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Abstract Describing social positions and roles is an

important topic within the social network analysis. Identi-

fying social positions can be difficult when the target

organization lacks a formal structure or is partially hidden.

One approach is to compute a suitable equivalence relation

on the nodes of the target network. Several different

equivalence relations can be used, all depending on what

kind of social positions that are of interest.One relation that

is often used for this purpose is regular equivalence, or

bisimulation, as it is known within the field of computer

science. In this paper we consider a relation from computer

science called simulation relation. The simulation relation

creates a partial order on the set of actors in a network and

we can use this order to identify actors that have charac-

teristic properties. The simulation relation can also be used

to compute simulation equivalence which is a related but

less restrictive equivalence relation than regular equiva-

lence that is still computable in polynomial time.We

tentatively term the equivalence classes determined by

simulation equivalence social positions. Which equiva-

lence relation that is interesting to consider depends on the

problem at hand. We argue that it is necessary to consider

several different equivalence relations for a given network,

in order to understand it completely. This paper primarily

considers weighted directed networks and we present

definitions of both weighted simulation equivalence and

weighted regular equivalence. Weighted networks can be

used to model a number of network domains, including

information flow, trust propagation, and communication

channels. Many of these domains have applications within

homeland security and in the military, where one wants to

survey and elicit key roles within an organization. After

social positions have been calculated, they can be used to

produce abstractions of the network—smaller versions that

retain some of the most important characteristics.
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1 Introduction

Social network analysis (SNA) (Wasserman and Faust

1994; Scott 2000; Carrington et al. 2005) is a set of pow-

erful techniques to identify social roles, important groups

and hidden structures in organizations and groups. This

methodology assumes that the ways the members of a

group can and do communicate with each other are cor-

related with important properties of that group. There are a

number of different measures that could be calculated for a

given network and that tell us details about it. While SNA

has a long and successful history within sociology, net-

works are everywhere in nature, and SNA and related

methodology can be used to analyze a wide variety of

problems (Newman et al. 2006).

One particular application that has gained interest lately

is for military and security purposes: can we use SNA to

find criminals or terrorists? While it is easier to use SNA in

forensic analysis after a crime or terrorist act has been

committed, it is sometimes still hoped that SNA in con-

junction with other techniques could allow us to obtain

early warnings about future incidents. Correlation of

observed data about individuals, things, places, member-

ships, etc., may be used to detect organized crime or ter-

rorist cells and networks through the observation of hidden

relations and co-occurrences.
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A network consists of a set of actors and a set of binary

relations between the actors that describe their communi-

cation patterns. Most networks of interest are very large,

making it difficult to visualize them. When analyzing large

data sets, it is important to try to extract the most important

features. This is particularly important in visualization.

Displaying too much information to the user will distract

them and lead to information overload instead of under-

standing the data. This can be remedied by finding a suit-

able abstraction of the data, so that less detail is displayed

to the user, but the important characteristics of the data are

still visible. For instance, in information fusion (Liggins

et al. 2009), objects or events of interest are often clustered

together and classified to form an aggregation. The chal-

lenge is to construct algorithms that cluster the data in such

a way that the essential meaning of it is still retained in the

new visualization. The goal of any abstraction is to trans-

form a large network into a smaller one, so that the smaller

is a useful summary of the original network.

Similar issues arise when analyzing networks, both

social and other kinds. There are simply too many nodes

and too many links to display. A traditional way of

reducing the number of nodes and links shown is to cluster

the nodes of the network, and only display the clusters and

links between them. This is very similar to clustering

objects using geospatial positions.

In order to facilitate easier visualization and analysis, we

want to construct a smaller network that still has the most

important characteristics of the original one. One way of

doing this is to discover the community structure of the

network, and only display these. Another is to look for

actors in the network that are equivalent and construct a

smaller network where all equivalent actors are merged.

In this paper, we follow the latter route and investigate

how different equivalence relations from computer science

can be used to detect social positions and roles in a social

network. The standard view in SNA is that a social position

refers to a collection of individuals who are similarly

embedded in networks of relations (Wasserman and Faust

1994). A social position is therefore a property of actors in

a network. For a given network a social position is defined

as a subset of actors, namely those who have that property

(Marx and Masuch 2003). Since positions are based on the

similarities of ties among subsets of actors, actors that have

the same position in a network do not need to be in direct

(or indirect) contact with each other. Social roles are

defined on the basis of social positions. A role is defined in

terms of the patterns of relations between positions but

there are also other possible definitions. For instance,

in this paper we are interested in obtaining abstracted

networks with a less restrictive equivalence relation than

the standard equivalence relations (Wasserman and Faust

1994). An equivalence relation over the set of actors

determines social positions in a network since the equiva-

lence classes represent the different positions in a network.

Using equivalence relations to create a smaller network is

one way of creating an abstraction of the network. There

are several different equivalence relations that can be used

to describe positions in a network: automorphic equiva-

lence, structural equivalence and regular equivalence are

three of the most well-known equivalences in the literature

(Wasserman and Faust 1994). Of these three relations,

regular equivalence is the relation that is least restrictive.

Computing these relations can be demanding; it is common

to approximate the relations to get a better result.

In this paper we present a relation called simulation

relation. The simulation relation creates a partial order on

the set of actors in a network and we can use this order to

identify actors that have characteristic properties.

The simulation relation can also be used to compute

simulation equivalence. We use simulation equivalence to

create equivalence classes that form positions in the net-

work. The smaller network that is formed between these

positions can be used as an abstraction of the larger net-

work, and is easier to use for explorative visual analysis.

Finding such equivalence classes is interesting for many

different applications. Our interest lies mainly in using the

equivalence classes to produce abstractions of large net-

works that are easier for military intelligence analysts to

study and visualize. An obvious application is for recom-

mendation systems, where individuals who share the same

social role might be expected to share the same taste.

Another application is in enterprize incentive management,

where company bonuses should be divided as fairly as

possible among all employees. In a large corporation,

employees who cannot be simulated (i.e., replaced) by other

employees could be regarded as more valuable than others,

and thus receive larger bonuses. The lack of redundancy

could also be considered as a risk for the enterprize. In such

cases, measures should be taken to make sure that a backup

is created. In a similar way, the relation could be used to find

weak points in other networks, for instance transport net-

works or information processing networks.

The techniques that we present in this paper can be used

to identify social roles and social relations on actors in a

network. An important motivation for defining different

relations on the actors in a network is the fact that if we can

define roles formally based on observed relations, we can

detect emergent, unnamed roles and positions in social

networks.

It is important to note that we do not argue that simu-

lation equivalence is a ‘‘better’’ way of studying a social

network than, e.g., regular equivalence. Both of these

equivalence relations are useful, depending on the question

one wishes to answer about the network. We discuss this

issue further in Sect. 4 below.
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1.1 Related work

There are several different methods to cluster actors in a

social network into groups or cliques. Most clustering

techniques are formed on the basis of social relations

within a group. If we instead of clustering according to

relations within a group want to use social positions or

roles to cluster actors in a network, we can use the relations

with other roles or positions in the network as a criteria for

clustering actors (Freeman et al. 1992).

Community detection refers to an intuitively appealing

clustering of the network nodes into ‘‘natural’’ subsets in

the sense that the subsets ‘‘look like’’ reasonable commu-

nities with respect to the underlying relational patterns. By

choosing an objective function that captures the desired

intuition, sets of nodes that are related in the sense of the

objective function can be extracted. However, specifying

the most ‘‘realistic’’ formalization of a network community

can be done in many more or less appropriate ways, and

therefore the development of objective functions is a very

active research area. Generally speaking, a ‘‘good’’ com-

munity is taken to refer to a subset of nodes that are (1)

well connected among themselves, and (2) well separated

from the rest of the graph. Hence, algorithms for network

clustering are often based on a subjective quality measure

that can be applied on a potential cluster. Therefore, in

general, algorithms for network clustering differ in (1) how

the quality of the proposed clusters is measured, and (2)

what kind of optimization technique is used to obtain this

desired quality. For a more in-depth discussion and

description of some of the standard methods, see Kolaczyk

(2009, pp. 102–111).

Formally described by Everett and Borgatti (1994) and

put well into perspective by Wolfe (2011), regular equiv-

alence is one way of clustering actors according to social

positions. We use another closely related equivalence

relation called simulation equivalence to cluster actors

according to social positions. We consider both backward

and forward simulation equivalence, both described by

Lynch and Vaandrager (1995).

In the current work, we consider weighted directed

social networks. As noted by Opsahl and Panzarasa (2009),

most network measures do not take weights into consid-

eration. However, it often makes sense to incorporate the

extent/strength of relationships as weights to obtain a more

accurate model of a social phenomenon. As exemplified

by Fazeen et al. (2011), such weights can either be

derived from available data (context-dependent weights),

or be calculated based on more generic patterns (context-

independent weights). Weighted networks are usually

handled by either generalizing existing unweighted net-

work algorithms to take weights into account, or devel-

oping completely new algorithms that do not have any

connection to unweighted measures (Abdallah 2011).

In this sense, our work provides both new unweighted

clustering algorithms as well as generalizations of these

algorithms to consider take weights. Regular equivalence

for weighted networks is similar to the notion of bisimu-

lation for weighted automata. Both backward and forward

bisimulation for weighted automata are presented by

Buchholz (2008).

1.2 Outline

In Sect. 2, an example aimed at providing an intuitive

understanding of the mathematics is presented. In Sects. 3

and 4, the relevant definitions are given and the need for

using several different equivalence relations when analyz-

ing a network is motivated.

In Sects. 5 and 6, we present two examples in the form

of communication scenarios that put the presented

abstraction techniques into context, while Sect. 7 briefly

describes military intelligence work and how it could

benefit from abstraction techniques such as the one pre-

sented. The paper concludes with a summary and some

suggestions for future work in Sect. 8.

2 Illustration of concepts

Analyzing equivalence classes is one way of making sense

of the patterns of relations among actors in a network. The

ability to define, theorize about, and analyze data in terms

of equivalence is important since we want to be able to

make generalizations about social behavior and social

structure. In order to do this we think about actors as

examples of categories. That is, sets of actors who are in

some way defined as ‘‘equivalent.‘‘

To illustrate the difference between simulation equiva-

lence and regular equivalence, we can use the network

shown in Fig. 1. The network represents a group of ter-

rorists and how they communicate with each other. Using

simulation equivalence we obtain the equivalence classes

{1, 2}, {3}, {4} and {5,6}. We have four different social

Fig. 1 A network representing the communication between a group

of terrorists with different social positions
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roles: a group of terrorist leaders (the group containing

actors 1 and 2), two intermediate leaders that have different

social positions, and a group of terrorists (the group

containing actors 5 and 6).

If we use the more restrictive relation regular equiva-

lence on the network we get the following equivalence

classes: {1}, {2}, {3}, {4} and {5,6}. That is, we cannot

capture that the two leaders (actors 1 and 2) have the same

social position. This illustrates one of the uses of the

simulation equivalence presented here. When analyzing

very large networks, it would be beneficial to detect the

similarity between actors such as 1 and 2 in the example,

and computing equivalence classes based on simulation

equivalence can help with this.

2.1 A preorder abstraction

Another use of the simulation relation is that it can be used

to determine an even coarser abstraction. When computing

simulation equivalence, a so-called preorder is obtained.

This preorder divides the actors into a partial order and

can be used to create an abstraction of a network. The

abstraction is created by removing all actors that can be

simulated by some other actor. In the network in Fig. 1, the

actors 5 and 6 can be simulated by all other actors in the

network (since they cannot do anything). Hence, they can

be removed from the resulting abstraction. Actor 3 can be

simulated by actor 4 and therefore we can replace actor 3

by 4. Actor 4 cannot be simulated by any other actor in the

network. Actors 1 and 2 can be simulated by each other

(that is, they are simulation equivalent). An abstraction of

the network in Fig. 1 is shown in Fig. 2.

In this example, the abstraction of the network shows

that there are two important groups in the network: the

terrorist leaders and the intermediate leaders.

2.2 Weighted directed networks

In a more advanced approach we can add weights to the

ties in the network.

Simulation equivalence is a less restrictive equivalence

relation than regular equivalence, especially in the case

with weights that are integers. Using regular equivalence,

two states are considered equivalent only if they have

similar ties and weights to other equivalence classes while

in the case of simulation, one actor simulates another actor

if the ties are similar and have at least the same weights

(possibly more).

Regular equivalence for weighted networks is a quite

restrictive relation since two actors are considered equiv-

alent only if they have edges with similar weights to

equivalent actors. In this example we use weights from the

semiring of integers. This means that two edges can be

combined using addition of their weights.

3 Definitions

In this section we present some definitions of networks,

relations and equivalences.

3.1 Numbers and relations

Let S be a set, and let ^ and % be binary relations on

S, i.e., ^ and % are both subsets of S 9 S. We abbreviate

the Cartesian product S 9 S by S2. The relation % is said

to be coarser than ^ (or equivalently: ^ is a refinement of

%), if ^ is a subset of %.

Let � be a binary relation on the set S. The relation � is

a preorder (or quasi-order) if it is reflexive and transitive.

It is an equivalence relation if it is a symmetric preorder.

We write :(s), where s 2 S; for the set of elements fs0 j
s � s0g of elements in S that dominate s. We denote by

max�ðSÞ the subset fs j6 9s0 2 S: s � s0 ^ s0 6� sg: That is,

max�ðSÞ is the set of maximal elements of S with respect to

� : We denote by ¼� the coarsest equivalence relation that

is a subset of �; i.e., ¼� is equal to � \ ��1 :

3.2 Example: preorder

Let S = {a, b, c}. The relation {(a, a), (b, b), (c, c),

(a, b), (b, c), (a, c)} is a preorder on S, but neither

fða; aÞ; ða; bÞ; ðb; cÞ; ða; cÞg

nor

fða; aÞ; ðb; bÞ; ðc; cÞ; ða; bÞ; ðb; cÞg

are, as the first relation is not reflexive and the second is not

transitive.

The equivalence class of an element s 2 S with respect

to an equivalence relation ^ is the set ½s�’ ¼ fs0 j s ’ s0g.
Whenever ^ is obvious from the context, we simply write

[s] instead of ½s�’: It should be clear that [s] and [s0]

are equal if s and s0 are in relation ^, and disjoint other-

wise. The equivalence relation ^ thus induces a partition

S=’ð Þ ¼ f½s� j s 2 Sg of S.
Fig. 2 An abstraction of the network in Fig. 1 using the simulation

preorder
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3.3 Networks and graphs

An alphabet is a finite set of symbols. We write e for the

empty word.

Definition 1 (Directed graph) A directed graph (or net-

work) is a tuple (V, E) where

– V is a finite set of vertices (or nodes), and

– E � V � V is a finite set of edges.

If G has vertices with labels in the alphabet R, then V

can be partitioned into a R-indexed family ðVaÞa2R of sets

of vertices. If G has edge labels in R; then E is a R-indexed

family ðEaÞa2R of sets of edges, such that Ea � V � V; for

each a 2 R: We thus only allow parallel edges if they are

labeled with different symbols.

For each symbol a 2 R, we denote by EaðuÞ the set of

vertices fv j ðu; vÞ 2 Eag that can be reached from u along

a-labeled edges. Similarly, for each w 2 R�; we have

EwðuÞ ¼

S

v2EaðuÞ
Ew0 ðvÞ if w ¼ aw0; for some a 2 R

and w0 2 R�; and

fug if w ¼ �:

8
><

>:

Let R be an alphabet and G = (V, E) a directed graph

with edge-labels in R: The graph G has a trace w 2 R� if

there is a v 2 V such that EwðvÞ 6¼ ;: The trace behavior of

a graph G is given by

LðGÞ ¼
[

v2V

fw 2 R� j EwðvÞ 6¼ ;g:

3.4 Algebraic structures

Towards the end of Sect. 4, we recall a number of results

concerning weighted simulation, and for this we need the

following algebraic concepts.

A monoid is a set A together with a binary operation �
from A 9 A to A and an element 1 in A that satisfy the

following two axioms:

– The operation � is associative in that for every three

elements a, b, and c in A, it holds that ða � bÞ � c is equal

to a � ðb � cÞ:
– The element 1 is the neutral element with respect to �;

i.e., we have a � 1 ¼ 1 � a ¼ a; for all a 2 A:

A monoid ðA; �; 1Þ is commutative if a � b ¼ b � a; for all

a, b in A.

Moreover, a semiring is a tuple ðA;þ; �; 0; 1Þ where

– (A, ? , 0) is a commutative monoid and

– ðA; �; 1Þ is a monoid.

– For every a, b, and c in A, it holds that ðaþ bÞ � c
equals ða � cÞ þ ðb � cÞ and a � ðbþ cÞ equals ða � bÞ þ

ða � cÞ; i.e. the multiplicative operation distributes over

the additive.

– For every a in A, we have that a � 0 ¼ 0 � a ¼ 0: In

other words, the element 0 is absorptive.

– Finally, 0 and 1 are distinct elements.

4 Simulation relations

Before we delve into the formal definitions, let us start with

an intuitive description of simulation relation and simula-

tion equivalence. A simulation on a graph G is an ordering

(more precisely, a preorder) of the vertices of G, such that

if there is an edge v! v0 in G, then for every vertice u that

dominates v, there is also an edge u! u0 to some vertex u0

that dominates v0. In other words, if a vertex u simulates a

vertex v, then the freedom of movement at u is at least as

great as it is at v. To put this into social network terms, we

require that if v communicates with v0, then all actors u that

dominate v must communicate with some actor u0 that

dominates v0.
A maximal simulation equivalence is the coarsest

equivalence relation contained in �; i.e., ¼�. In a social

network the equivalence classes correspond to different

social roles.

The simulation preorder � can also be used to gain

information about the actors in a network. The preorder

contains information on the relations between the actors

and if they simulate each other. A subnetwork containing

only actors from the maximal vertices of � is an over

approximation of the original network. This technique

normally produces a small network but it does not preserve

the trace behavior of the graph: although every trace that

can be found in the original graph can also be found in the

reduced graph, the converse is not true in general.

4.1 Relations

In this paper we consider the problem of finding the

coarsest possible equivalence relation ^ on the set of

vertices of a graph. We can use this information to collapse

each equivalence class of ^ into a single vertex and pro-

duce a (hopefully) smaller graph.

Definition 2 (Aggregated graph) Let G = (V, E) be a

directed edge-labeled graph, and let ^ be an equivalence

relation on the vertex-space V. The reduced graph G=’ð Þ
is the system ð V=’ð Þ;E0Þ where

E0 ¼ fð½u�’; ½u0�’Þ j ðu; u0Þ 2 Eg:

Note that E0 is well-defined because ^ is an equivalence

relation.
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Definition 3 (Regular equivalence) An equivalence

relation ’� V � V is a regular equivlence or bisimulation

if u ’ v; a 2 R, and v0 2 EaðvÞ, implies that there is a u0 2
EaðuÞ such that u0 ^ v0, and vice versa.

The coarsest regular equivalence can be computed in

time Oðm log nÞ; where m is the number of edges and n the

number of vertices of the input graph, using a divide-and-

conquer technique developed by Hopcroft (1971) that was

generalized to the nondeterministic case by Paige and

Tarjan (1987). The major drawback with regular equiva-

lence is that it is unnecessarily strict, and thus provides an

unnecessarily weak reduction of the vertex space (Henz-

inger et al. 1995).

A less restrictive relation is simulation preorder. A

vertex u simulates a vertex v if, for every symbol a 2 R and

edge ðv; v0Þ 2 Ea; there is an edge ðu; u0Þ 2 Ea such that u0

simulates v0. Again translating to social network terms, this

is equivalent to saying that u simulates v if for all actors v0

such that v communicates with v0 with the label a, there is

always a link labelled a between u and an actor u0 that

simulates v0 (recall that all actors simulate themselves).

Definition 4 (Simulation preorder) A preorder relation

�� V � V is a simulation if the fact that v � u; a 2 R, and

v0 2 EaðvÞ, implies that there is a u0 2 EaðuÞ such that

v0 � u:

A pair of vertices u; v 2 V are simulation equivalent if �
is a simulation and both u � v and v � u hold.

If the graph G under consideration has vertex-labels in

the alphabet R, i.e. V ¼ ðVaÞa2R; then require that every

simulation on V refines the partitioning ðVaÞa2R:

A simulation preorder is in general not an equivalence

relation. Instead, we can use the coarsest equivalence

contained in �, namely ¼�. Simulation equivalence ¼�
produces, in general, larger equivalence classes than reg-

ular equivalence.

If we are willing to settle for an over-approximation of

the trace behavior, we can use the simulation preorder and

create an abstraction of the graph. We first re-route all

edges to and from each non-maximal vertex v to each of

the vertices in " ðvÞ. We then drop all vertices that are not

in max�ð�Þ together with the edges connected to them.

Definition 5 (Simulation abstraction) Let G = (V, E) be

a directed edge-labeled graph, and let � be a simulation

relation on the vertex-space V. The reduced graph G=�ð Þ
with respect to � is the system (V0, E0), and where

V 0 ¼ max�ðVÞ=�ð Þ

E0 ¼ fð½u�’; ½u0�’Þ ju 2" ðvÞ \ max�ðVÞ^
u0 2" ðv0Þ \ max�ðVÞ^
ðv; v0Þ 2 Eg:

4.2 Example

Consider the directed labeled network G of Fig. 3, which

we consider for illustration to be the organization chart of a

company or terrorist group. Computing regular equivalence

over G gives us the equivalence classes {0}, {1}, {2},

{3}, {4}, {5} and {6, 7, 8, 9}. The aggregated network is

shown in Fig. 4. Using simulation equivalence we obtain the

equivalence classes {0}, {1, 2}, {3}, {4}, {5 }, {6, 7, 8, 9},

Fig. 3 The directed labeled graph G

Fig. 4 The graph of Fig. 3 after computing regular equivalence
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the aggregated network is depicted in Fig. 5. Finally, using

the simulation preorder abstraction, we obtain an aggregated

network as depicted in Fig. 6.

By comparing Figs. 4, 5 and 6, we see that regular

equivalence, simulation equivalence and preorder abstrac-

tion gives us three different views of the original network

(Fig. 3). Regular equivalence essentially combines all leaf

nodes in the tree of Fig. 3, enabling us to study the ‘‘middle

management’’ parts of the depicted organization in detail.

Simulation equivalence recognizes the similarity between

nodes 1 and 2, and provides a simpler view of the same

organization. Of course, the drawback with simulation

equivalence is that we also lose some information as

compared to both the original network and the regular

equivalence view. Finally, Fig. 6 shows the coarsest

equivalence relation introduced in this paper, the simula-

tion pre-order. Here we have lost all structure of the ori-

ginal network except for the fact that the organization

contains three layers of leaders.

It must be stressed that it is vitally important that the

correct equivalence view is chosen for the specific question

which the intelligence analyst is trying to answer. In this

paper, we do not put forward simulation equivalence as a

‘‘better’’ or more useful way of analyzing a network than

regular equivalence, but merely as a different way that, for

some specific applications, could be used in conjunction

with regular equivalence and other analysis methods to

help analysts achieve increased understanding of the net-

work under study.

4.3 Weighted relations

It is often useful to model quantitative as well as qualitative

relations between vertices in a social network, such as trust,

affection, or level of communication. The typical approach

is to assign weights taken from some semiring A to the

edges of the network, turning the edge relation into a (total)

mapping that takes pairs of vertices into A.

Definition 6 A weighted directed graph or weighted

directed network (over a semiring A) is a tuple

G = (V, E), where V is a finite set of vertices and E: V �
V ! A is a mapping that assigns to every ordered pair of

vertices in V a weight in A.

If G has edge labels in R; then we consider E to be a

family ðEaÞa2R of mappings such that Ea: V � V ! A; for

every a 2 R:

Regular equivalence for weighted directed networks is

defined as follows.

Definition 7 (Weighted regular equivalence) An equiv-

alence relation ’� V � V is a regular equivalence if u ’ v

and v0 2 EðvÞ; implies that there is a u0 2 EðuÞ such that

E(u, u0) = E(v, v0) and u0 ^ v0, and vice versa.

The definition of weighted simulation is similar. Defi-

nitions for simulation relations for weighted tree automata

(since a string is a special kind of tree, the definitions can

be directly applicable to graphs) are described by Maletti

(2009).

Fig. 5 The graph of Fig. 3 after computing simulation equivalence

Fig. 6 The graph of Fig. 3 after

using simulation preorder abstrac-

tion. The nodes {6, 7, 8, 9} did

not contain maximal vertices and

was consequently dropped
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Definition 8 (Weighted simulation) The preorder � is a

weighted simulation if v � u implies that, for each v0 2 V

and a 2 R; there is an u0 2 V such that E(u, u0) C E(v, v0)
and v0 � u0:

As one could notice, the difference between regular

equivalence and simulation equivalence is more observable

in the weighted setting. This is because the weights of the

edges have to be strictly equal to fulfil the requirements in

the case of regular equivalence while in the case of

weighted simulation, the weight of an edge has to be equal

or greater than to satisfy the required conditions.

4.4 Backward simulation

Both regular equivalence and simulation equivalence

define nodes as equivalent if they have equivalent succes-

sors. For these equivalences, the direction of the relation

between nodes are important. If we instead of defining the

equivalence relation based on successor define two nodes

as equivalent if they have equivalent predecessor we get a

different equivalence relation. This modification can easily

be done by shifting the direction in the network and then

running the same algorithm. Conceptually, this is the same

as re-defining the meaning of the relations. For instance, in

a network where ties are determined by e-mail communi-

cation and we have information that actor a sent an e-mail

to actor b, we can choose arbitrarily to model this using

either of the relations ‘‘sends e-mail to’’ or ‘‘receives e-mail

from.’’ This difference in semantics does not change the

network as such in any way. However, depending on what

question we ask about the network, we might get different

results depending on what relation type we chose. We

illustrate this for the simple network shown in Fig. 7.

If we interpret the relations in this network as meaning

‘‘sends an e-mail to,’’ we might be interested in deter-

mining the simulation equivalences. The result is that the

equivalence classes are {b, e}, {d, a} and {c, f}. These

equivalence relations tell us that there are e-mail senders,

receivers and senders, and receivers in the network. Note

that there is no distinction between c and f, even though

they receive e-mails from different persons and f receives

e-mail from somebody who also receives e-mails from

other persons in the network.

We can also run the backward simulation algorithm on

the network. This gives us the following equivalence

classes {f}, {d, c}, {a, b, e}. Here there is a distinction

between f and c. Recalling that backward simulation could

also be considered as ordinary simulation equivalence but

on a transformed network with the relation ‘‘receives

e-mail from’’ instead, we realize that the two different

simulation equivalences capture two distinct, equally

important possible classifications of the nodes: in one case,

how long is the e-mail chain inside the network before is

reached a particular node, and in the other, how long is the

e-mail chain after it has been sent from a specific node.

This illustrates one of the key points of the paper. Dif-

ferent abstracted views or equivalence relations capture

different features of a network. Depending on the question

that an analysts strives to answer, they will need to con-

sider different equivalence relations. By subjecting the

network under study to different equivalence relations, we

can learn different things about it.

See Hanneman and Riddle (2005) for a well-written

survey of the use of equivalence classes for identifying

‘‘positions’’ or ‘‘roles.’’ This survey puts our work into

perspective by defining structural equivalence, automor-

phic equivalence, and regular equivalence in terms of

progressively generalized ways of partitioning the network

into classes of interesting categories. However, similar to

that of structural and automorphic equivalence, it is still the

case that the more generic regular equivalence may be rare

in a large population which, hence, calls for either

approximate solutions or more generic definitions of

equivalence—such as the definition presented in this paper.

4.5 Algorithm

A simple algorithm for computing the maximal simulation

relation is shown in Fig. 8. For a directed graph

G = (V, E), the algorithm computes for each vertex v 2 V

the simulation set sim(v) that consists of the set of vertices

that simulate v. Two states u and v are connected with an

edge from u to v if the pair ðu; vÞ 2 E. For vertex v, we use

the notation pre(v) to denote the set of predecessors of

Fig. 7 A directed network that illustrates the difference between

forward and backward simuation Fig. 8 An algorithm for computing the maximal simulation relation
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v : fu j ðu; vÞ 2 Eg. The notation post(v) is used to denote

the set of successors of v : fu j ðv; uÞ 2 Eg:
As input, the algorithm takes a directed graph

G = (V, E). For each state v the set sim(v) contains states

that are candidates for simulating v. If the graph is unla-

beled and unweighted then initially all states are candidates

for simulating each other. The algorithm operates as fol-

lows: if there is an edge ðu; vÞ 2 E and a state w 2 simðuÞ
but no state w0 2 simðvÞ such that there exists an edge

ðw;w0Þ 2 E then w cannot simulate u and is therefore

removed from sim(u). Two states v and u are simulation

equivalent if v 2 simðuÞ and u 2 simðvÞ:
The algorithm in Fig. 8 runs in time OðM2N3Þ for a

directed graph with N vertices and M edges. If the network

has labels on the edges, complexity is increased by a factor

as large as the size of the number of different labels.If the

network has integers as weights (and we assume that

comparisons can be done in constant time) the time com-

plexity remains the same (Högberg et al. 2007).

There are several other algorithms for computing sim-

ulation relations that are faster than the algorithm in Fig. 8.

We refer to for example Henzinger et al. (1995); Tan and

Cleaveland (2001); Bustan and Grumberg (2000); Gentilini

et al. (2002) and Francesco and Francesco (2007) for

descriptions of more efficient, but also more complicated,

implementations.

While simulation relations are computationally harder

to compute than some other equivalences such as regular

equivalence and structural equivalence, the complexity is

still polynomial. This means that simulation relation can

be computed in reasonable time for very large networks.

A detailed exposition of experimental results for com-

puting simulation relations are presented by Gentilini

et al. (2003). If the size of the network is the number of

vertices and the number of edges, then computing simu-

lation on a networks of size 8,000 takes seconds and

computing simulation on a network of size 350,000 takes

minutes1.

5 Experimental results 1: communication in a research

department

Social networks play fundamental roles as mediums for

spreading information, ideas and influence among their

members. In the following examples, we test our ability to

find social positions in networks where each tie represents

the possibility to communicate. This example illustrates

simulation equivalence, simulation preorder and how an

abstraction of the original network can be created.

Simulation equivalence is compared with regular equiva-

lence to illustrate the difference between the two equiva-

lence relations.

5.1 Network of communication

In the experiments reported on here, we used a network

obtained from the communication pattern within a

department consisting of 20 researchers, see Fig. 9. The

network is weighted and directed. A directed tie between

two actors a and b represents the fact that actor a commu-

nicates with actor b.

In this experiment we assign a tie between two actors

the weight one if their regular communication is done using

e-mail and the weight two if the communication is done

using phone. This means that communicating via phone is

worth twice as much as communicating using e-mail,

indicating that real-time talking signifies a closer social

relation than that of virtual relationships.

Computing simulation equivalence on the the network

we obtain a smaller network with five different equivalence

classes, depicted in Fig. 10. The network in Fig. 10 contain

clusters of people that are, to some extent, similar. If we

compute regular equivalence on the same network

according to Definition 7 we obtain 18 different equiva-

lence classes divided into 17 classes containing one actor

and one class containing 3 actors.

Using the preorder that was obtained when computing

the simulation relation, we notice that one of the equiva-

lence classes simulates all the other equivalence classes

according to Table 1. Theoretically, this indicates that

we can replace the other equivalence classes with this

dominating equivalence class and still preserve all

Fig. 9 The original network of communication

1 The tests were executed on a Pentium III, 400 MHz PC, 256 MB

RAM, OS Linux Red Hat 6.2.
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communication that was present in the original network.

Hence, it should be noted that the abstraction that can be

obtained using the dominating equivalence class must be

thought of in terms of clusters of equivalence classes rather

than the clusters of individuals that are depicted in the

graph in Fig. 10. Of course, this total reduction is due to

the investigated social scenario (a research department)

where all departmental members are, in some sense,

comparable with respect to their duties. That is, since all

members in the investigated organization are of the same

type the graph collapses into one single node. In a more

heterogeneous organization, the number of equivalence

classes would of course correspond to the number of

different types of personnel in the organization, e.g., a

scientist cannot be assumed to be able to simulate an officer

and vice versa since the jobs are so different.

6 Second example: relations in a consulting company

This example illustrates the use of simulation equivalence

relations and the differences when the direction of ties are

changed. The data set was used by Cross and Parker

(2004). The data comes from a consulting company with 46

employees. The ties are differentiated on a scale from 0 to

5 in terms of frequency of information or advice requests.

The weights on the ties have the following meaning:

(0) I do not know this person

(1) Never

(2) Seldom

(3) Sometimes

(4) Often

(5) Very often

In this experiment we have used a subset of the original

network: all actors and the ties labeled with weight 3. The

original network with ties labeled with the weight 3 is

shown in Fig. 11. If there is a tie between an actor a and an

actor b in the network, it means that a turns to b sometimes

for information or advice on work-related issues.

Using simulation equivalence we obtain a network con-

sisting of four different equivalence classes as shown in

Fig. 12. The network has four different social positions,

each represented by an equivalence class. However, if we

reverse the directions of the ties and use simulation equiv-

alence we obtain completely different equivalence classes.

The resulting network using this backward simulation

Fig. 10 Simulation equivalence computed on the network of

communication

Table 1 This table summarizes all information about the simulation

preorder

Actor Simulated by actors

10 20, 17, 4, 16, 7, 12, 9, 10, 2, 14, 3, 11,

19, 1,5, 8, 13

4 20, 17, 4, 16, 7, 12, 9, 2, 14, 3, 11, 19,

1, 5, 8, 13

17 20, 17, 16, 7, 12, 9, 2, 14, 3, 11, 19, 1,

5, 8, 13

6, 15, 18 20, 15, 4, 16, 7, 12, 9, 10, 2, 14, 18, 3,

11, 19, 1, 5, 8, 13, 6

1, 2, 3, 5, 7, 8, 9, 11, 12, 13,

14, 16, 19, 20

1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 16, 19,

20

Each row shows an actor (to the left) and the set of actors that can

simulate that actor (to the right)

Fig. 11 The original network from the consulting company, using

only the ties labeled with weight 3
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contains three different equivalence classes and is shown in

Fig. 13.

In this example, the networks obtained using backward

(reversed direction of ties) and forward simulation

equivalence are completely different. In the case of for-

ward simulation equivalence (Fig. 12) we have more

equivalence classes and ties than if we use backward

simulation equivalence (Fig. 13). The social positions

differ depending on the direction of the ties. This is

natural since in the forward case the social positions are

dependent on whom the actors turn to for information

while reversing the ties gives social positions that are

dependent of the actors that are actually turned to. In this

example, the networks obtained using backward (reversed

direction of ties) and forward simulation equivalence are

different. In the case of forward simulation equivalence

(Fig. 12) we have more equivalence classes and ties than

if we use backward simulation equivalence (Fig. 13). The

equivalence classes (or social positions) differ when using

the different simulation relations since the actors are

grouped differently.

7 Application: military intelligence by graph reduction

Our primary application of interest is SNA within the

military intelligence domain. Here, one wishes to consider

and model a network of interesting people, e.g., a terrorist

cell, that are connected to each other in various ways. In

this paper we present results that are applicable to networks

that are both directed and weighted, i.e., networks that are

capable of modeling relations that are one-way and have an

importance measure. That is, in these networks it is com-

mon that one person is related to another person but not the

other way around, and the relations have an associated

value so that the strength of relations can be valued vis-á-

vis each other. In the intelligence domain, such networks

typically arise as a result of homeland security and force

protection applications. Here, the intelligence analyst is

faced with the problem of modeling and understanding

complex organizations to obtain an understanding of

organizational structure, key roles, etc. To identify these

key roles is a difficult task given a non-structured and

concealed organization, but yet needed in order to, e.g.,

Fig. 12 Forward simulation

equivalence computed on the

network in Fig. 11

Fig. 13 Backward simulation

equivalence computed on the

network in Fig. 11
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successfully perform information operations (Armistead

2004). Such measures are to be seen as natural steps

towards preventing terrorist actions and require one to

obtain an understanding of an organization that is actively

trying to hide its structure and is unwilling to provide

information regarding its operations and other doings.

These organizations typically utilize various kinds of open

communication networks to transmit their messages,

meaning that intelligence personnel are likely to be in

possession of graph data depicting the communication

links but not the actual information that has been trans-

mitted. Hence, the communication graph can often be built

using information obtained from routing facilities or phone

companies but the actual communication content is more

difficult to obtain and/or decipher. Typically, the eaves-

dropped communication is of one-way/directed type, e.g.,

e-mail, mobile phone messaging, etc. Also, the actual kind

of communication, its duration and its rate of recurrence

give immediate information about the importance of the

communication that can be used for edge weighting.

Military intelligence is largely an unknown business: the

nature of the work and the resulting intelligence products

make it vital to keep practices, methods and techniques

secret. There is a dysfunctional and somewhat mythologi-

cal side to this secrecy phenomenon as well, namely to

protect the organization and its activities, and to preserve

the assumed significance of trivial information and

assessments (Agrell and Treverton 2009). As a conse-

quence, it would be contradictory to think that intelligence

analysis would ever ‘‘open up’’ to adopt overt, standard-

ized, systematically employed, and verifiable methods.

Nevertheless, on a generic level it is still apparent that a

shift is currently taking place. Traditional intelligence work

has been closely related to the so-called intelligence cycle

where one plans, gathers documents, analyzes these

documents and delivers a report. This iterative process is

ill-suited to the modern information age and therefore new

computerized methods making use of continuous updating,

multiple sources and automation changes the very

foundations of military intelligence work and turns the

traditional way that analysts’ work into a target-centric

intelligence loop where several sources contribute in par-

allel to a continuously updated situation picture (Clark

2004). For example, the combination of manual social

network analysis, live data from a mobile phone commu-

nication network and field observations can yield new

insight and better intelligence products. One consequence

of this shift is that the analyst is faced with networks

containing large numbers of vertices and edges that need to

be analyzed quickly and continuously. Hence, efficient

graph reduction techniques and tools for graph mining are

foreseen to be vital ingredients in tomorrow’s computer

support for intelligence analysts. Such data-analysis

techniques are by no means a complete solution and do not

replace the intuition and continual hypothesizing that are

irreplaceable parts of the analytic process. However, data

mining and related techniques are useful for early analysis

and sorting tasks that would be impossible for human

analysts, and also makes it possible to find patterns in data

that humans could never detect without assistance (DeRosa

2004; Pollard 2009). In the end, therefore, we think of

graph abstraction as a supporting tool—a tool out of many

that can be very powerful when integrated in a larger

‘‘intelligence toolbox’’ (Brynielsson et al. 2009).

Given a large social network depicting a dark organi-

zation of some kind, the intelligence analyst can gain

insight by finding graph patterns in many ways. The graph

reduction techniques that we present in this paper help the

analyst to discover important patterns within graph data

that, in turn, give insights regarding important intelligence

aspects regarding social roles and positions. Methodologi-

cally, the techniques that we present indicate three related

types of graph reductions that can be used for three

abstraction purposes: identification of equivalent actors,

complexity reduction, and organizational structure visual-

ization. First, any existing method used to detecting social

roles and positions (such as regular equivalence or struc-

tural equivalence) can be used to group actors into clusters

based on their similarity in the graph. For each actor in the

graph, the similarity measure is obtained by looking at the

graph properties which is hopefully a good approximation

of the actor’s actual skill or rank. That is, the underlying

assumption is that an actor’s communicative behavior

reveals whether he/she is, e.g., a formal or informal leader

at some level. This is an important part of intelligence

analysis when studying, e.g., terrorist organizations: to

cluster people depending on their formal or informal status.

Second, simulation equivalence is a less strict similarity

measure that says that two persons are simulation equiva-

lent if they simulate each other. Since simulation equiva-

lence is a less restrictive relation than the other suggested

equivalence relations, different groups of actors will be

formed and different social roles and positions can be

detected. Since simulation equivalence can be defined both

in terms of successors (forward simulation equivalence) or

in terms of predecessors (backward simulation equiva-

lence) a number of social roles and positions can be

detected and depending on the question that an analysts

strives to answer, the different equivalences may need to be

considered. Finally, the simulation relation can be used to

strip down each cluster into solely the most important actor

within the cluster. Hence, simulation renders a graph that

can no longer be thought of in terms of representing the

original graph but rather as a means of illustrating how

the clusters are related to each other, e.g., identifying

leaders as opposed to subordinates and so forth.
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8 Discussion and future work

In this paper we present a relation from computer science

called simulation relation that can be used to distinguish

between different social positions and roles in a social

network. We argue that it is necessary to consider several

different equivalence relations on a social network. Dif-

ferent equivalence relations will provide different per-

spectives on the network. If it is possible to define roles

formally based on relations, it is also possible to detect

emergent, unnamed roles and positions in social networks.

A simulation relation computed on the network N is an

ordering (a preorder) of the nodes of N. The ordering is

such that if an actor a simulates an actor b then actor a has

at least the same relations as b to other actors (or actors that

simulate these). Actors in the network that simulate each

other are considered to be simulation equivalent and each

such equivalence class represents a social position. The

simulation relation can be computed based on successors or

based on predecessors. When the relation is based on

predecessors we denote it as backward simulation.

We use simulation equivalence to describe social

positions within a social network since simulation equiv-

alence is a less restrictive equivalence relation than reg-

ular equivalence, automorphic equivalence and structural

equivalence.

We use the simulation preorder to create an abstraction

of a given social network. The abstraction contains every

trace that is found in the original network but the size may

be significantly smaller than that of the original network.

The abstraction can be used to perform a worst case sce-

nario analysis of the network.

The social positions and the ordering that are obtained

using simulation equivalence are particularly interesting

when looking at social networks describing different

competencies since we can use the positions to get an

understanding of how competencies of the groups are

composed.

We see many possibilities for future work based on

simulation relations and ideas presented in this paper.

First of all, it would be interesting to investigate if it is

possible to define approximate simulation equivalence (as

in the case of regular equivalence). Secondly, it would be

interesting to conduct experiments on other, publically-

available, data sources. In order to validate the usefulness

of the relation for military intelligence analysis, it is

necessary to implement the functionality into an SNA tool

(such as the one used by (Ferrara et al. 2008) and conduct

user experiments. Finally, it would be interesting to use

the ideas in this paper to consider uncertain data. In this

case, we might not know for sure that there is an edge

between two actors; instead we only have a probability

that there exists a link.

Another direction for future work is to conduct experi-

ments with simulation relations on large social networks.

Since there exist algorithms that runs in polynomial time

and space, it should be possible to do experiments on large

networks. One great challenge is to find a suitable mean-

ingful data set (directed, weighted) to run the experiments

on.

The authors will be happy to make the prototype source

code available for further non-commercial experimental

purposes. Please contact the authors if you are interested.
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