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Dealing with conflicting and target-specific requirements is an

important issue in multisensor and multitarget tracking. This paper

aims to allocate sensing resources among various targets in reaction

to individual information requests. The proposed approach is to

introduce agents for every relevant target responsible for its tracking.

Such agents are expected to bargain with each other for a division of

resources. A bilateral negotiation model is established for resource

allocation in two-target tracking. The applications of agent negoti-

ation to target covariance tuning are illustrated together with simula-

tion results presented. Moreover, we suggest a way of organizing

simultaneous one-to-one negotiations, making our negotiation model

still applicable in scenarios of tracking more than two targets.

INTRODUCTION

Sensor management aims to control the data acquisition process in a multi-

sensor system to enhance the performance of data fusion. It plays the role

of process refinement in the JDL data fusion model with the goal of best
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7 utilizing available sensing resources in reaction to identified intelligence

requirements. In sophisticated data fusion applications, the sensor man-

ager has to cope with a disparate set of information requests and conflicts

in order to engender directed sensing events (Denton et al. 1994).

Modern tracking systems present an active practical field motivating

sensor management and demonstrating its significance (Blackman and

Popoli 1999). Simultaneous tracking of multiple targets entails decisions

about what sensors to assign to which objects at every instant for achiev-

ing the best possible accurate state estimates of the environment. So far,

allocating sensors across targets has been mainly treated as an optimiza-

tion problem in choosing sensor-to-target associations based on an

objective function constructed beforehand in terms of entropy-based

information metrics (Schmaedeke 1993; Schmaedeke and Kastella

1998; Dodin et al. 2000) or the expected overall utility (Greenway and

Deaves 1994; Dodin and Nimier 2001) of a sensing plan. The sensor

manager, driven by one such objective function, would proceed to max-

imize the overall information gain acquired on all targets in the global

picture. However, it is difficult to deal with target-specific requirements,

like maintaining the specified covariance of state estimates on particular

targets, given an optimization framework.

It is important here to stress that the ultimate goal of sensor manage-

ment is to guide sensors to satisfy information requests which can be

situation- and target-dependent. Dynamic response to information

requests is crucial for adaptive allocation of resources in accordance

with demands imposed during mission completion. The scheme of

covariance control was developed (Kalandros and Pao 1998; Kalandros

et al. 1999) to assign sensor combinations to each target for meeting a

desired covariance level. By doing this, the sensor allocation problem

is decomposed into independent sub-problems for individual targets,

each dealing with a target-specific covariance goal. Nevertheless, separ-

ate covariance controllers on individual targets can occasionally induce

conflicting commands on sensors and thereby result in delay or even loss

of certain planned measurements.

This paper proposes an agent negotiation model for allocation of

sensing resources in reaction to identified information requests. We

associate an agent with every relevant target responsible for its tracking.

All such agents are supposed to be rational and self-interested; they want

access to as many sensor resources as possible for optimizing their own

performance. However, as available resources are constrained, agents

84 N. XIONG ET AL.
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7 have to bargain over the division of resources in order to reach a solution

that cares for everybody’s interest and is commonly acceptable. The use

of a negotiation mechanism is motivated by the recognition that the task

of multitarget tracking elicits inherently conflicting goals for data fusion,

i.e., the improvement of tracking accuracy on one target implies degra-

dation of performance on another. We believe that the proposed nego-

tiation model can help to determine a good trade-off of tracking

performance among various targets.

For a different approach to managing a distributed data fusion net-

work, see Nicholson and Leung (2004). A recent survey of negotiation-

based approaches to multisensor management is given in Johansson

(2006).

The paper is organized as follows. The following section presents a

general perspective of our approach, outlining the basic concepts and

framework. A bilateral negotiation model for resource distribution in

two-target tracking is proposed in Section 3 and its applications to target

covariance tuning are illustrated. Then, in Section 4, we discuss a way of

employing the proposed negotiation model for tracking scenarios with

more than two targets. Finally, the paper is concluded in Section 5.

RESOURCE ALLOCATION IN REACTION TO REQUESTS: A NEW

PERSPECTIVE

Our paper aims to update sensor-to-targets assignments to comply with

the demands on local tracking performance, i.e., reducing estimate

covariance on particular targets. In this section, we will first introduce

an objective function to be manipulated when attempting to tune the esti-

mate accuracy on a target and then highlight a negotiation-based frame-

work to redistribute resources across targets in reaction to imposed

information requests.

A Key to Target Estimate Accuracy

We consider a target observed by a set of sensors and study the role of

the sensors in reducing the uncertainty of its estimate. The target and

sensor observations are modeled by the standard state based equations:

xðkÞ ¼ Fxðk � 1Þ þ wðk � 1Þ ð1Þ

yiðkÞ ¼ HixðkÞ þ viðkÞ ð2Þ

REACTIVE TUNING IN MULTISENSOR DATA FUSION 85
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7 In the above, x(k) is the current state of the target and yi(k) denotes

the measurements of the target from sensor i in the sensor combination.

The elements w(k) and vi(k) represent the system noise and measurement

noise, respectively, both of which are assumed to have zero-mean, white,

Gaussian probability distributions. Such assumptions justify the usage of

the sequential Kalman filter to fuse data from multiple sensors in the

update stage. This can be a sequential procedure performing a separate

filtering for each sensor in the combination and then propagating its esti-

mate to the next filter.

A mathematically identical alternative to the conventional Kalman

filter was introduced in (Durrant-Whyte and Stevens 2001) and termed

therein as the information filter. It offers a simpler but equivalent form

for estimation updating in multisensor situations by

P�1ðkjkÞx̂xðkjkÞ ¼ P�1ðkjk � 1Þx̂xðkjk � 1Þ þ
X

i2S

H T
i R�1

i yiðkÞ ð3Þ

PðkjkÞ�1 ¼ Pðkjk � 1Þ�1 þ
X

i2S

H T
i R�1

i Hi ð4Þ

where S denotes the sensor combination applied to the target at time k; P

is the covariance of state estimate, and Ri stands for the noise covariance

of sensor i.

From Eq. (4), we see that
P

i2S H T
i R�1

i Hi is an important matrix for

discerning the difference of covariance of state estimates before and after

measurements. The bigger this matrix, the smaller the updated covari-

ance will be. In view of this, we define sensor information gain, g(k), for

the target at time k as

gðkÞ ¼
X

i2S

H T
i R�1

i Hi

�����

����� ð5Þ

which can be considered as a total contribution of the applied

sensors to information attainment or uncertainty reduction. Clearly,

g(k) is increased by including more and=or better sensors in the

combination S.

Sensor information gain provides a convenient objective function

that can be utilized as a basis for control of the sensor allocation strategy

and as such it can be used as the basis for negotiation.

86 N. XIONG ET AL.



D
ow

nl
oa

de
d 

B
y:

 [P
et

er
ss

on
, G

ur
lit

h]
 A

t: 
13

:4
2 

28
 N

ov
em

be
r 2

00
7 Request-Triggered Negotiation

As was stated previously, sensor information gain is a key factor affecting

the covariance of state estimates. A higher tracking accuracy can be

achieved by applying more and=or better sensors to the target. However,

the total resources are limited and there are interactions between the per-

formance on different targets. The sensor manager has to, on the one

hand, update sensor assignments to tune the state covariance of certain

targets in the requested direction, and on the other hand, care for the

effect of such events on other targets and try to engender a graceful

degradation of performance on them. Obviously, there may be a lot of

alternatives when making such a decision. Here we intend to use the

mechanism of negotiation for finding a good trade-off between conflict-

ing benefits with respect to tracking of various targets.

The framework to redistribute resources in reaction to information

requests is depicted in Figure 1, where new sensor-to-target assignments

are generated through bargaining of agents responsible for tracking of

respective targets. Negotiations are trigged by information requests pro-

duced by the block mission planning. This block is outside the scope of

the paper but located at level four of the top-down procedure for sensor

management (Xiong and Svensson 2002). It concerns meta-reasoning

about system-level tasks and requests for tracking different targets.

Our work is contingent upon the availability of relevant guidelines from

mission planning and hereby efforts are dedicated to agent negotiations

to comply with requests of accuracy on individual targets.

Figure 1. Redistributing resources in terms of information requests.
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goal uncertainty (lack of a clear general goal) prevalent in real applica-

tions. Sometimes the mission planning might merely give a simple guide-

line of possibly reducing the covariance of a certain target, but it is vague

in the sense of how far or to which degree this should be achieved.

Another important aspect is the one in which we have exact desired

covariance levels for each target but the lack of sufficient sensors makes

it impossible to meet all these desired standards. Consequently, ambi-

guity arises about how to treat those target-specific requirements in con-

structing a global allocation decision. Negotiation provides a powerful

means to deal with interactions between local interests and facilitate a

mechanism to arrive at a good balance between them.

Another important attribute of our work is that it is requirement-

oriented to improve local tracking performance rather than a global

figure. This does make sense in complex tracking scenarios where the

diversity of targets and situations leads to distinct and time-varying

demands (of tracking performance) across various targets. Request-

triggered negotiation offers a flexible way of updating sensor assignments

to tune local performance wherever necessary.

BILATERAL NEGOTIATION IN TWO-TARGET TRACKING

Here we consider a scenario with two targets originally measured with sen-

sor subsets O1 and O2, respectively. Now with the unfolding situation, there

is a need to increase the tracking accuracy on one of the targets, say target

2. However, owing to the limitation of resources, the improvement of per-

formance on one target leads to the loss of precision on another. This sec-

tion proposes a game-theoretic negotiation model to cope with such

interactions and reach a rational trade-off between conflicting interests.

Agents and Their Preferences

We arrange for an agent for every target responsible for its tracking. Both

agents need to use sensors for tracking their respective targets, they bargain

over the division of resources in reaction to information requests. The fol-

lowing behaviors are supposed of such agent(s) in the tracking process:

. Rationality. Both agents are self-interested and rational; they try to

maximize their own benefits in negotiations.

. Requisition versus reaction. Since the accuracy of target 2 is to

be increased, it is agent 2 that wants to achieve a higher sensor

88 N. XIONG ET AL.
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1 is passively involved in the negotiation and has to react to the requi-

sition of the opponent by giving up some benefits.

. Unilateral existing. Agent 2, anxious to be better off, would like an

agreement as soon as possible. It may choose to opt out as a threat

to enforce the other agent to be a bit generous. In case of opting

out, agent 2 will interrupt the usage of sensors by its opponent for sev-

eral time steps and agent 1 would have to start another negotiation to

re-attain resources. Therefore, for its own interest, agent 1 will try to

prevent agent 2 from opting out by giving offers beneficial to the

opponent.

. Initial conservation. After negotiation begins, the old division profile is

retained until an agreement is reached or agent 2 opts out, i.e., both

agents keep available resources in tracking their respective targets dur-

ing the negotiation.

There are three kinds of outcomes as long as a negotiation is initiated.

One case is disagreement, i.e., the negotiation continues forever without

any agreement and without opting out of any agents. Otherwise, the

negotiation will end with an agreement reached at some time t 2 T or opt-

ing out by agent 2. Every agent is assumed to have its own preference over

all possible outcomes: ðA [ optÞ � Tf g [ Disagreementf g, where A is the

set of agreements (divisions) and T refers to the time interval within

which the negotiation is finished. Establishment of utility functions for

all agents is a prerequisite for developing efficient negotiation strategies.

As agent 1 loses benefit once the negotiation is finished while agent

2 gets better off from the consequence, they have opposite attitudes

toward disagreement, as stated in C1 (the first characteristic of agent

preferences).

C1: Best=worst case with disagreement. Disagreement is the best

case for agent 1 whereas the worst outcome for agent 2. For any outcome

x 2 ðA [ optÞ � Tf g, we have utilities as U1ðDisagreementÞ > U1ðxÞ and

U2ðDisagreementÞ < U2ðxÞ:
For outcomes in A� Tf g, we consider sensor information gains dur-

ing the negotiation as an important basis to yield their utility values. We

denote by (S1, S2) the agreement which assigns sensor subsets S1, and S2

to agents 1 and 2, respectively, with the properties as

S1 [ S2 ¼ O1 [ O2 ð6Þ

REACTIVE TUNING IN MULTISENSOR DATA FUSION 89
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i2S1

H T
i R�1

i Hi

�����

����� <
X

i2O1

H T
i R�1

i Hi

�����

����� ð7Þ

X

i2S2

H T
i R�1

i Hi

�����

����� >
X

i2O2

H T
i R�1

i Hi

�����

����� ð8Þ

The utilities of reaching such an agreement at time t is defined as the

average of sensor information gains in the period from the beginning

of the negotiation until its completion. So we write:

U1ðS1; tÞ ¼
t �

P
i2O1

H T
i R�1

i Hi

�� ��þ
P
i2S1

H T
i R�1

i Hi

�����

�����
t þ 1

ð9Þ

U2ðS2; tÞ ¼
t �

P
i2O2

H T
i R�1

i Hi

�� ��þ
P
i2S2

H T
i R�1

i Hi

�����

�����
t þ 1

ð10Þ

The above defined utilities of outcomes with agreements manifest

the other two important characteristics of agent preferences in the

negotiation:

C2: Sensor information gain valuable. For all t 2 T ; j 2 Agents and

sensor combinations Pj and Sj allocated to agent j:

UjðSj ; tÞ < UjðPj ; tÞ ,
X

i2Sj

H T
i R�1

i Hi

������

������
<

X

i2Pj

H T
i R�1

i Hi

������

������

For agreements reached at the same time step, each agent prefers to get a

larger sensor information gain.

C3: Gain=Losses over time. For any t1; t2 2 T and agreement S ¼ (S1,

S2), if t1 < t2 then we have U1ðS1; t1Þ < U1ðS1; t2Þ and U2ðS2; t1Þ >
U2ðS2; t2Þ.

Opting out is artificially incorporated into the process to provide

driving a force toward quick agreements. Our presumption is that if

agent 2 opts out of the negotiation, it will prevent the opponent from

using resources from time t to t þ k� 1, and then at time tþ k all sensors

90 N. XIONG ET AL.
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agents are hence expressed as:

U1ðopt; tÞ ¼
t �

P
i2O1

H T
i R�1

i Hi

�� ��
t þ k þ 1

ð11Þ

U2ðopt; tÞ ¼
ðt þ kÞ �

P
i2O2

H T
i R�1

i Hi

�� ��þ
P

I2O1[O2

H T
i R�1

i Hi

�����

�����
t þ k þ 1

ð12Þ

Evident from the above formulae is the fourth characteristic of prefer-

ences of agents:

C4: Cost=benefit of opting out over time. For any t 2 T ;U1ðopt; tÞ <
U1ðopt; t þ 1Þ and U2ðopt; tÞ > U2ðopt; t þ 1Þ. Agent 2 prefers opting out

early while later opting out is more beneficial for agent 1.

Extensive Game of Alternating Offers

We model the negotiation for resource allocation for two-target tracking

as an extensive game characterized by a 5-tuple hAgents;A;H ;PðHÞ;Uii;
where

. Agents ¼ fAgent 1 for tracking target 1; Agent 2 for tracking target 2g;

. A is the set of possible divisions of sensors upon O1 [ O2;

. H is the set of sequences of offers and responses by agents;

. P(h) determines which agent has the turn to make an offer after a non-

terminal history h;

. Ui: utility functions of agents on the set of outcomes ðA [ optÞ � Tf g
[ Disagreementf g.

In this game the agents alternate offers. In case an offer is rejected, the

negotiation moves to the next round where the agent rejecting in the preced-

ing period has to make a proposal. The first action in the game occurs in

period 0 when agent 2 makes the first offer and agent 1 must accept or reject

it. Acceptance by agent 1 ends the game with agreement while rejection

causes the game to continue into period 1, in which it is the turn of agent

1 to propose something and agent 2 decides whether to accept or reject it

or to opt out. Acceptance or opting out by agent 2 in period 1 stops the

game, otherwise the game proceeds to period 2 in which agent 2 will make

REACTIVE TUNING IN MULTISENSOR DATA FUSION 91
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is reached and no agent chooses to opt out. If the negotiation continues for-

ever without agreements and without opting out by an agent, then disagree-

ment is the outcome of this bargaining game.

Rational Negotiation Strategies

Negotiation strategies, as a key element in our negotiation game, are uti-

lized by both agents to maximize the expected values of their respective

utilities. A strategy for an agent is essentially a function that specifies

what the agent has to do after every possible history, i.e., what to propose

in the turn to make an offer as well as how to respond facing a proposal

from the other agent. A strategy profile is a collection of strategies for

both agents. We aim to develop rational bargaining strategies leading

to an outcome that is profitable for both parties and where nobody

can get better off by using another strategy.

A fundamental concept in game theory is the Nash Equilibrium

(Nash 1953) referring to a steady state in which every player holds a cor-

rect expectation of the opponent’s behavior=strategies and acts ration-

ally. A stronger requirement for bargaining games is that agents are

rational at any stage of the process, not only from the beginning of the

negotiation. This leads to the concept of subgame perfect equilibrium

(SPE) (Osborne and Rubinstein 1994) meaning that the strategy profile

included in every subgame is a Nash equilibrium of that subgame. Our

paper follows the notion of SPE to develop negotiation strategies for

resource allocation in two-target tracking. Later, we will show that if

both agents honor SPE strategies, negotiation will be finished with agree-

ment within two time steps.

Before discussing the negotiation strategies, the following three

notions are introduced to help making later formulations easy and concise.

1. Poss(t): the set of offers better than opting out for agent 2 at time t

PossðtÞ ¼ S ¼ ðS1;S2ÞjU2ðS2; tÞ > U2ðopt; tÞf g ð13Þ

2. SbðtÞ: the best offer for agent 1 in Poss(t) at time t

U1ðSbðtÞ; tÞ ¼ max
S2PossðtÞ

U1ðS; tÞ and SbðtÞ 2 PossðtÞ ð14Þ

92 N. XIONG ET AL.
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agent 1 at time t than what it can achieve in the next time step

CompetðtÞ ¼ S 2 PossðtÞjU1ðS; tÞ � U1ðSbðt þ 1Þ; t þ 1Þf g ð15Þ

In the following we consider a subgame starting from stage t in

which agent 2 has the turn to make an offer. Owing to the generality

of this subgame, its Nash equilibrium offers the SPE strategies for the

whole bargaining game. We begin from SPE strategies at time tþ 1 then

move backwards to time t.

At time tþ 1, agent 1 has to propose something that maximizes its

own utility but prevents agent 2 from opting out. Hence, agent 1 will pro-

pose Sb(tþ 1) which is its best offer from Poss(tþ 1). Further, since max-

imizing the utility of agent 1 equals minimizing that of agent 2, the utility

U2ðSbðt þ 1Þ; t þ 1Þ of agent 2 will be very similar to its utility from opting

out U2(opt, tþ 1). If agent 2 rejected Sb(tþ 1), it would follow that agent 2

will do the same later in responding to proposals by agent 1 due to

U2ðSbðt þ 1Þ; t þ 1Þ � U2ðSbðt þ 3Þ; t þ 3Þ. As countermeasures, agent 1

will also reject offers by agent 2 afterwards to push the game into the out-

come of disagreement, which is best for agent 1 but worst for agent 2. In

view of this, agent 2 has the only option to accept the offer Sb(tþ 1) at

tþ 1. The above statements are summarized in Lemma 1.

Lemma 1. For the subgame starting from stage t, then following the

SPE strategies agent 1 will propose the offer Sb(tþ 1) at tþ 1 and agent

2 will accept it.

Now we move to the proceeding stage t when agent 2 makes an offer

and agent 1 responds to it. As agent 1 is rational, it cares whether a pro-

posal received at time t gives it a higher payoff than what it can obtain in

the next period such that only offers from the set Compet(t) will be

accepted. On the other side, reaching agreement at time t is in line with

the interest of agent 2, as it can not benefit from moving to the next stage

and getting a utility very similar to U2(opt, tþ 1). For the sake of agreement,

agent 2 will choose an offer best for it from the set Compet(t) if this set is

nonempty, otherwise any proposals by agent 2 at time t will be rejected.

These points are briefed in Lemma 2 as the SPE strategies at stage t.

Lemma 2. For the subgame starting from stage t, then following the

SPE strategies agent 2 will propose the offer S� 2 CompetðtÞ such that

REACTIVE TUNING IN MULTISENSOR DATA FUSION 93
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S2CompetðtÞ
U2ðS; tÞ ð16Þ

and agent 1 will accept it, provided that Compet(t) is nonempty. Other-

wise, if there is no offer in the set Compet(t), agent 1 will choose rejection

as the response.

Finally, by applying the developed SPE strategies from the beginning

of the negotiation game, we get to the following theorem.

Theorem. If both agents honor SPE strategies for negotiation of

resources in two-target tracking, then an agreement will be found within

one or two time steps depending on the set Compet(0):

. If Compet(0) is empty, any offer of agent 2 at time 0 will be rejected. At

time 1, agent 1 proposes a counteroffer Sb(1) which will be accepted by

agent 2.

. If Compet(0) is nonempty, agent 2 will give an offer S 0 2 Competð0Þ
such that U2ðS 0; 0Þ ¼ max

S2Competð0Þ
U2ðS; 0Þ and agent 1 will accept this

offer immediately.

Applications of Bilateral Negotiations for Target Covariance

Tuning

This part is dedicated to demonstrate the usage of our negotiation model

to tune target covariance in terms of information requests. Here we will

not dwell on how such requests are generated but assume that they are

available from the mission planning block in Figure 1. The applications

of the negotiation model for meeting two common requirements in target

tracking are illustrated in Subsections 3.4.1 and 3.4.2, respectively.

Improving the Worst Accuracy. One common requirement in target

covariance control is to improve the worst accuracy. In this case, the

agent with the lowest tracking accuracy launches the negotiation to

receive higher sensor information gain, and the other agent is passively

involved in the game and has to accept a reduced performance. We per-

formed simulation tests to study this process with the initial condition of

target 1 being tracked by all the resources while target 2 tracked by none

of the resources. Figure 2 shows the simulation results when the k

parameter in (11) and (12) was set to 5. We can see in the figure that

at first the covariance on target 2 was always bigger than that on target

1, therefore it was agent 2 that launched negotiations in early stages. But

94 N. XIONG ET AL.
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after entering the steady state, both agents started negotiations alterna-

tively to increase the lowest tracking accuracy on whatever target.

Interestingly, parameter k can be considered as reflecting the emo-

tion of the requesting agent in the negotiations. A small value of k

implies that this agent is very anxious or greedy to be better off and vice

versa. The influence of variations of k on the covariance tuning processes

is illustrated in Figures 3 and 4 that depict the cases with k as 15 and 24,

respectively. Comparison of the processes with different k values

Figure 2. Improving the worst tracking accuracy when k ¼ 5.
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indicates that a smaller value of the k parameter can enable quicker con-

vergence at the beginning but larger oscillations later in the steady state.

Another alternative is to adapt the k parameter according to the dif-

ference in target covariance by

k ¼ Kmin

1� e�r

where Kmin is the minimum value of this parameter and r stands for

the absolute value of the difference in target covariance norms. The

Figure 3. Improving the worst tracking accuracy when k ¼ 12.
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covariance tuning process using this adaptive strategy of k parameter is

shown in Figure 5 which exhibits not only quicker covergence in the

beginning but also smaller oscillations in the steady state.

Dealing with Desired Covariance Levels. In many other applications

we may have different desired covariance levels for different targets.

Negotiation is needed as long as the accuracy on one of the targets does

not meet its desired objective. When the covariance on both targets is

Figure 4. Improving the worst tracking accuracy when k ¼ 24.
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above their respective levels, the agent with the biggest difference with

respect to its desired level is allowed to launch a negotiation for getting

better=more resources. Again, we conducted simulation tests to examine

the negotiation-based processes of target covariance tuning in face of

desired levels. We also supposed that initially target 1 got attention from

all sensors whereas target 2 did not get observations.

Figure 6 showed the process when the desired covariance levels were

set as 0.43 for target 1 and 0.71 for target 2 in the first half period, and

Figure 5. Improving the worst tracking accuracy with adaptation of k.
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then in the second half period both targets exchanged their desired levels.

Negotiations helped to tune the covariance of both targets below their

respective levels very quickly such that the process was most of the time

stationary with no negotiations launched by any agent.

Then we changed the desired covariance levels to 0.42 and 0.70. The

first was set for target 1 and the second for target 2, and then in the

second half period the two targets exchanged their desired covariance

levels. Figure 7 illustrated the covariance tuning process in reaction to

such desired levels. The limitation of resources made it impossible to

satisfy the requirements on the two targets at the same time. Therefore,

both agents were constantly interacting with each other by means of

negotiation.

Figure 6. Satisfying the desired covariance levels on both targets.
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EXTENSION TO MULTIPLE TARGET CASES

This section discusses one possibility of using the bilateral negotiation

model to deal with resource allocation in tracking more than two targets.

We still arrange for an agent for every target responsible for its tracking

and then organize simultaneous one-to-one negotiations in target covari-

ance tuning. For doing this we need evaluations of tracking performance

on all targets with respect to information requirements. We presume that

such evaluations can be provided by mission planning in the form of sat-

isfactory degrees, with satis_degreeðiÞ standing for the degree value for

target i. Further, a negative satisfactory degree means that improvement

of tracking performance on the underlying target is being requested, and

Figure 7. Covariance tuning when desired levels are not achievable simultaneously.
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through a mating process, i.e., associating the best performance agent

with the worst performance agent, the second best with the second worst

and so on, until no targets with negative satisfactory degrees are left.

Given in the following is a procedure for organizing multiple bilateral

negotiations, which is to be executed at every time step of a multitarget

tracking process.

Procedure for Organizing Multiple Bilateral Negotiations

New starting ¼ Ø;

Worst ¼ min
i2Unengaged

satis degree(i);

Stage 1:

While ð Unengagedk k � 2Þ and ðWorst < 0Þð Þ
Begin

p ¼ arg max
i2Unengaged

satis degreeðiÞ;

q ¼ arg min
i2Unengaged

satis degreeðiÞ;

add pair (p,q) to New starting;

remove p, q from Unengaged;

Worst ¼ min
i2Unengaged

satis degreeðiÞ;
End;

Stage 2:

For every pair (p,q) in Previous started

Begin

update allocation with results from negtiaðAp;AqÞ;
add p, q to Unengaged;

remove pair (p,q) from Previous started;

End;

Stage 3:

For every pair (p,q) in New starting

Begin

Launch the negotiation negtia(Ap,Aq) by agent Aq;

If agreement is reached by negtia(Ap,Aq) within the time step

Then Begin

update allocation with results from negtiaðAp;AqÞ;
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End

Otherwise

add pair (p,q) to Previous started;

End;

The above procedure consists of three stages. Stage 1 serves the

matching purpose to find agent pairs from the list Unengaged containing

all agents that are so far not involved (in negotiations). Since the

matched pairs of agents are to launch negotiations right now, they are

put into the list New starting. Stage 2 is tasked to continue the negotia-

tions for agent pairs (in the list Previous started) that initialized bargain-

ing in the preceding period. As negotiations need maximally two

time steps, all pairs of agents that began previously must finish now

with their agreements taken into effect in the current period. Finally,

at stage 3, we launch negotiations for every agent pair in the list New-

starting. If a pair of newly started agents can reach their consensus

within the time step, their agreement is honored at once. Otherwise, this

pair of agents is added into the list Previous started for continuation in

the upcoming period.

CONCLUSION

This paper advocates using agent negotiation in resource allocation to

cope with trade-offs of tracking performance between various targets.

A bilateral negotiation model for two-target tracking is thoroughly inves-

tigated with the development of the SPE negotiation strategies that

ensures reaching of agreements within two time steps. The applications

of our negotiation model for target covariance tuning are illustrated with

given results from simulation.

Further the proposed bilateral negotiation model can also be used in

multitarget tracking cases with more than two targets. The way suggested

to achieve this is to organize multiple one-to-one negotiations simul-

taneously. We hesitate to introduce negotiations with many agents alto-

gether in this context, since doing this would greatly increase the

number of time steps required to reach agreements. Comparatively, bilat-

eral negotiations are simpler and quicker, making them attractive in real-

time applications. We believe that local interactions between agents can

be a good means to approach global goals in complex scenarios.

102 N. XIONG ET AL.



D
ow

nl
oa

de
d 

B
y:

 [P
et

er
ss

on
, G

ur
lit

h]
 A

t: 
13

:4
2 

28
 N

ov
em

be
r 2

00
7 REFERENCES

Blackman, S. and R. Popoli. 1999. Sensor management. In Design and analysis of

modern tracking systems. Norwood, MA: Artech House.

Denton, R. V., E. I. Alcaraz, J. Llinas, and K. J. Hintz. 1994. Towards modern

sensor management systems. In Science of command and control: Part III

coping with change, edited by Alexander H. Levis and Ilze S. Levis, Fairfax,

Virginia: AFCEA International Press.

Dodin, P. and V. Nimier. 2001. Distributed resource allocation under communi-

cation constraints. Proceedings of the 2001 International Conference on

Information Fusion, Montreal, Canada.

Dodin, P., J. Verliac, and V. Nimier. 2000. Analysis of the multisensor multitarget

tracking resource allocation problem. Proceedings of the 2000 International

Conference on Information Fusion, Paris, France.

Durrant-Whyte, H. and M. Stevens. 2001. Data fusion in decentralised sensing

networks. Proceedings of the 2001 International Conference on Information

Fusion, Montreal, Canada.

Greenway, P. and R. Deaves. 1994. Sensor management using the decentralised

Kalman filter. Proceedings of SPIE, Vol. 2355, Sensor Fusion VII, pp. 216–225.

Johansson, R. 2006. Large-scale information acquisition for data and infor-

mation fusion. PhD thesis in computer science, TRITA-CSC-A 2006:2,

Royal Institute of Technology, Stockholm, Sweden.

Kalandros, M. and L. Y. Pao. 1998. Controlling target estimate covariance in

centralized multisensor systems. Proceedings of 1998 American Control

Conference, Philadelphia, PA.

Kalandros, M., L. Y. Pao, and Y. C. Ho. 1999. Randomization and super-

heuristics in choosing sensor sets for target tracking applications. Proceed-

ings of the 1999 IEEE Conference on Decision and Control, Phoenix, AZ.

Nash, J. 1953. Two-person cooperative games. Econometrica, 21:128–140.

Nicholson, D. and V. Leung. 2004. Managing a distributed data fusion network.

Proceedings of the 2004 SPIE International Conference on Signal Processing,

Sensor Fusion, and Target Recognition XIII, Vol. 5429–14, Orlando, FL.

Osborne, M. and A. Rubinstein. 1994. A course in game theory. Cambridge,

Massachusetts: MIT Press.

Schmaedeke, W. 1993. Information based sensor management. In Signal proces-

sing, sensor fusion, and target recognition II, Proceedings of the SPIE,

Vol. 1955, pp. 156–164, Orlando, FL.

Schmaedeke, W. and K. Kastella. 1998. Information based sensor management

and IMMKF. Proceedings of the 1998 SPIE International Conference on

Signal and Data Processing of Small Targets, pp. 390–401, Orlando, FL.

Xiong, N. and P. Svensson. 2002. Multi-sensor management for information

fusion: issues and approaches. Information Fusion, 3(2):163–186.

REACTIVE TUNING IN MULTISENSOR DATA FUSION 103




