necessary to put a value on the information content of  that is
valued against the belief and plausibility of the partial sequence of preferences (of
measures of effectiveness; MOEs), otherwise we will always prefer a fully nonspecific
proposition with belief of 1 but with no information value (i.e., a vacuous belief
function).

4 A Decision Maker’s Value of Preferences

The value to a decision maker of a partial sequence of preferences  (8) is obviously
less than that of a complete sequence of preferences  (7). As the sequence of
preference is intended to be used for weight assignment for the different MOEs, where
the weights assigned abide by the preference order, it is not possible to say which
weight should be higher of  and  if they belong to the same subset, e.g., if

, (17)

where

(18)

we can only state that we must have  when weighing the preferences
in MCDM, but we cannot say anything regarding the relative values of w1 and w2.

Finding the best partial sequence of preferences (of measures of effectiveness)
becomes a balance between finding sequences with high belief-plausibility and high
information value [13]. A measure that calculates a type of information value is the
aggregated uncertainty (AU). The functional AU was independently discovered by
several authors about the same time [2, 7, 10]. In general, AU is defined as

(19)
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where  is the set of all probability distributions such that  for all
.

Abellán et al. [1] suggested that AU could be disaggregated in separate measures of
nonspecificity and scattering that generalize Hartley information [8] and Shannon
entropy [18], respectively, for any mass function, i.e., . Dubois
and Prade [5] defined such a measure of nonspecificity as

(20)

where  is the set of focal elements.
The problem studied in this paper is a special case. We have a partial sequence of

preferences where each set of preferences  in the sequence corresponds to a
mass function with one, usually nonspecific, focal element A with mass 1 and
cardinality greater or equal than 1. Thus, with m(A) = 1 we have no scattering of
information (i.e., GS(m) = 0) and AU specializes to I(m) where the nonspecificity (20)
simplifies further to the traditional Hartley function [8]

, (21)

as m(A) = 1, for each set of preferences in the sequence of .
Using the problem representation of  (8) the joint Hartley information of an

entire sequence of multiple preference relations is formulated as

, (22)

where the first equality use the definition of the Hartley function for multiple variables,
the second equality use the fact that subsets of measures can be simplified to a set of
preferences among single measures (2) [20].

Furthermore, we have

(23)

where the upper limit is reached when the number of preference subsets in the sequence
is , and the number of preference relations in each subset

 (ignoring that n, ).
Note, that the best information value for the decision maker is when  is

minimized, i.e., when the sequence of preference is as specific as possible with one
preference relation per subset (7). The only reason to prefer a partial sequence of
preferences before a complete sequence is if its belief-plausibility is higher.
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5 The Decision Maker’s Choice of Preference Order

The utility U for a decision maker of knowing a sequence of preferences  is a trade-
off between finding a sequence of preferences that on the on hand maximize the belief
and plausibility, and on the other hand maximize the value of the information itself for
the decision maker.

A function that tries to achieve both task simultaneously by calculating the utility of
 is the product of the belief-plausibility midpoint, i.e., ρ = ½ (13), with a function

of the Hartley function of .
We define

, (24)

where both terms on the right hand side of the equality belong to [0, 1]. Thus, the utility
 and will serve as the basis for comparing different alternative partial

sequences of preferences (of measures of performance; MOEs).
All partial sequences of preferences  are evaluated based on their utility

. The partial sequence with highest utility is considered the best sequence and
is the partial preference order that will be used in MCDM. Although (24) is exponential
in the number of MOEs, the number of measures in the MCDM is usually not very large
which makes this a calculation with low computational cost. In a previous paper [15]
we developed a method for assigning weights by a Monte Carlo approach to the set of
all MOEs for multiple criteria evaluation. When we have a partial sequence of
preferences, e.g.,

, (25)

where

(26)

we may assign any weight to the MOEs that abide by the constraints
 where wi is the weight of MOEi and there is no constraint

between w2 and w3.
Other authors have considered different approaches to weight assignment. Huang et

al. [9] consider the assignment of weights to criteria based on the consistency and
similarity of the opinions from decision makers regarding these criteria. In addition it is
also possible to let the decision makers themselves be weighted. Yue [21] suggest using
the decision makers’ experience regarding the topic under consideration as a basis for
assigning weights. A third approach, is to let each decision maker use a weighting of his
own as an expression of the importance placed on a pairwise comparison of two disjoint
subsets of MOEs.
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6 Conclusions

We show that it is possible to extend Utkin’s methodology for complete ranking of all
single preferences between different alternatives [20] in MCDM, to a new methodology
that evaluates all partial rankings of all subsets of these measures. Both methods use the
same pairwise comparisons of preference subsets assigned by experts. While Utkin’s
method use only plausibility for a complete ranking (of singletons), we show that this
is not possible when extending the solution to incomplete ranking (of all possible
subsets). Instead, it is necessary to calculate the utility by modelling the information
value of an incomplete ranking and compare this, in a trade-off, against the belief-
plausibility of the same incomplete ranking of all possible subsets of preferences (of
measures of effectiveness; MOEs). Only then can we find the best partial ranking of
preferences that combine high belief-plausibility with high information value to
maximize utility for the decision maker.
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