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Abstract—In this paper we describe decision support and 
simulation techniques to facilitate effects-based planning. By 
using a decision support tool, a decision maker is able to test a 
number of feasible plans against possible courses of events and 
decide which of those plans is capable of achieving the desired 
military end state. The purpose is to evaluate plans and 
understand their consequences through simulating the events and 
producing outcomes which result from making alternative 
decisions. Plans are described in the effects-based approach to 
operations concept as a set of effects and activities that together 
will lead to a desired military end state. For each activity we may 
have several different alternatives. Together they make up all 
alternative plans, as an activity tree that may be simulated. 
Simulated plans that are similar in both their structure and 
consequence are clustered together by a Potts spin neural 
clustering method. These plans make up a robust set of similar 
plans that function as ready alternatives should dynamic 
replanning be necessary as the situation evolves. 

Keywords—simulation, decision support, operational 
planning, effects-based planning, EBP, effects-based approach to 
operations, EBAO. 

I. INTRODUCTION  
In this paper we develop decision support and simulation 

techniques to facilitate effects-based planning (EBP). By using 
a decision support tool, a decision maker is able to test a 
number of feasible plans against possible courses of events and 
decide which of those plans is capable of achieving the desired 
military end state. The purpose is to evaluate plans and 
understand their consequences through simulating the events 
and producing outcomes which result from making alternative 
decisions regarding activities. We extend previous work [1], 
with more detailed agent modeling and decision support 
methodology. 

The methods developed can be used in an incremental 
manner by testing the plans as they are developed step-by-step 
and new activities are added. The plans are described in the 
effects-based approach to operations concept, as a set of effects 
and activities that together will lead to a desired military end 
state. 

                                                           
 This work was supported by the FOI research project “Real-Time 

Simulation Supporting Effects-Based Planning”, which is funded by the R&D 
programme of the Swedish Armed Forces. 

Actors and activities are modeled using a scenario used by 
the Swedish Armed Forces in their Combined Joint Staff 
Exercises. The activities of the plan are simulated together with 
all actors and their reactions on our planned activities, and their 
possible follow-on interactions. As the activities may each have 
several different alternatives in which manner they can be 
carried out, together they span-up an activity tree. The tree is 
searched by an A*-algorithm [2, 3] where each level in the tree 
is an activity and each node in the tree is an alternative for an 
activity. As the activity tree is searched, each node (i.e., 
sequence of alternatives leading from the root of the three to 
this node) is evaluated by the simulator and results are stored 
and communicated to the decision support side of the system. 
By using an A*-search to guide the tasks of the simulator we 
let the simulator work in a manner to achieve maximum 
information value gain. In addition, a simulation control 
interface lets the decision maker put constraints on the search, 
in order to simulate activities within his area of interest. 

Simulated plans that are similar in both their structure (i.e., 
mostly the same alternative chosen for each activity) and in 
their consequences are clustered together by a Potts spin [4] 
neural clustering method [5, 6]. These plans make up a robust 
set of similar plans that function as ready alternatives should 
dynamic replanning be necessary as the situation evolves. 

In Sec. II we introduce the concept of EBP. In Sec. III we 
describe the scenario we use in our modeling experiments. In 
Sec. IV we develop methods for decision makers to focus the 
attention of the simulator onto an area of interest. We continue 
by developing generic models for actors and activities (Sec. V). 
In Sec. VI we describe the simulation approach we developed 
for simulating many alternative operational plans. We develop 
decision support methodologies for finding groups of similar 
robust plans based on the simulation results (Sec. VII). Finally, 
conclusions are drawn (Sec.VIII). 

II. EFFECTS-BASED PLANNING 
An effects-based approach to operations (EBAO) [7] is a 

military approach for the management and implementation of 
efforts at the operational level. In an article by Hunerwadel [8] 
the author explains the concepts. Hunerwadel points out that 
EBAO primarily has to do with effects-based thinking. 
According to the United States Joint Forces Command 
(USJFCOM) EBAO are “operations that are planned, executed, 
assessed, and adapted based on a holistic understanding of the 
operational environment in order to influence or change system 
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behavior or capabilities using the integrated application of 
selected instruments of power to achieve directed policy aims” 
[9]. According to USJFCOM an effect represents a so called 
PMESII1 state that results from one or more military or non-
military actions. 

Hunerwadel argues that military decision-makers attain 
objectives in order to achieve the desired end state; policy sets 
boundaries that limit strategies. He finishes by pointing out that 
EBAO is a thought process, a number of concepts and a way of 
thinking: “The soul of ‘doing effects’ is and will always remain 
‘thinking effects’ ”. 

Compared with previously employed views from leading 
military quarters a new approach is voiced (i.e., EBAO), in 
particular regarding the requirements on the understanding of 
the situation and the methods that can be used to achieve 
political-strategic desired effects. In the words of E. A. Smith 
[10]: “The cognitive domain is the real focus of any effects-
based operation”, which may be interpreted as if the purpose of 
military operations is always to influence other players’ 
perceptions and behaviors. To reach the politically desired 
effects far more resources and more sophisticated types of 
effective resources other than arms or violent means of power 
must be used. We must carefully analyze the effects we want to 
achieve before selecting the objectives and means for their 
strategic action. 

The process of EBAO consists of four connected parts: 
EBP for developing plans, effects-based execution (EBE) for 
carrying out those plans, effects-based assessment (EBA) to 
follow-up on the plan execution, and knowledge support 
providing the other three processes with background 
knowledge. 

A control theory model of EBP [11] is shown in Fig. 1. As 
input we have the required situation Rs which is compared with 
the current situation Cs received from assessment. The first 
process is an end state analysis (ESA), followed by effects 
development (ED). Initially when there is no operation the 
military end state defines the goal of the operation. Later when 
a campaign assessment is carried out, the comparison between 
Rs and Cs may require further analysis in ESA. The output from 
ED is the required effects Re which is compared with the 
current effects Ce, also received from assessment. The next 
process is action development and resource matching (ADRM) 
followed by synchronization and plan refinement (SPR). All 
processes take inputs from red-green activity (RG). The output 
from SPR is a plan to be executed by EBE. Campaign 
assessment Cs is received from a qualitative campaign 
assessment and current effects Ce is received by measure of 
effectiveness and measure of performance analysis in EBA. 

ESA ED SPRADRM

RG

Rs Re

Cs Ce

+ +
- -

 
Figure 1.  The processes of EBP. 

                                                           
1political, military, economic, social, infrastructure and information. 

III. SCENARIO 
We make use of the same scenario that has regularly been 

used by the Swedish Armed Forces in the Combined Joint Staff 
Exercises. The scenario comprises several fictitious countries, 
two of which, Xland and Bogaland, have been described in-
depth. Background histories offer explanations to why and how 
sentiments, stances, identities, loyalties, economic 
dependencies and inequalities have evolved over time, 
occasionally resulting in shifts of power. Phenomena that are 
commonly found in conflict areas and post conflict areas have 
been embedded in scenario contexts that make the origins of 
the phenomena plausible. 

In Xland demographic change constitutes a threat to the 
privileged majority group, and puts severe pressure on the 
government. The country has a constitution that does not give 
the fast growing minority group the same rights as the 
dwindling majority group. Irregular groups originating from the 
minority group have taken control of those rural parts of the 
country that used to supply raw materials to the biggest 
industries in Xland. This has resulted in a loss of revenues, 
environmental degradation and incentives for foreign actors to 
intervene in order to protect their economic interests in Xland. 

In Bogaland, a newly industrialised country, a civil war 
broke out ten years ago when discontent within the minority 
ethnic-religious group had reached very high levels. The root 
cause was increasing social stratification caused by what 
members of the minority group perceived as unjust distribution 
of revenues from a natural resource located in an area 
populated by the minority group. The civil war put an end to 
the exploitation of the resource, in this case oil, and revenues 
dropped to very low levels. The country was split into two 
parts, roughly along ethnic lines, with each part having its own 
government. A post-war economy evolved over the next 
decade, and several irregulars and insurgents are now 
challenging the incumbent presidents. 

The incumbent presidents have signed a peace-agreement, 
and an international force, BFOR, is present to support the 
implementation of the agreement. Irregular groups in Bogaland 
seek to preserve or increase their influence by undermining the 
efforts of BFOR, the governments or competing irregulars. 
Two of the neighboring countries have much at stake in the 
conflict, because of economic interests and shared identities 
with parties within Bogaland. Actors within these neighboring 
countries support irregulars in Bogaland. 

IV. SIMULATION CONTROL 
The planning process we develop corresponds to the 

selection of a subset of activities which are chosen from a set of 
alternative activities. A chosen combination of alternative 
activities constitutes a plan. The number of plans can 
theoretically grow very large since each permutation of 
alternative activities will constitute a separate plan. Of course, 
in practice, many of these plans can be ruled out because of 
necessary conditions such as one activity that under real 
conditions has to be executed before another activity starts. If 
both activities have alternatives that start at different times, all 
combinations of alternatives that swap the activities in time, or 
make them run in parallel can be ruled out. 
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It is therefore necessary to give the simulator instructions 
on how to select combinations of alternatives it should ignore, 
avoid, or prefer, during simulation. Some simple ways to do 
this is to focus the simulators’ efforts towards activities that 
are: 

• executed in a specified geographical area, 

• executed within a specified timeframe, 

• influencing each other strongly in the cross-impact 
matrix (CIM) [12, 13]. 

The CIM is a matrix set up for all activities where it is 
specified how much they support or counteracts each other 
during execution due to resource conflict, e.g., one activity 
preparing for another one, etc. 

In the graphical user interface, we accordingly make these 
selections as a preferred area of interest in a map, a timeframe 
in a Gantt chart, and an activity group in a chart with activities 
grouped according to their inter-influencing in the CIM. Each 
of these three types of selections gives each activity a weight 
between 0.0 and 1.0. The final weight for an activity, to be used 
for its importance in the simulation, is the product of these 
three weights. Fig. 2 shows the screen of this user interface. 

 
Figure 2.  The simulation control tab of the GUI. Upper left: Selection of 
geographical focus area. Upper right: Selection of focus timeframe. Lower 

left: Selection of CIM connected activities. Lower right: Fused weights for the 
activities which give their importance in the simulation. 

V. MODELING ACTORS AND ACTIVITIES 

A. Activities 
How we model a phenomenon depends on the purpose of 

the model and the questions we want to answer. Since our 
simulation system aims to support decision-making within 
EBAO the modeling has to be based on EBAO and the 
concepts used within it, such as plan, activity, effect, end state, 
etc. 

A plan as it is defined in the context of EBAO is a sequence 
of activities that together leads to a desired end state which is 
set by a military force. These activities are events initiated by 
own forces and require different types of resources in order to 
be executed. Furthermore, they can affect each other and be 
affected by external events. External events, in our model, can 
either be initiated by other actors or be spontaneous/natural 
events. The former could either be planned, i.e., an actor’s 

action according to its agenda regardless of our activities, or 
responsive (dependent on our activities), such as the enemy 
force’s response to an attack, or the local population’s reaction 
to an operation. The spontaneous/natural events are on the 
other hand unpredicted incidents, such as weather conditions, 
natural catastrophes, an unprovoked attack or an accident. 

As we can see based on the above discussion, three 
different types of events can be discerned in our model: the 
launch of an activity (our own action or an action by another 
actor), observations and reactions made by an actor, and 
external events. The main difference between these event types, 
as far as our model is concerned, is who is initiating the event 
(if there is one) and who is receiving it, i.e., the target of the 
event. Another important aspect is whether the events are 
planned or responsive since that effects how the events are 
scheduled in our event list, as we will see in section VI, 
explaining our simulation. In case of an external event, 
initiation is not done by an actor. 

Each event when received by an actor is interpreted as more 
or less hostile or friendly. This interpretation depends on the 
state of the involved actors and their relations, such as a degree 
of aversion, and is graded along a hostility scale from 1 
(exposed to attack) to −1 (friendship strengthening initiative). 
Similarly, every event has a certain effect on one or several 
environmental objects (discussed in Sec.V.B), e.g., lowers their 
functionality with 2 units. 

Events affect actors both directly and indirectly depending 
on their level of involvement. The initiator(s) and the target(s) 
of an event are those who are directly affected by the event. 
Other actors may be indirectly affected based on their 
relationship with the initiator(s), the target(s) or the 
environmental objects. For instance my enemy’s enemy can 
become my friend, or destruction of a transportation route, a 
power supply or a religious building may have negative effects 
on the local population’s attitude towards our forces. 

B. Actors 
In our model we define an actor as an entity with resources, 

an action repertoire, an agenda and an internal state. Entities 
can be groups of people, who somehow have a common 
identity and purpose [14]. They may be more or less clearly 
defined and organized, and can be everything from police 
forces, relief agencies, well-organized militia units, and state 
administrative bodies to loosely coupled groups and social 
clusters. These loosely coupled groups and social clusters are 
usually held together by one common interest (which at the 
moment is in the focus). In exceptional cases, the actor might 
even be a single individual, such as a prominent opinion maker, 
political leaders or a financial potentate. A special actor is 
“we”, i.e., the blue force that is using this simulation. 

The set of possible actions that an actor is capable of 
performing is called an action repertoire. It is determined by 
the actor’s resources and knowledge, and that which is 
ideologically desirable but not yet possible for the actor to 
achieve. Depending on the ideology and strategy many of the 
possible actions are extremely unlikely because they would be 
counterproductive and not good for the actor’s image. 
However, as the state of the actor changes based on the events 
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and other actors’ activities, certain actions in its action 
repertoire become more probable and others less probable. 

The agenda is the plan that an actor is supposed to follow in 
order to achieve its goals. The state can be defined as a 
combination of resources, mood, solidarity, short-term agenda, 
etc. The states of the actors changes as a response to activities 
and events, together with the probability of performing 
different actions. Hence, each action has a probability 
associated with it, which is changed according to some 
functions. 

It should be noted that the probabilities of performing 
actions and the agenda are not directly affected by the other 
actors’ actions or external events. It is rather indirectly through 
changes in the actor’s internal (mental) state. The suggested 
attributes are graded fairly coarse, 0, 1, 2 and 3. For instance, in 
the case of “discontent”, this could be interpreted as appalling, 
bad, hopeful, and respectively good. However, here long-term 
goals and short-term goals have to be considered. And in the 
case of “relationships” a similar interpretation would be that 
another actor is perceived as hostile, extraneous, temporarily on 
the same line as oneself, or ally. How a suitable action 
repertoire should look like is dependent on the scenario at 
hand. 

C. Actor agenda 
As described in the previous section each actor has an 

action repertoire, and an “agenda”. This repertoire contains a 
set of actions that can be performed and each action is 
associated with a probability. The reason we model each actor 
this way is because we want to create dynamic actors with 
different behaviors depending on the situation. 

Each actor has relations to other actors, e.g., all UN nations 
have some kind of relationship with the other nations. An actor 
also has a so called “desired state” for itself and for the other 
actors in the relationship. The desired state is basically desired 
parameter values which the actor wishes to reach, and they are 
used to measure distances from the actual parameter values 
which are simulated. The distance reflects how far away an 
actor is from the desired state if a specific action is performed. 
The longer the measured distances are for an action, the farther 
the actor is from the desired state and the less probable it is for 
an actor to choose that action. Table I shows an example of the 
current parameter state jmp , and the desired parameter state 

jmω . Observe that the jmω  values are viewed from a specific 
actor’s point of view, in this case “Actor 1” which has relations 
to “Actor 2” and “Actor 3”. If we change the point of view, 
then jmω  is changed. 

 

 

 

 

 

 

TABLE I.  EXAMPLE OF ACTOR PARAMETER STATES, AND DESIRED 
VALUES, FROM ACTOR 1’S POINT OF VIEW. 

Actor 1 Actor 2 Actor 3

23 1111 == pω 20 2121 == pω 20 3131 == pω
12 1212 == pω 30 2222 == pω 21 3232 == pω
23 1313 == pω 20 2323 == pω 20 3333 == pω
23 1414 == pω 11 2424 == pω 30 3434 == pω
22 1515 == pω 20 2525 == pω 10 3535 == pω

 

If an actor event is executed there will be a global 
parameter change, since an event has consequences. Therefore, 
for each action that an actor can perform, there will be 
parameter changes for all related actors. In this example, if 
Actor 1 performs action 11a , 12a and 13a , then there will be 

changes ijkmpΔ , on its parameters and also upon other actors’ 

parameters, where ijkmpΔ  is a change on parameter jmp . 
Table II shows an example of this for Actor 1. 

TABLE II.  PARAMETER CHANGES FOR ACTOR 1 IF 11a , 12a  AND 13a  

ARE PERFORMED BY ACTOR 1. 

11a  12a  13a  

21211 =Δp  11121 =Δp  31131 −=Δp  

31311 =Δp  21321 −=Δp  11231 −=Δp  

11411 =Δp  31521 −=Δp  21531 =Δp  
 

For each actor relation that Actor 1 has, similar tables with 
actions 11a , 12a and 13a  will be constructed. The changes 

ijkmpΔ  must obviously be different for the other actors. From 
those table data we can now calculate parameter distances, but 
first we need to calculate the new parameter values after a 
change. We can use 

 ijkmjmijkm ppp Δ+=* , (1) 

Where jmp  is the old parameter value and *
ijkmp  the new 

value for actor i , parameter j , action k , and receiving actor 
m. If there are no changes for certain parameters, then we set 
those kijpΔ  to 0. Now that we have the new parameter values, 
we can calculate the distances by 

 ∑
=

⋅−=
n

j
jjmijkmikm pl

1

* || νω , (2) 
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Where jν  is a weight that determines how important the 

parameter is for a certain type of action. The weight jν  can, 
e.g., be set to a number between 1 and 5. After some 
calculations we obtain distances, in this case table III shows an 
example of calculations based on the table data that we 
discussed earlier, where jν  is considered to be 1 for all 
parameters. 

TABLE III.  SUM OF LENGTH FOR DIFFERENT ACTIVITIES AND ACTORS. 

Action Actor 1 Actor 2 Actor 3

1ia  211 =il  421 =il  831 =il  

2ia  712 =il  922 =il  1132 =il  

3ia  813 =il  723 =il  1133 =il  
 

From table III we can calculate the sum of distances that 
belong to an action that Actor 1 can perform. Once again we 
must observe that all values have initially been calculated from 
Actor 1’s perspective. We can use the following formula for 
the aggregated sum 

 ∑
=

=
n

i
kma lL

k
1

1 
1

, (3) 

where 
kaL

1
 is a partial sum which is based on the fact that ka1  

is performed. For this example, this will give us the following 
values: 14

11
=aL , 27

12
=aL , 26

13
=aL . Since our model 

is based on the fact that the shortest distance should be the most 
probable (alternatively the longest distance should be least 
probable) we need to perform a transformation. In this case 

11aL  should be most probable since it is the shortest distance. 

We apply the inverse transform 1
11

−=
kk aa LT  which will give 

us these values: 07.0
11

≈aT , 04.0
12

≈aT , 04.0
13

≈aT . 

Note that 
kaL

1
 must be non-zero. However, if a distance is 0, 

we can assign a low value to it, e.g., 0.001. Now that we have 
transformed our values we can simply calculate the 
probabilities by standard probability methods. First, we create 
the sum 

 ∑
=

=
n

k
ai ik

TS
1
 , (4) 

and then we calculate the probabilities 

 47.0
15.0
07.0)(

1
11

11 ≈==
S

T
ap a , (5) 

 27.0
15.0
04.0)(

1
12

12 ≈==
S

T
ap a , (6) 

 27.0
15.0
04.0)(

1
13

13 ≈==
S

T
ap a . (7) 

Hence, the above probabilities are the new updated action 
repertoire for Actor 1. 

The reason we used this approach for modeling the actor 
agenda is because we want to have a model that allows an 
expert (e.g., a military expert) to input his knowledge into the 
system. From this system we could calculate the parameter 
changes ijkmpΔ  for each action which increases traceability. 
Different factors are taken into consideration when the changes 
are calculated. These factors are, e.g., the type of activity which 
the action is being carried out, in relationship to the 
surrounding world, amount of available resources, target types, 
and the actor type who is performing the action. A model 
which takes an expert’s knowledge into count is closer to 
reality than models which do not. 

D. Environment objects 
As described in the previous section our model consists of 

actors which are groups of people that can be understood in 
terms of sociological models. These actors do not exist in a 
vacuum, but in an environment with passive objects, but yet 
with symbolic or functional values. These objects may consist 
of: 

• functional buildings, such as hospitals, schools, 
housing, and management centers, etc., 

• transportation routes and transfer points, such as roads, 
bridges, pipelines, ports, airports, etc., 

• utilities such as natural resources like arable land, 
mines, etc., and processing facilities such as power 
plants, factories, warehouses, etc., 

• information channels such as radio and TV stations, 
networks, transmission masts, etc., 

• the symbolical sites can be geographical areas, statues 
or other memorials, religious buildings, etc. 

It is logical to assume that environmental objects have 
different significance and value to different actors. Moreover, 
they have various levels of vulnerabilities. The impairment is 
graded on the scale 0, 1, 2 and 3. 

E. Tool for modelling actors and activities 
For the modeling purpose we have developed a tool called 

“Effect Based Planner”. The tool allows the user to create and 
manipulate different world entities. The world entities are the 
actors and activities which can be assembled together in 
different composites. 

The user starts with a predefined template which contains 
entities that are relevant for a specific scenario domain. From 
the template the user creates instances and through them the 
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user can specify specific names and parameter values, see Fig. 
3. The instances represent real actors and activities and they are 
used in the “scenario graph”, see Fig. 4. 

 
Figure 3.  Instances and activities. 

 
Figure 4.  Scenario graph editor. 

The scenario graph represents the actual plan that a decision 
maker has developed. Each node in the scenario graph 
represents an activity and each activity contains a set of actors 
which are grouped into different colors (subsets). The subset 
information is used by the event algorithm (e.g., an activity 
event or an actor action event), in order to distinguish different 
actor roles in an event. 

The tool also enables a user to input “wanted effect”, i.e., 
the desired end state value for each parameter and for each 
actor. When a scenario graph has been built a user must also 
specify a start and a goal node, which set the direction of the 
graph traversing algorithm (A*-search). 

At this stage we do not consider validation of models as we 
work with a fictitious scenario. With genuine models this may 
be done using historical scenarios with known outcomes. 

VI. SIMULATION 
The scenario consists of participating actors, their initial 

states and probability distribution for different actions, 
environmental data, as well as the plan that is to be evaluated. 
Furthermore the scenario contains an event list which consists 
of actions derived from the other actors’ agendas, and 
spontaneous/natural events. The list is dynamic and changes 
during the course of the simulation. 

Let’s define the system state, Sn as the combination of all 
actors’ state parameters and all environment parameters. 
Consider activity An. It transforms system state Sn according to 
Sn = f(Sn-1, An), in the time interval [tn-1, tn]. The implementation 

of An is rarely instantaneous. Instead, it is an interaction 
between our own activity, other actors’ agendas and response 
operations, and other external events, which is rather 
complicated. Hence, our function f(Sn-1, An) is designed as an 
event-driven simulation model in order to manage the complex 
interactions in a transparent manner. The events in this case 
are: launching of activities (our own or any other actors’), an 
actor’s observations of initiated activities, and occurrence of an 
external event. 

Furthermore the outcome of An can vary depending on the 
circumstances (the operation may even fail), which can be 
addressed by making the simulation stochastic, where the 
outcome of an activity depends on a number of random 
variables drawn according to some given distributions. The 
disadvantage of this is that we can obtain a per se reasonable, 
but rather unlikely outcome, which would mean that we might 
needlessly throw out a mostly good plan. In order to avoid this 
outcome we use Monte Carlo simulations, thereby obtaining a 
frequency function of the entire outcome space. 

A consequence of implementing the function f(S, A) as an 
event-driven stochastic simulation model is that, although the 
state parameters from the beginning are absolute values, after a 
completed action they will be represented by statistical 
distributions. Hence, we can choose to represent the initial 
states by statistical distributions as well. Similarly, the external 
events can be listed with typical probabilities for the actual 
operational theatre, season, etc. 

We know that the goal of the simulation is to execute 
different plans and identify those plans that result in system 
states that are “closest” to our end state, i.e., has the shortest 
distance. Given the approach discussed above, the distance to 
the end state will be stochastic. Hence, by calculating the 
distance value in each Monte Carlo loop we create the 
distribution of this distance in the form of a histogram (which 
approximates the frequency function). This means that the A*- 
algorithm (described in the next section) needs to evaluate not 
only a single distance value, but also the importance of the 
spread in the given situation. A large spread around a small 
average value indicates that we are on track, but this path is 
unstable and could easily lead to failure. 

Our Monte Carlo simulation is therefore structured as 
follows: 

 

 
Figure 5.  Monte Carlo algorithm. 
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During the actual time interval [tn-1, tn] our activity An is 
initiated. Probable external events are in the same way chosen 
and placed in the event list according to their given 
distributions. The activity An is observed (via an information 
channel) by the other actors immediately or eventually. 
Directly, or after a period of analysis (which may be biased or 
colored by the information channel), the respective actor’s state 
is changed, which can lead to a new set of probabilities in the 
action repertoire. An action from each actor’s action repertoire 
is randomly chosen and placed in the event list. As the 
simulation proceeds and actions/events in the event list are 
executed new actions/events are added in the list (as the result 
of observations and reactions) until the end of the time interval 
is reached. Finally, a summary of the results for the state 
parameters is created. These state parameters are represented as 
histograms and serves as an approximation for respective 
output distribution. 

A. A*-search 
One of the main requirements of our simulation system is to 

be able to, at any moment in time, suggest an alternative 
sequence of activities that best suits the decision maker’s 
desired end state. Such a simulation system can neither be 
designed according to the principle of “breadth first search” nor 
“depth first search”. In the former case it will take too much 
time before we reach a reasonably correct prediction. In the 
latter case we get stuck with just one plan, and will not have a 
general view when we are asked to forecast the best approach. 
Instead, we apply A*-search [2, 3]. It means that, on the basis 
of a given system state, we simulate the effect of each 
alternative activity in our plan, but only one step at the time. 
Doing so, for every alternative, we get a new system state 
whose “distance” to the desired end state is calculated. Given 
the alternative that is best, i.e., “closest” to our end state, we 
simulate possible subsequent alternative activities provided, but 
again only one step ahead in our activity/event list. One of 
these alternatives leads to a condition that is “closer” than the 
others. However, it is possible that all the alternatives actually 
lead away from the target as seen by Fig. 6. 
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S11 84 S12 79 S13 103

A13A12A11
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S11 84 S12 79 S13 103

A13A12A11

S221 88 S222 71

A221 A222
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S11 84 S12 79 S13 103

A13A12A11

S221 88 S222 71

A221 A222

S3221 98 S3222 112 S3223 87

A3223A3222A3221
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A13A12A11

S221 88 S222 71

A221 A222

S3221 98 S3222 112 S3223 87

A3223A3222A3221

S211 108 S212 59

A211 A212

Step 4: Activities following S11 are now simulated and S212 is 
the “closest” and next to simulate.  

Step 2: After execution of alternative activities that follow 
S12, S222 is the “closest” to the target. 

Step 4: From S222 all the alternative activities 
that are presented are executed. S11, which was 
calculated earlier appears to be “closest” now. 

Step 1: From the initial state all 
available alternatives are simulated. S12 
appears to be “closest” to the target. 

 
Figure 6.  An example illustrating the four first steps in a simulation of a plan 
starting with initial system state S0 with the distance of 100 to the desired end 

state. The available activity alternatives Ax are executed successively in the 
currently most favourable plan option. 

Therefore, we must also compare the new “distance” with 
the best of the “distances” that have been simulated and 
recorded in the previous simulation steps, but then had opted 
out in favor of a better sequence of alternative activities. The 
best sequence now becomes the basis for the next simulation 
step. At any time the user can then ask for the sequence, which 
at that time seems to be the best, i.e., the sequence of 
alternative activities that leads to a simulated state, which is 
“closest” to the desired end state. Activity lists in the 
investigated plans are obviously not infinite, which means that 
they will gradually terminate. Consequently the simulation 
program continues to execute the options that follow the 
“second best” system state. Given enough execution time all 
options will eventually be investigated. For the tool to function 
in this way the simulation system stores a list of all executed 
activities, the corresponding system state, and the “distance 
value”. Therefore, the simulation kernel provides a service to 
store all this information in a dynamic list and is also able to 
restart the simulation from a previously stored state. 

B. Functions of distance calculations in A* 
A central problem in applying the A*-search algorithm is to 

find a proper distance function. In our model the states of the 
actors and the environment are described by a large amount of 
parameters with varying resolution and weights, which 
complicates the task of the defining a credible distance 
function. The solution chosen is to define a function that 
calculates the distance based on the difference between 
parameter values of a given state and the parameter values of 
the end state. These differences are absolute values and are 
weighted according to the importance of the parameters and 
their impact on the success of the plan. As described earlier, 
our parameters are not represented as real numbers, but rather 
as histograms. 

A state 
iyiS ,  is a vector of length n with different sub-states 

jyi i
S ,, , where jyi i

S ,,  is a distribution over {0, 1, 2, 3}, e.g., 

jyi i
S ,,  = (0.2, 0.5, 0.2, 0.1) where the first 0.2 is the frequency 
of “0”, and 0.5 the frequency of “1”, etc. We have 

 
iyiS ,  = ( 1,, iyiS , 2,, iyiS , ..., nyi i

S ,, ), (8) 

where yi is the current sequence of choices made for all 
activities A1 to Ai. The initial stated is called S0,0, and the end 
state is called Se. 

The distance Δ(
iyiS , ,

1,1 ++ iyiS ) between two successive 

states 
iyiS ,  and 

1,1 ++ iyiS  is calculated as 
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where the distance DS is calculated as 
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and where w is a vector of length n with elements wj, where 
[ ]1,0∈jw  are weights assigned during modeling to address 

the relative importance between different { }n

jjyi i
S

1,, 
=

. The 

distance from the starting state S0,0 to a current state 
xyxS , . 

The ω function is a priori information regarding the 
importance of the activity from an effects-based perspective. 
This information is obtained from a CIM. We have 

( )][
11,1 +++ ii yyiAω  = ( ) }] ,[ {max

11,1 qyyiq SEACIM
ii +++ . (11) 

The μ function records the decision maker’s current interest 
in a particular activity (see Sec. IV). We have 

 ( )][
11,1 +++ ii yyiAμ  = ( )[ ]∏ +++

j
yyjij ii

A
11,μ , (12) 

where { }
jjμ  are drawn from the views that decision makers 

use to give priorities of simulations tasks to the simulator. 

The distance from the initial state S0,0 to a current state 

xyxS ,  is given by 

 ( ) ( )∑
−

=
+ +

Δ=
1

0
,1, 1

,
x

i
yiyix ii

SSyg . (13) 

The estimated distance from the current state to the end 
state is given by 

 ( ) ( )eyxx SSyh
x
,,Δ= . (14) 

With the total distance from the initial state to the end state 
via the current state is 

 ( ) ( ) ( )xxx yhygyf += . (15) 

This is the distance function that is minimized by A*. 

C. The simulation tool 
The Effect Based Planner contains a simulation section 

where the scenario can be simulated, see Fig. 7. The user can 
specify simulation delay, the number of actor reactions and the 
detail level of debug information. The user can also pause and 
stop the simulation. 

 
Figure 7.  Simulation section. 

The simulation section shows two important results in real-
time. The first result is a list that shows the current optimal path 
which is described by a chain of activities. If the activities in 
the list are performed with these alternatives, the distance from 
the current state to the end state is minimized. The second 
result is a diagram that shows the optimal individual parameter 
development during system state changes for each actor. Using 
this information the decision maker will know how each 
parameter has changed historically during the simulation, 
which will increase traceability. 

The simulation model is stored using an XML-based format 
with a schema. A user can easily change the plan model, 
perform a simulation, gain new results, update the plan and 
store it once again so that it can be further used in the future. 

Plan simulation is performed by the simulation engine. The 
engine basically contains an implementation of the A*-search 
algorithm which uses the Monte Carlo principle for event based 
simulation. During simulation, each system state in the A*-
search algorithm is stored. A system state is a snapshot of the 
parameter state for all entities at a specific time during the 
execution of the algorithm. This state contains crucial 
information which is used by the simulation control (input 
filter) in order to narrow the A*-search. 

The internal data that is used by the simulation is stored in a 
separate container. This way it can easily be serialized and used 
by other simulation engine instances. 

The simulation engine has an optimization parameter which 
is regulated by the user. This parameter determines how long 
the event reaction chain can be for each actor. By default each 
actor can react once to a certain event, but this global value can 
be changed in order to gain more realistic results. For example 
if an actor i can perform 1ia , 2ia and 3ia , and the optimization 
parameter is set to 1, then he may only choose one of the 
actions as a response to an event, that is, he may only react 
once. However, we can specify this parameter to be larger. 

VII. DECISION SUPPORT 
Decision support is given as a set of plans that are similar in 

structure and consequences. That they are similar in structure 
means that they have more or less performed similar alternative 
activities. Similar in consequences means that they travel on 
average the same distance towards the end state for each 
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performed activity. These plans are robust as there are always 
several alternative plans that can be used if the current plan 
must be abandoned. Dynamic replanning can be performed as a 
selection of one of the similar plans within this set of plans. 

During simulation an assessment is made of how well each 
activity is performed. All such estimates are based on various 
simulation tasks and stored in order to be rapidly re-used by 
future simulation and is also transferred to the decision support 
system so that a consolidated assessment can be made. The 
compilation of partial results from all simulation activities is 
done by the g-function, Eq. (13), that measures the 
consequence of all performed activities as a distance from the 
initial state to the current simulated state. 

We observe the difference in consequences between two 
plans. We compare the incremental changes of g called Δg as 
each plan Pi and Pj progresses down the sequence of additional 
activities Ak. 

In addition, we need to measure the structural distance 
between two plans. This is done by the Hamming distance H 
[15] which measures the structural distance between Pi and Pj. 
We have, 

 ( )
⎩
⎨
⎧

≠
=

=
kjki

kjki
kjki APAP

APAP
A,PAPH

..  ,1
..  ,0

..  (16) 

when both activities ki AP .  and kj AP .  exists within the 
simulated sequences Pi and Pj, otherwise 0 by definition. 

Using this measure, we compare each activity in two 
different plans to calculate the structural distance between the 
plans. For each activity we observe the alternative chosen in 
both plans. 

We need to find plans that are close in both structure and 
consequence so that one can work as an alternative to the other 
should dynamic replanning be necessary. We put these two 
measures together into an interaction functions −

ijJ  that 
measures the overall distance between plan Pi and Pj. 

We have, 

 ( )⎥
⎦

⎤
⎢
⎣

⎡ −−= ∑−

k
kjkiij A,PAPHJ ..1 1  

 ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡ Δ−Δ−× ∑
k

kjki APgAPg  .. 1  (17) 

where the incremental change of g for Pi between activities Ak-1 
and Ak is 

 ( ) ( ) ( )1... −−=Δ kikiki APgAPgAPg , (18) 

and identically for Pj. 

We partition the set of all simulated plans into clusters in 
such a way as to minimize the overall sum of all interactions 

−
ijJ  within each cluster, Fig. 8. 
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Figure 8.  Potts spin clustering of simulated plans partition the set of 

simulated plans into clusters of similar plans. 
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To find the number of clusters K we plot the energy 
function 

 ∑∑
= =

−=
K

a

N

ji
jaiaij VVJE

1 1,2
1

 (19) 

in a graph for different number of clusters K. We use a convex 
hull algorithm to calculate the lower envelope of E. At an 
arbitrary abscissa, the envelop function is bisected in a left and 
right part, each of which is fitted by least squares to a straight 
line. The acute angle between the two lines is maximized over 
all bisection abscissas and the maximizing abscissa is chosen as 
the number of clusters [16, p. 90]. 

Potts spin clustering is an effective method and as such 
does not guarantee an optimal solution. However, this is not 
considered a problem as our focus is on providing a set of 
robust alternative plans should replanning be necessary, and 
not one single second best plan. 

These clusters are sets of alternative plans available, should 
replanning be necessary. If a plan is in the midst of execution 
the decision maker can observe evaluations of alternative 
continuations of the plan, and see which alternative activities to 
avoid and which are preferable as they are within a robust 
subset of plans, Fig. 9. 

PLAN SUPPORT

SE1 SE2 SE3 SE4 SE5 SE6 SE7 SE8 SE9
 

Figure 9.  Plan support is given a set of robust plans illustrated by green 
alternastives. Each column represent an activity (e.g., supporting effect) of the 

plan. The rows are different alternatives for these activities. 

Plans are judged by their robustness. This is measured, not 
by the score the plan receives itself, but rather by the minimum 
score of all other plans that are close in structure and in their 
consequences. When executing a plan like this, we have a 
robust situation where there are similar plans with minor 
differences in both structure and consequence. They function as 
alternatives if dynamic replanning becomes necessary. 

VIII. CONCLUSIONS 
We have developed a simulation-based decision support 

methodology with which we can test operational plans as to 
their robustness. Primarily, this methodology highlights the 
dangerous options in an operational plan, leaving the decision 
maker free to focus his attention on the set of remaining robust 
plans. 
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