Solving Battalion Rescheduling Problem Using
Multi-objective Genetic Algorithms

Irfan Younas', Farzad Kamrani?, Farshad Moradi?, Rassul Ayani’,
Johan Schubert?, and Anne Hakansson'

! KTH Royal Institute of Technology, Stockholm, Sweden
{irfany,ayani,annehak}@kth.se
2 Swedish Defence Research Agency, Stockholm, Sweden
kamrani@kth.se, {farshad.moradi,johan.schubert}@foi.se

Abstract. In this paper, we consider the problem of rescheduling hu-
man resources in a battalion where new activities are assigned to the
battalion by higher headquarters, requiring modification of an existing
original schedule. The problem is modeled as a multi-criteria optimiza-
tion problem with three objectives: (i) maximizing the number of tasks
that are performed, (ii) minimizing the number of high-priority tasks
that are missed, and (iii) minimizing the differences between the orig-
inal schedule and the modified one. In order to solve the optimization
model, we adopt Non-dominated Sorting Genetic Algorithm-II (NSGA-
IT). The accuracy of NSGA-II in this context is verified by considering a
small-sized problem where it is easy to verify solutions. Furthermore, we
consider a realistic problem instance for a battalion with 400 agents and
66 tasks in the initial schedule. We present the computational results of
rescheduling when unpredictable activities emerge.

Keywords: Battalion rescheduling, Multi-objective optimization,
Genetic algorithms.

1 Introduction

Similar to development in many countries, the Swedish Armed Forces (SAF)
has started undergoing a major process of change over the past few years. These
changes embrace transformation from an invasion defense to a mission oriented
defense. One major consequence of this transformation is that the SAF has
become drastically smaller and vulnerable to personnel shortage. The strictly
hierarchical structure and closed nature of military organizations do not allow
recruitment of new (temporary) personnel with right competencies if an ur-
gent need arises and new tasks are assigned to the organization. Thus, military
units are periodically forced to handle an essentially larger number of tasks with
the same manpower resources, which requires an efficient utilization of these
resources and calls for more flexible and effective planning of personnel, and
scheduling of tasks.

A battalion is a military unit with 400 to 1200 soldiers, which is considered
to be the smallest unit capable of independent operations. In the SAF, the

G. Tan et al. (Eds.): AsiaSim 2013, CCIS 402, pp. 93-104, 2013.
(© Springer-Verlag Berlin Heidelberg 2013



94 1. Younas et al.

battalion commander and staff (from hereon referred to as the commander)
are responsible for planning and scheduling different activities of the battalion
personnel such as education, training, exercises, tasks and missions. All activities
are pre-planned and scheduled on a yearly basis by the commander in a way
that all tasks and missions are performed and at the same time the personnel
attend necessary educational and training sessions and exercises to achieve the
required competencies for performing those tasks or missions. Considering that
activities require different number of personnel with different types and levels of
competencies, scheduling all activities per se is a difficult and complex problem.
Consequently, this problem becomes even more complex and challenging since
the set of workforce competencies is not static and changes over time as the
personnel attend military education, training or exercises. A typical scenario is
where personnel perform different types of tasks and later take part in different
educational activities to acquire the right competencies needed for more complex
tasks and missions scheduled to be performed after the courses. As a result,
the schedule for this kind of scenario is sensitive to changes and potentially
vulnerable to disturbances.

Nevertheless, in reality unpredictable activities emerge periodically, as a result
of unforeseen events and are assigned to the battalion by higher headquarters.
The commander then may be forced to do some rescheduling by removing per-
sonnel from scheduled tasks, such as educational activities in order to be able
to deal with imminent tasks. Assigning personnel to these tasks compromises
the commitment of the battalion to perform important and prioritized tasks or
missions, since some personnel may miss educational activities and do not have
the required competencies for forthcoming tasks and missions.

While doing the rescheduling the commander faces conflicting objectives such
as maximizing the total number of performed tasks, prioritizing more critical
tasks and missions, and preserving the original schedule to the largest extent.
These objectives partly reflect the interests of different stakeholders. For in-
stance, while the commander of the battalion wants to perform as many tasks
as possible, and prioritizes the critical tasks, the most important criterion for
the personnel is that their schedules are changed as little as possible.

In this paper, we propose a novel model for rescheduling different activi-
ties of the battalions personnel. We formulate the rescheduling problem as a
multi-objective optimization problem, in which we consider three objectives:
(i) maximizing the total number of performed tasks, (ii) minimizing the num-
ber of high priority tasks that are missed, and (iii) minimizing the differences
between the initial schedule and updated schedule. A multi-objective mathe-
matical model, with three conflicting objectives and a set of constraints is built.
In multi-objective optimization problems with conflicting objectives, the goal is
to find a set of Pareto-optimal solutions. Multi Objective Evolutionary Algo-
rithms (MOEAs) are well-known metaheuristics for sampling intractably large
and highly complex search spaces. MOEAs search more than one solutions in
parallel and are suitable for finding the Pareto-optimal set for multi-objective
optimization problems. MOEAs maintain population of non-dominated set of



Battalion Rescheduling Problem 95

individuals and comparison of two individual solutions is based on Pareto-
dominance. A non-dominated solution is one in which it is impossible to improve
an objective without worsening at least one other objective. In the last fifteen
years, several multi-objective evolutionary algorithms have been proposed. In
order to solve our proposed multi-objective problem, we adopt Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) [2], which is a well-known evolutionary
algorithm. To test the accuracy of NSGA-II for our problem, we consider a small
problem. We further conduct experiments on a large scale problem and present
computational results.

The rest of the paper is organized as follows: in Section 2, related work is
briefly reviewed. In Section 3, a mathematical multi-objective model for bat-
talion rescheduling is presented. In Section 4, the multi-objective algorithm
is described. Section 5 presents the experiments, including problem instances,
parametrization and discussion of results. Finally in Section 5, the conclusion
and summary of the paper are outlined.

2 Related Work

To the best of our knowledge, existing work does not address multi-objective
optimization rescheduling problems similar to the battalion rescheduling model
discussed in this paper. Even though we find some related work on schedul-
ing and rescheduling problems, it is different in several aspects. Clark and
Walker [3] present some models and computational results for nurse schedul-
ing and rescheduling considering nurses’ preferences. Due to changes in nurs-
ing cover requirements or unavailability of nurses to work their assigned shifts,
rescheduling is needed to fill the gaps in the initial schedule. The overall goal
is to reschedule nurses while considering their preferences in a manner that dis-
rupts as little as possible the existing schedule. In nurse rescheduling, the aim is
to minimize changes to the initial schedule as well as minimizing the total cost.

Moz and Pato have proposed different techniques for solving nurse reschedul-
ing problems with the objective to minimize the changes in the original schedule.
Moz and Pato [4] use a genetic algorithm to solve the problem and introduce
a second objective into the fitness function. The second objective is to mini-
mize the overtime, which they describe as minimizing the difference between the
number of scheduled duties and the number of performed duties.

Maenhout and Vanhoucke [5] propose an evolutionary metaheuristic to solve
nurse rerostering problem. Personnel roster determines the line-of-work for each
person [5]. Dynamic nature of operating environment can cause unexpected
events, which in turn lead to infeasibilities and schedule disruptions. In order to
cope with this situation rescheduling is necessary. Computational experiments
are performed on a well designed data set and the results of the proposed method
are compared with other already existing methods in literature. Chicano et al. [6]
focus on the Software Project Scheduling (SPS) [7]. Resources with a set of skills
are assigned to the tasks, and the objectives of the problem are to minimize the
time and cost of the project. The authors compare performance of different multi-
objective evolutionary algorithms in solving the proposed SPS model. Hao and



96 1. Younas et al.

Lin [8] study evolutionary algorithms to solve multi-objective model of the job
shop rescheduling problem. The model considers n jobs to be performed on m
machines and the objectives of the problem are to minimize the tardiness and
makespan. The rescheduling is needed in case of new job arrivals and machine
breakdowns.

The nurse rescheduling problem has some similarity with our problem in one
of the objectives, which is to minimize schedule disruptions. However, the bat-
talion rescheduling problem is different in several ways. Firstly, in our model,
tasks require different number of personnel with different types and levels of
competencies. Secondly, new tasks with different set of requirements can be as-
signed to the battalion during any time of the year. Thirdly, the set of workforce
competencies is not static and changes over time as the personnel attend mil-
itary education, training or exercises. These characteristics make the battalion
rescheduling problem more complex and challenging than the nurse rescheduling
problem. Job shop rescheduling problem is also similar to our problem in some
aspects but dynamic nature of the set of workforce competencies in our problem
differentiates it from the job shop rescheduling problem.

3 Problem Formulation and Model Description

We model the battalion rescheduling problem as a multi-objective optimization
problem. Battalion personnel are modeled as the set of agents A = {a; | i =
1,...,m}, where m is the number of personnel in the battalion (agents). Assum-
ing that ¢ different types of competencies C' = {c1,...,¢q} are relevant for the
function of the battalion, each agent a; € A has a set of numerical attributes
ci={call=1,...,q}, where ¢;; € {0,...,4} specifies to what extent agent a;
is equipped with competency ¢;. The competencies of all agents can conveniently
be denoted by matrix C' = [cit] {mxq}-

All activities (tasks, missions, military education, training, exercises) are mod-
eled as the set T = {t; | j = 1,...,n}, where n is the number of activities. To
each task t; € T, a 4—tuple (size;, start;, duration;, priority;) is associated,
where size; is the number of agents required to perform the task, start; is the
start date of the task, duration; is the duration of the task in days, and priority;
is the priority of the task with the binary values low and high.

Each task ¢; consists of a set of positions. We enumerate and index all positions
in a sequence from the task with the smallest index to the largest and use the
notation j = 377, _, sizejs for the sum of the number of positions in all tasks ¢,

to ¢;. Using this notation task ¢; consists of positions {py, | j = (j — 1)+1,...,5}.
The set of all position is denoted by P = {py | k = 1,...,n}. We also define the

function tasknumber : {1,..., 7} ~ {1,...,n}, which gives the index of task t;
that pi belongs to (i.e. , tasknumber(k) = j).
Each position p; has competency requirements wy, = {wy | I = 1,...,q},

where wyy;, defines the minimum level of competency type ¢; required by position
Pk, meaning that agent a; may be assigned to position py only if VI, ¢;; > wyy,. The
competencies required by all positions can conveniently be denoted by matrix



Battalion Rescheduling Problem 97

W = [wik]{gxn}- After completing some tasks, one or several competencies of
agents may increase one level. These tasks model military education courses,
training and exercises. In other words, courses are modeled as ordinary tasks and
are distinguishes from them only by being associated with an update function
(update : w; ~ wj,l = 1,...,q), which updates competencies of all agents
a; participating in the course. In this study, the update function is defined as
w) = w; + 1 for some specified values of {, depending on the course.

If all resources (agents) required by a task are available, the task will be
assigned to agents, otherwise the task remains unassigned. An agent can be
assigned to at most one task at any time.

A schedule is defined by matrix X = [zik|mxm, where 2 € {0,1} and a;, = 1
if position py is assigned to agent a;, and x;; = 0 otherwise.

A schedule X is feasible subject to the following constraints:

VE, > i € {0,1}, (1)
=1

J
V7, Z Tk, € {0, size;} (2)

k=j—1+1

Y,z = 1= VI, ¢ > wi, (3)

Vi,tigp, =1 ANzje =1 =
[start;, start; + duration;) N [start;, starty + durationj) = ¢, 4)
where j = tasknumber (k) and j' = tasknumber(k').

Constraint 1 implies that only one agent is assigned to a position, constraint 2
ensures that tasks are either assigned to all required agents or not performed at
all, constraint 3 states that all agents should have all qualifications required by
the task and constraint 4 asserts that agents are assigned to only one task at
any time.

Given agents A, initial tasks T°, positions P? with requirements W9 and an
initial schedule X° = [z, ] which assigns tasks to agents, a set of new tasks

T are arrived at a given time (rescheduling time). The battalion reschedul-
ing problem is defined as finding a new assigning schedule X' = [x}k]mxﬁ
for all tasks, which have not already started such that some optimization cri-
teria are fulfilled, subject to constraints 1 to 4. Tasks that have not started
at rescheduling_time are specified by T* U T\ {t; | j = 1,...,n,Astart; <
rescheduling time}.

In this paper, we focus on three criteria, 7, u and §, defined as:

mxn9’

r={t; e T°UT" | 3z, € X' s.t. tasknumber(k) = j Az =1} (5)

w=|{t; | t; & T Apriority; = high}| (6)



98 1. Younas et al.

m  nl no
0= Z(lek — ) + Z k- (7)
=1 k=1 k=1

The value 7 is the number of tasks performed, p is the number of high-priority
tasks that are not performed, and ¢ is the difference between the original sched-
ule the new schedule expressed by using the number of agents that have their
schedule changed. Maximizing 7 and minimizing g and ¢ is desirable.

4 Multi-objective Algorithm

The rescheduling problem formulated in the previous section is a combinatorial
optimization problem, where the search space becomes intractable even for mod-
erate sized instances. Genetic Algorithms (GAs) [9][10] are widely used meta-
heuristics for sampling intractably large and highly complex search spaces. The
GAs have frequently been used for solving many scheduling and optimization
problems [12][11][4][5]. In this paper, we adopt Non-dominated Sorting Genetic
Algorithm- IT (NSGA-IT), which is a well-known genetic algorithm to solve multi-
objective optimization problems. We modify the implementation of NSGA-II
provided by jMetal framework [2] to solve our problem. In the next subsection,
we explain the steps and parametrization of the algorithm for solving the pro-
posed multi-objective optimization problem.

4.1 NSGA-II Algorithm

In order to design a GA for a particular optimization problem, first step is to de-
vise a suitable representation scheme. In this paper, we choose a scheme in which
a schedule (chromosome in GAs literature) is represented by a n-dimensional vec-
tor of subsets of tasks. In the considered scheme, n-dimensional means that we
have n tasks which need to be performed by n groups of agents and each group
J consists of size; agents. An example chromosome shown in Figure 1 consists
of 4 tasks requiring 3, 2, 4 and 5 agents respectively. Assume that there are 5
agents available. It means that m = 5, n = 4, size; = 3, sizey = 2, sizeg = 4,
and sizeqs = 5. We also assume that task 1 and 2 are overlapping, so an agent
assigned to one of the task cannot be assigned to another.

Task 1 2 3 4

Agent 1z3|45|234141532

Fig. 1. Chromosome representation of a candidate solution



Battalion Rescheduling Problem 99

The steps of NSGA-II are summarized as:

— Generate initial population Py which consists of N non-duplicate candidate
solutions (schedules). Each task is assigned only to those personnel, which
are capable of performing that task.

— Evaluate each candidate solution according to the given fitness functions (5),
(6) and (7).

— For t =0to M — 1 (M is the maximum number of generations) do:

e Generate N non-duplicate offspring (population @) using the following
three procedures.

Selection: Binary tournament selection is used to select parent solu-
tions for reproduction. In binary tournament selection, two individuals
are chosen uniformly at random from given pool P; and the individual
with higher fitness is allocated for reproduction trial. Two binary tour-
naments are conducted to select two parent solutions.

Crossover: One-point crossover is used to combine two parents to pro-
duce an offspring. The crossover point p is chosen uniformly at random
such that 0 < p < n. The first p assignments are taken from parent A and
the remaining n — p are copied from parent B such that the constraints
are not violated. The duplicate assignments within same task are avoided
and no agent is assigned to more than one task at the same time. The
corresponding genes where assignments violate any of the constraints are
marked with * which need to be repaired. In the repair procedure each
of the marked gene is assigned an agent from the set of feasible (capable)
agents for that particular gene.

Mutation: Each gene is selected randomly with probability P,, and it
is assigned some other agent from the set of its feasible agents such that
it does not violate any of the constraints.

e Evaluate all generated offspring using the proposed fitness functions (5),
(6) and (7).

e Build the union U; of parent P; and offspring Q; (U = P, U Q).

e Rank all the solutions in U; according to Pareto-dominance relation.
In the ranking procedure, first step is to find out all non-dominated
solutions and rank them as level 1. These solutions form a Pareto-front F;
with rank 1. Exclude these non-dominated solutions from U; and find all
non-dominated solutions from the rest of the population. That provides
a Pareto-front F» with rank 2. Keep on doing the same procedure until
you have ranked all the solutions into s Fronts.

e In order to select N candidate solutions for next generation (¢ 4 1), get
the sorted fronts (F = {F;|i = 1,...,s}) in sequence one by one until
the population P4 is filled with N non-dominated solutions. While
processing each front Fj, if the number of candidate solutions is less than
number of remaining solutions R of population P.y; (R = N —C, where
C'is current size of P;41), copy all candidate solutions from F; to Py + 1.
Otherwise, sort the candidate solutions of front F; in descending order
based on crowding distance, iterate in sequence and fill the population
P, with remaining R solutions.



100 I. Younas et al.

— Return front Fj, which is an approximated Pareto-front found by the
algorithm.

5 Experiments

In this section, we present a set of experiments and their results. The aim of
the experiments is to check the accuracy and quality of the results obtained
by applying NSGA-II to the proposed rescheduling problem. First, we describe
the problem instances, and the parametrization of the algorithm. After that we
present and discuss the experimental results of NSGA-II.

We modify the implementation of the presented algorithm which is based on
Java based framework jMetal [2]. The algorithm is run on a PC with an Intel
Core i5 - 2.60 GHz and 4.0 GB of RAM.

5.1 Problem Instances and Data
In order to discuss the accuracy and quality of the results, we consider two

instances of the proposed problem with different sizes as shown in Table 1.

Table 1. Specification of the Problem Instances with Initial Schedule

Prob# Total Number Number of Groups (# of agents assigned to the tasks)
Agents of Courses other Tasks

1 50 1 5 [20, 25, 25, 45, 40, 40]

2 400 3 63 [100, 50, 50, 40, 30, 45, 40, 35, 70, 45, 40,

100, 50, 50, 40, 30, 45, 40, 35, 70, 45, 38,
100, 50, 50, 40, 30, 45, 40, 35, 70, 45, 40,
100, 50, 50, 40, 30, 45, 40, 35, 70, 45, 39,
100, 50, 50, 40, 30, 45, 40, 35, 70, 45, 40,
100, 50, 50, 40, 30, 45, 40, 35, 70, 45, 40]

Figures in bold are courses.

In all problems, we consider 10 different types of competencies. The data
for these competencies is integer values between 0 and 4 inclusive and thus we
have 5 levels (0, 1, 2, 3 and 4). We generate different number of profiles of
agents for each defined problem. The agents belonging to the same profile have
same competencies. For instance, in military troops, one type of profile can be
tank drivers. Considering problem number 1 where we have total 50 agents, we
generate 10 different types of agent profiles requiring 10, 10, 5, 5, 5, 4, 4, 3, 2 and
2 agents respectively. In problem number 2, we have total 400 agents, we generate
12 different types of agent profiles requiring 10, 10, 20, 20, 30, 30, 40, 40, 50, 50,
50 and 50 agents respectively. For each profile, we select 2, 3, 4 or 5 competencies
randomly with a uniform distribution and assign competency levels other than 0
with a given probability distribution. The assumed probabilities for competency
levels 1, 2, 3 and 4 are 50%, 25%, 15% and 10% respectively. It means that we
have less number of agents, which have higher level of competencies.



Battalion Rescheduling Problem 101

The tasks may require a combination of agents from different profiles. Some
tasks may even require agents with higher competencies than available. In that
case agents may need special courses, which can enhance their competencies.

Initial Schedule data (task start date, duration, priority) for courses and other
tasks is generated randomly. In order to verify the working accuracy of the
algorithm, we manually create initial schedule for problem number 1 as shown
in Table 2.

Table 2. Initial Schedule data for problem number 1

Task# Day of  Task start Task duration Priority # of agents re- Is course?
the year date quired
1 1 2013-1-1 50 High 20 No
2 2 2013-1-2 25 Low 25 No
3 27 2013-1-27 24 Low 25 No
4 51 2013-2-20 60 Low 45 Yes
5 111 2013-4-21 60 Low 40 No
6 171 2013-6-20 30 Low 40 No

The data for these capabilities and their weights are integer values between 0
and 4 inclusive.

5.2 Parametrization

For experiments, the initial population size is set to 50 and the algorithm ter-
minates after 100,000 evaluations. For problem number 2 given in Table 1, we
terminate after 10,000 evaluations. The probability for crossover is 95% and
probability of mutation for each gene is 20%.

5.3 Computational Results

In this section, we present the computational results of the proposed rescheduling
problem which are obtained using NSGA-II. In order to test the accuracy of
the results, we consider a small problem with 1 course, 5 tasks and 50 agents
(Problem number 1 in Table 1). Task 1 needs 20 agents, task 2 and 3 need 25
agents each, task 4 which is a course requires 45 agents and task 5 and 6 need
to be assigned 40 agents each. The data for the initial schedule (see Table 2) is
designed in such a way that at any instance of time at least 80% of the agents
are busy in tasks or courses. Furthermore, the requirements for task number 6
are hard and those agents can be assigned to this task which have enhanced
their competencies by taking the available course (task number 4). Given the
feasible and complete initial schedule, assume that on 10th of January a new high
priority task is assigned to the battalion by higher headquarters. This requires
rescheduling of the assignments of agents to tasks considering given objectives
and constraints. The schedule data for the new task is given in Table 3.

We see that task number 6 and 7 are in parallel to each other, it means the
agents, which are assigned to one of task, cannot be assigned to the other. In the



102 I. Younas et al.

Table 3. Schedule data for a new task introduced on 2013-01-10 for problem # 1

Task# Day of  Task start Task duration Priority # of agents re- Is course?
the year date quired
7 172 2013-6-21 30 High 10 No

initial schedule, we already have assigned 40 agents to task number 6 and the
remaining 10 agents are free. The requirements for the new task (task number
7) are set such that those 10 free agents are not qualified to perform the task.
We need to reshuffle the assignments in our initial schedule. The requirements of
task number 7 are such that some of the agents need to be reassigned from task
number 6 to 7. According to the generated data, the other possible solution can
be that we miss the last task. By executing the algorithm, we get the Pareto-
optimal front as shown in Table 4. We can see that both types of solutions
are found by the algorithm and there can be multiple different Pareto-optimal
solutions with same objective values.

Table 4. Pareto-optimal front (for Prob# 1 with 1 new task)

Soln.# Total number of Assignment Differences Number of high priority
tasks performed from initial schedule missed tasks

6 0

N OOt W N
ESIESIEN IR IR o
ESIENIEN RN |
[cNoNeNeNol

Furthermore, to make the problem more difficult, we introduce some new
tasks in parallel to the initial set of tasks. The schedule data for 6 new tasks is
given below in Table 5. Task number 7 is parallel to task number 6 as before.
Moreover, tasks number 8, 9, 10, 11, 12 and 5 are parallel to each other. By
executing the algorithm, we get the Pareto-optimal front as shown in Table 6.

Now we consider problem 2, which is a realistic problem with 400 agents,
3 courses and 63 tasks. The requirements and schedule information (task start
date, duration, priority) for all the tasks and courses are generated randomly.
Given the feasible and complete initial schedule, assume that on 25th of January,
10 new tasks come in, of which 4 of them are high priority tasks. We need to

Table 5. Schedule data for 6 new tasks introduced on 2013-01-10 for problem # 1

Task# Day of  Task start Task duration Priority # of agents re- Is course?
the year date quired

7 172 2013-6-21 30 High 10 No

8 112 2013-4-22 28 High 10 No

9 115 2013-4-25 56 High 10 No

10 120 2013-4-30 21 High 10 No

11 127 2013-5-07 35 High 10 No

12 129 2013-5-09 14 High 10 No




Battalion Rescheduling Problem 103

Table 6. Pareto-optimal front (for Prob# 1 with 6 new tasks)

Soln.# Total number of Assignment Differences Number of high priority
tasks performed from initial schedule missed tasks
1 6 0 6
2 7 7 5
3 8 10 4
4 11 47 0
5 11 47 0
6 10 40 1
7 8 10 4
8 11 47 0
9 6 0 6
10 8 10 4
11 10 40 1
12 10 40 1

reschedule the assignments of agents to tasks in such a way that we take care of
three given objectives. The schedule data for the new tasks is generated randomly
and number of required agents for task number 67 to 76 are 40, 30, 50, 20, 35, 20,
25, 30, 20, and 25 respectively. By executing the algorithm, we get the Pareto-
optimal front as shown in Table 7. There can be multiple solutions with same
objective values but we have shown only distinct ones. The results show that
performing all high priority tasks is in a sharp contrast with preserving the
initial schedule and both objectives cannot simultaneously be optimized. It is
up to the decision-maker to select the desired solution form the Pareto-optimal
front according to her/his preferences.

Table 7. Pareto-optimal front (for Prob# 2 with 10 new tasks)

Soln.# Total number of Assignment Differences Number of high priority
tasks performed from initial schedule missed tasks
1 67 0 4
2 68 505 1
3 67 593 0
4 65 467 1
5 67 297 3
[} 68 962 0

6 Conclusion and Summary

In this paper, we propose a novel model for rescheduling different activities of the
battalions personnel. We formulate the rescheduling problem as a multi-objective
optimization problem, in which we consider three objectives: (i) maximizing the
total number of performed tasks, (ii) minimizing the number of high priority
tasks that are missed, and (iii) minimizing the differences between the initial
schedule and updated schedule.

Firstly, a multi-objective mathematical model, with three conflicting objec-
tives and a set of constraints is built. Multi Objective Evolutionary Algorithms
(MOEASs) are well-known metaheuristics for sampling intractably large and



104 I. Younas et al.

highly complex search spaces. In order to solve the optimization model, we adopt
a well-known multi-objective genetic algorithm NSGA-II.

We present the computational results of the proposed rescheduling problem,
which are obtained using NSGA-II. We verify the accuracy of the algorithm
in this context by considering a small problem with easy to verify solutions.
Furthermore, we consider a realistic problem instance for a battalion with 400
agents and 66 tasks in the initial schedule. We present the computational re-
sults of rescheduling when 10 new tasks come in. The experimental results show
that NSGA-II efficiently provides the Pareto-optimal solutions for the proposed
rescheduling problem. From the obtained Pareto-optimal front, the decision
maker can choose one or more solutions according to her/his preferences.

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182-197 (2002)

2. Durillo, J.J., Nebro, A.J.: jMetal: A Java framework for multi-objective optimiza-
tion. Advances in Engineering Software 42, 760-771 (2011)

3. Clark, A.R., Walker, H.: Nurse rescheduling with shift preferences and minimal
disruption. Journal of Applied Operational Research 3(3), 148-162 (2011)

4. Moz, M., Pato, M.V.: A genetic algorithm approach to a nurse rerostering problem.
Computers and Operations Research 34(3), 667-691 (2007)

5. Maenhout, B., Vanhoucke, M.: An evolutionary approach for the nurse rerostering
problem. Computers and Operations Research 38(10), 1400-1411 (2011)

6. Chicano, F., Luna, F., Nebro, A.J., Alba, E.: Using multi-objective metaheuristics
to solve the software project scheduling problem. In: GECCO, pp. 1915-1922. ACM
(2011)

7. Alba, A., Chicano, J.F.: Software project management with GAs. Information Sci-
ences 177, 2380-2401 (2007)

8. Hao, X., Lin, L.: Job shop rescheduling by using multi-objective genetic algorithm.
In: 40th International Conference on Computers and Industrial Engineering (CIE),
pp. 1-6. IEEE (2010)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison Wesley, Massachusetts (1989)

10. Mitchell, M.: Introduction to genetic algorithms. MIT Press, Massachusetts (1999)

11. Younas, I., Kamrani, F., Schulte, C., Ayani, R.: Optimization of Task Assignment
to Collaborating Agents. In: IEEE Symposium on Computational Intelligence in
Scheduling, pp. 17-24. IEEE (2011)

12. Gongalves, J.F., Mendes, J.J.M., Resende, M.G.C.: A genetic algorithm for the
resource constrained multi-project scheduling problem. Furopean Journal of Op-
erational Research 189(3), 1171-1190 (2008)



