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Abstract - In this paper we develop a system state estimation
model for combining partial information regarding the state
of a system of interest. In addition we develop an evidential
influence diagram representing our a priori knowledge of
system relations. Both system state estimation and a priori
knowledge are represented by belief functions. A predicted
future system state is obtained by combining the fused
estimated system state with the fused a priori knowledge. The
predicted system state can be marginalized to give specific
state predictions of all variables of interest of the system
state estimation model. Finally, we may compare predicted
system states with later actual states to highlight any
deviations from expected developments.
Keywords: System state prediction, system state estimation,
influence diagram, situation assessment, threat assessment,
Dempster-Shafer theory, belief function, effects-based
approach to operations, knowledge support.

1 Introduction
In this paper we develop a system state estimation (SSE)
method and an evidential influence diagram. Partial
information regarding the state of a system may be combined
using Dempster-Shafer theory [1], [2]. A priori knowledge
(PK) regarding relations between system entities is
represented by the evidential influence diagram. This
knowledge is precombined and assumed unchanged during
the system state estimation. Updating SSE by PK at each
system state, we receive a system state prediction (SSP). The
SSP may be marginalized for any system variable of interest
yielding a specific belief function over the possible states of
the variable of interest.

As an example of a system of interest, let us consider a
system with several actors and some phenomenon. These
actors may influence each other through multiple relations
between subsets of their respective possible system states.
Although phenomena do not act they may have the same
type of influences between themselves, and both from and
towards the actors, Figure 1.

Figure 1. Influence diagram of actors and phenomena, i.e., 
A, B and C are actors and P and Q are phenomena.

Since both actors and phenomenon described have the same
mathematical representation of their states and relations we
will henceforth speak of entities and their influences.

We assume a reasoning chain where the system states are
estimated sequentially throughout the analysis. At each
system update we also perform a prediction of future system
states by using the a priori knowledge of an evidential
influence diagram. In Figure 2 a chain of reasoning is
illustrated.

Figure 2. A chain of reasoning where system states are 
continuously updated as new evidence arrives and future 

system states are predicted after each update. Ek is the 
evidence becoming available at step k (k ∈ ZZ*), SSEk is the 

system state estimation at step k, PK is the a priori 
knowledge and SSPk + l is the system state prediction of step 

k + l, where l is the prediction length (l ∈ ).

In Sec. 2 we develop a system state estimation model taking
input data regarding states of single or multiple actors and
phenomena. In Sec. 3 we introduce an evidential influence
model describing our a priori knowledge of influence
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between actors and phenomena. Based on the estimated
system state, we predict future system states using the
influence model, Sec. 4. In Sec. 5 we perform predictions of
future system states and compare these with the resulting
system state at a later time. This can serve as a warning bell
of an unexpected chain of events and as an assessment of the
accuracy of the knowledge model.

2 System state estimation
2.1 Representation
Let us assume we have actors and phenomena. Each of these
entities has an independent frame of discernment ΘA. While
our interpretation may differ they have the same type of
representation. The cross product of all entities make-up the
frame of discernment for the entire system,

. (1)

We further assume that each entity may have a multiple
variable state. We have

(2)

where  is a set of alternative states for entity Ai. We have

. (3)

2.2 Input data
Let input data in the general case be represented by belief
functions on Θ, Eq. (1). We have

(4)

where Ek is the kth piece of evidence.
We will represent a supported focal element χj of  on

Θ as

, (5)

where . Note, that the sequence length is  (i.e., the
number of entities). For an example, see Sec. 2.4.

The input intelligence is in the general case represented by
basic belief assignments as

(6)

where χj is the jth focal element and χj ⊆ Θ.
A special application interest of ours is input data in the

form of dichotomous belief functions [2]. Recall that a
dichotomous belief function is a belief function with only
three focal elements χ, χc and Θ. This includes the case
when input data is produced by Impactorium [3], a system
for event recognition using Bayesian belief networks and
soft/hard fusion developed at the Swedish Defence Research
Agency. With data coming from Impactorium, we would
have the additional requirement

. (7)

With a dichotomous belief functions we represent  on Θ
as a basic belief assignment of

(8)

where  and χ and χc are partitions of Θ, i.e.,
 where .

Thus, input data to the system state estimation process is
represented as basic belief assignments

, (9)

where χ and χc are focal element and a partition of Θ;
 where .

2.3 Belief propagation
There has been some work on generally applicable
improvements of the time complexity of Dempster’s
rule, e.g., [4], reducing time complexity in the general
case from O( ) to O( ). This is achieved by
first using the fast Möbius transform on the basic belief
assignments, transforming basic belief assignments
into commonality functions. We have

. (10)

This transformation is performed by function mtoq in
TBMLAB [5]. Secondly, the commonality functions are then
combined using Dempster’s rule for commonalities (i.e.,
normalized multiplication of commonalities). We have

(11)

where  and Κ is a normalizing constant

. (12)

Finally, from commonalities we transform back to basic
belief assignments using

(13)

which may also be performed using TBMLAB.
However, most improvements have concerned important

special cases. Foremost among these are methods dealing
with belief propagation in trees.

Depending on the structure of the input data, different
algorithms for belief propagation can be used. These
algorithms have different computational time complexities.
In this section we review two different computational
approaches for consideration.

The first algorithm discussed was developed by Shafer
and Logan [6] for the case when evidence supports
singletons or disjoint subsets of the frame. This is when a
hierarchical network of subsets could be pruned to a
hierarchical tree. The assumption is that a strict hierarchy of 

Θ  ΘA{ }×=

ΘA  ΘAi
{ }

i
×=

ΘAi

ΘAi
ai

j{ }j=

mEk

Θ : 2Θ 0 1,[ ]→

mEk

Θ

θ1 … θ, Θ,( ) θ1 … θ, Θ,( ) χ
j∈

 ⎩ ⎭
⎨ ⎬
⎧ ⎫

χ
j Θ⊆ Θ

mEk

Θ χ
j( )

 ⎩ ⎭
⎨ ⎬
⎧ ⎫

j⎩ ⎭
⎨ ⎬
⎧ ⎫

k 1=

Θ

mEk

Θ Θ( ) 0≡

mEk

Θ

θ1 … θ, Θ,( ) θ1 … θ, Θ,( ) χ
j∈

 ⎩ ⎭
⎨ ⎬
⎧ ⎫

χ
j χ χc Θ, ,{ }∈

χ χc, Θ⊆ 1 χ Θ<≤

mEk

Θ χ( ) mEk

Θ χc( ) mEk

Θ Θ( ), ,
 ⎩ ⎭

⎨ ⎬
⎧ ⎫

⎩ ⎭
⎨ ⎬
⎧ ⎫

k

χ χc, Θ⊆ 1 χ Θ<≤

22 Θ Θ 2 Θ

QEk

Θ χ
i( ) mEk

Θ χ
j( )

Θ χ⊇ j
χ

i⊇
∑=

Q Ek{ }
Θ χ

i( ) K QEk

Θ χ
i( )

k
∏=

χ
i ∅≠

K 1– 1–( )
χ

i 1+ QEk
χ

i( )
k

∏
∅ χ

i Θ⊆≠
∑=

m⊕ Ek{ }
Θ χ

j( ) 1–( )
χ

i
χ

j– Q⊕ Ek{ }
Θ χ

i( )
Θ χ⊇ i

χ
j⊇

∑=

429



hypotheses can be defined from some subsets of 2Θ and that
a system will only receive information for these subsets1.
The algorithm can handle evidence and calculate belief in
partitions of the form {χi, χ i

c} for all subsets, χi, in the tree.
It can also calculate belief in partitions of the form

, where  is the set of children of χi.
The algorithm by Shafer and Logan can briefly be

described as follows. The first step is borrowed from Barnett
[7]. All evidence with equal foci, confirming and
disconfirming, are combined, with the only difference that
what Barnett did with simple support functions focused on
singletons is done here for all subsets of the frame that are in
the tree. 

The two resulting simple support functions for each node
are then combined into a belief function with focal elements

.
Then we propagate the belief in the tree:

• For each parent, χi, of terminal nodes we combine the
belief functions for all the children, store the belief in χi
and  at this parent node. This can be done with
Barnett’s method. These stored values will be used later
when we propagate belief downwards through the tree.
We combine the resulting belief function of the previous
combination with the belief function for this parent and
store the beliefs in χi and  from the children and the
parent at the parent node. These values will be used when
we continue propagating belief upwards the tree. The
procedure is repeated for the parents of these parents and
so on climbing up the tree until we reach and store these
values for the children of Θ.

• At the top we combine the belief functions from all the
children of Θ and take one step down the tree to calculate
the total belief in χi and  for all children χi of Θ.

• Finally, we climb down the tree step-by-step until we
reach all terminal nodes and calculate along the way the
total belief in χi and  for all subsets χi in the tree.

First, in the last step down the tree we calculated the
total belief in χi and  for a particular parent. When
climbing up the tree we stored with the same parent node
the belief in χi and  from the combination of all belief
functions below the parent. From these values we can
calculate the belief in χi and  from all belief functions
that are not below the parent.

Secondly, for the parent, χi, we once again combine all
belief functions that are below the parent, as we did when
we climbed up the tree, but this time we find the belief in
χj,  and , where χj is a child of χi. This is again
done with Barnett’s method.

Thirdly, the total belief in χj and  for a child is now
found by combining these two belief functions from the
first and the second step, i.e., the belief function of all
subsets below the parent with the belief function of all
subsets not below the parent.

This algorithm has a linear time complexity in the number of
the nonterminal nodes due to local computations and is linear
in the tree’s branching factor due to Barnett’s approach.

If the conditions of the first algorithm are not fulfilled we
use a second algorithm developed by Shafer, Shenoy and
Mellouli [8] that propagates general belief functions in
qualitative Markov trees. Qualitative Markov trees can arise
through constructing a tree of families and dichotomies. This
is done by substituting each nonterminal node with subset χi
in a hierarchical tree by a parent-child pair with the
dichotomy  as subset at the parent, and the family

 as subset at the child and furthermore
substituting terminal nodes with subset χi with the
dichotomy .

The algorithm for computing the total belief for every
node in the tree of families and dichotomies is very simple:
• We will propagate belief to every neighbor, i.e., parent or

child, χj of every node χi in the tree. We begin with the
terminal nodes. Project the belief functions stored at every
terminal node to its parent. For all neighbors but χj, if
belief functions have been projected to χi from these
neighbors then combine these belief functions and the
belief function stored at χi and project the result towards
χj. Whether or not belief has been projected from χj to χi
is without significance to this rule.

• Finally, for every node χi in the tree, when belief
functions have been projected from all neighbors χj we
calculate the total belief in χi by combining all these
projected belief functions and the belief function stored at
χi.

This computational scheme reduces the time complexity
from being exponential in  to being exponential in the
size of the largest partition of .

Resulting from these algorithms is a fused system state
estimate

(14)

or

, (15)

where the available evidence, Eq. (9) or Eq. (6), is combined
by the first or second algorithm, respectively, Figure 2.

If an excessive amount of conflict builds up over time,
this may be managed by discounting each piece of evidence
in proportion to the degree that it contributes to the conflict
[9] using the degree of falsity [10].

2.4 An example
Let us assume a problem with two entities, the weather
forecast W and the risk of a riot R. In Sec. 3.4 and Sec. 4.3
we will describe how we can construct a causal relation
between the two entities, but for now we just state that we1With Impactorium this is domain dependent as different
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have an interest in keeping track of them. W consists of one
variable W1 with three alternative propositions: Sunny (Su),
Cloudy (Cl) and Rain (Ra). R also consists of one variable,
R1, which can take two different values, Riot (Ri) and No riot
(NRi). We have

(16)

where

(17)

with

(18)

Using Eq. (18) and Eq. (17) in Eq. (16) we get

(19)

where .
In general, input data take the form of basic belief

assignments that may support any focal element of the frame
of discernment Θ. However, a particular application interest
are dichotomous belief functions with focal elements

 where .
In the general case, input data take the form of Eq. (6)

where the χj’s are any subset of Θ in Eq. (19). In the case of
dichotomous belief functions, input take the form of Eq. (9)
where the χ’s are any subset of Θ in Eq. (19) and the
corresponding χc’s are their complements Θ - χ in Eq. (19).

We instantiate some dichotomous belief functions and
study their combination. First we define our initial (a priori)
system state estimation SSE0. In the example we assume that
we neither have information on the current mood of the
population nor on the upcoming weather. Hence, we define

. (20)

At a later time we receive a weather forecast that tells us that
there is a small chance that it will be sunny tomorrow and a
somewhat larger chance that it will be cloudy. We denote the
forecast as evidence E1 and attach the following belief
function

. (21)

In this particular case a new system state estimate SSE1, will
be identical to E1.

3 Evidential influence model
3.1 Representation
The relations in our evidential influence diagram are
between subsets of two entities of a system model. In Figure
3 a relation exist between subsets αA and βB of entities A and
B.

Figure 3. A two entities influence diagram.

The implication  for any entities A and B is a
proposition with a certain basic belief assignment, where

 and  are subsets of their respective frames
of discernment. Note, that αA and βB may be subsets of the
possible states any individual variables Ai and Bj, 
and , or any cross product of the possible states of
several Ai’s and Bj’s including ΘA and ΘB, Eq. (2). We will
however always represent the a priori knowledge as subsets
of the entire frame Θ, Eq. (1).

The implication  can be stated in set theoretic
terms as

(22)

and is formally a subset of the frame of discernment
, Eq. (1), where , Eq. (2).

We will thus represent the basic belief assignment of
 as a function on Θ.

We have αA and βB represented on Θ as

(23)
and

(24)
respectively, where  and .

The cardinality of the sets in Eq. (23) and Eq. (24) are

(25)

and
, (26)

respectively.
Furthermore, αc is represented on Θ as
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The union  is a focal element of  which must
be written as union of Eq. (27) and Eq. (24) with cardinality
less or equal to the sum of the cardinalities of Eq. (28) and
Eq. (26). It can be rewritten in different ways, but not
simplified to a single set of sequences.

3.2 Instantiating a priori knowledge
Let

(29)

be the rth basic belief assignment on the entire frame Θ
expressing a relation between A and B, where all our a priori
knowledge visualized in the influence diagram is represented
as

(30)

where i is the ith focal element of basic belief assignment
m(A, B),r and  may be substituted by the union of Eq.
(27) and Eq. (24), and Θ may be substituted by Eq. (5) or Eq.
(8), respectively.

3.3 Combination of a priori knowledge
These basic belief assignments can be pre-fused as we
assume the a priori knowledge to be unchanged during the
system state estimation and prediction process.

We have a priori knowledge

. (31)

As we assume that the a priori knowledge is unchanged
during the system state estimation process the computational
time complexity is not an issue here.

The basic belief number mPK(Θ) may be viewed as the
inertia of the system during update with the a priori
knowledge. When mPK(Θ) is high then the prediction SSPk+l
is little changed from the estimate SSEk.

3.4 The example
Let us return to the example previously discussed. We
assume a problem with two entities, W and R, with one
variable each and three (Su, Cl and Ra) and two (Ri and NRi)
alternative propositions, respectively. The frame of
discernment is given by Eq. (19).

We now want to extend our example model by adding a
priori knowledge of how the entities influence each other.
The knowledge is elicited from two Subject Matter Experts
(SMEs), SME1 and SME2. SME1 claims that cloudy or rainy
weather will reduce the risk of a riot. SME2 on the other
hand claims that sunny or cloudy weather will increase the
risk of a riot. The a priori knowledge of the system will be
the combination of these statements.

For the a priori knowledge from SME1,  instantiates
as

(32)

and  instantiates as

(33)

where

. (34)

The a priori knowledge from SME2,  instantiates as

(35)

and  instantiates as

(36)

where

. (37)

In Eq. (30) we have a general description of a priori
evidence. Here, Eq. (34) and Θ are the two focal elements of
the basic belief assignment of SME1 where

(38)
and Eq. (37) and Θ are the two focal elements of the basic
belief assignment of SME2 where

.

(39)

The basic belief numbers of each basic belief assignment
given by the SMEs indicate their confidence in these
statements.

Combining the two basic belief assignments yields

.

(40)

4 System state prediction
Predicting future states of a system is a very general problem
in information fusion as well as in many other research areas.
Perhaps the easiest to understand example of system state
prediction is the tracking problem. In this problem, we are
given uncertain observations of an objects position and are
asked to, at any time, determine its current position. The
solution of this problem is to maintain an estimate of the
current position which is updated whenever new
observations arrive. If both the time between observations
and the uncertainty of the observations are small, we can
take the last observation as the current prediction. If these
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conditions are not met, however, we must perform an
estimation of the current prediction. Usually, this is done in
two steps. First, a motion model is used to update the current
estimate of the position. Then, this estimate is updated by
fusing it with any new observations which might have
arrived. The motion model attempts to model the system
dynamics and corresponds to the a priori knowledge given in
Eq. (31). If the motion model is accurate enough, it is in
principle possible to predict the state of the system at any
arbitrary time in the future.

4.1 Representation
Having derived the representations of the system state
estimation SSE in Eq. (5) or Eq. (8) (depending on the
structure of input data) and the representation of the a priori
knowledge PK of the evidential influence model as the union
of Eq. (27) and Eq. (24), we may find the representation of
their combination. The representation of the focal elements
of the resulting prediction from combining the latest estimate
SSEk with the a priori knowledge PK is simple. For a
particular focal element, we have

(41)

where  is the jth focal element of  and  is the
ith focal element of , with , the index set of
{ }, and , the index set of { }.

This is the representation of the system state prediction
received from an earlier system state estimation using the a
priori knowledge PK. We have

, (42)

see Figure 2.

4.1.1 Multiple predictions
We may consider using several prediction steps without
intermediate update, Figure 4.

Figure 4. Multiple prediction steps SSPk+il (i ∈ ZZ+).

This is appropriate from a statistical point of view. The a
priori knowledge fused with the system state estimation and
successive system state predictions is not combined with

itself. In fact, each application of a prior knowledge is
information to predict system changes at different system
steps. We have

(43)

or

(44)

where ∀ij. PKi = PKj, Figure 4.
However, we must make sure that the successive system

state predictions remain within a tolerable margin of error.
This can be monitored by comparing predicted and actual
system states when the system has evolved to the predicted
step. Note, that this comparison involves a measure of
interpolation as predicted system states at steps k + il
(k ∈ ZZ*; i ∈ ZZ+; l ∈ ) are not synchronized with the
sequence of estimated system states at steps k, as l belongs to
the reals. This is studied in Sec. 5.

4.2 Specific states
For every SSEk and SSPk+il we may marginalize the
distribution to any entity of interest. Marginalization is a way
of focusing a belief function on subset of Θ. The
marginalizations that are of interest to us are
marginalizations on the frame Θ to any individual ΘA. We
have
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Our concern in this example scenario is whether we should
expect a riot or not. This is found by marginalizing the basic
belief assignment to ΘR. We have

. (47)

Thus, we have some indication of an upcoming riot while the
uncertainty is large.

5 Comparing predicted and actual 
system states
As outlined in Sec. 4, the system state prediction output will
be updated whenever the system state estimation (Sec. 2) has
changed. In practice, this will be done as soon as there is
enough new input data suggesting that the system state
estimation has changed.

Depending on the temporal scale used when constructing
the influence model described in Sec. 3, it will be necessary
to update the system state estimation, Eq. (14), more or less
often. For some system state prediction applications, the
prediction step is followed by an updating step, where new
system state observations are fused with the predicted system
state estimate and the result is used to get a new predicted
system state. Perhaps the most familiar example of such a
system is ordinary tracking. In such systems, the information
processing algorithm can generally be written as
• given a system state estimate for step k and a motion

model that describes how the state changes with time,
• predict system state at step k + 1 by applying the motion

model to the system state estimate at step k,
• fuse this predicted system state with observations

collected at step k + 1 to produce a new system state
estimate for k + 1.

This procedure is then applied recursively to obtain a system
state estimate for all times. There are two crucial
assumptions made in this procedure. First, it must be
possible to compute a motion model that allows us to predict
the single-step behavior of the system. This is often possible
for simple systems that move simply, such as ships on the
surface of the sea or aircraft [11], but considerably more
difficult for more complicated motions [12] or systems. The
procedure also breaks down if the time between observations
of the system state is too large.

In our case, we do not attempt to track the system state
continuously using the influence model in Eq. (31) as a
motion model. Instead, we apply Eq. (42) as soon as we have
new data, and it is this system state estimate that is shown to
the user in the decision support. Our reason for doing this is
simple: since we are dealing with considerable more
complicated problems than tracking of aircraft, we believe it
to be naïve to expect a “motion model” to be able to give
more than single-step predictions of the system state.

Instead, we use observation data as a situation assessment at
all times, and only use the prediction/influence model to
produce a situation prognosis.

However, doing a prediction on the predicted system state
is still useful for other purposes.

Applying the method introduced in [13], we can perform
comparisons of the system prognosis at some step k with
evolved versions of earlier prognoses as illustrated in Figure
5. If there is a significant discrepancy between the different
prognoses, the system can alert the user to this fact using a
“red signal flag” or “alarm bell” that informs the user that
something strange has happened. Getting such warnings
would be extremely useful if, for instance, the user has done
their planning based on the earlier prognosis and we can now
tell, using more recent observation data, that the other actors
are doing something different from what we expected. It
could also be used to detect possible attempt at deception
from opposing actors.

Figure 5. Comparison between system state estimation and 
prediction using the L1 and L2 norms.

Calculating the discrepancy between the prognoses at
different steps could be done in several different ways [13],
[14]. Perhaps the most straightforward is to simply calculate
the Lp-distance

(48)

between the mass functions of the different system state
prognoses. A slightly more sophisticated approach would to
calculate the Kullback-Leibler divergence

. (49)

In addition, there are several more advanced measures that
could be used. Any of the similarity measures commonly
used to compare probability distributions could be used to
compare the mass functions of interest.
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The system state estimates and prognoses calculated are
probabilistic, since both the data that is fed into it and the
influence model used are stochastic. This means that care
must be taken when displaying the results to the user: should
the visualization display the complete mass function or some
most-likely outcome from it (e.g., BetP [15])?

In Figure 5, we show the results of comparing a system
state estimation and a system state prediction using the
norms introduced in Eq. (48) with  and . For this
visualization, we chose to project the mass functions onto the
real line and not attempt a display of the values of the mass
function for all elements of the lattice .

6 Discussion
A possible generalization of the method described in this
paper is to include entity copies for all steps k. Thus, 

(50)

where ΘA, k is the set of possible system states on entity A at
step k and Θk is the set of possible system states at step k.

With this representation we may represent a priori
knowledge regarding relations between any entity at step k
and the same entity at step k + 1, e.g.,

. (51)

This is a more specific modeling of system state changes of
entity B from k to k + 1 than the inertia discussed in Sec. 3.3.

The method presented in this paper can be understood as a
generalization of the concept of dynamic Bayesian networks
[16]. In dynamic Bayesian networks, one considers distinct
but identically-structured networks for each step, but also
allows some of the nodes in the network at step k to be
connected to nodes in the network at step k + 1.
Conceptually, this is similar to Figure 2.

7 Conclusions
We have developed an evidential system state estimation and
system state prediction model. These models represent
observations of system states as belief functions and a priori
knowledge regarding all possible state transitions as one
fused belief function.

With these models we can perform system state
predictions of the entire system as well as individual state
predictions of all system entities through marginalization of
the prediction belief function.
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