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Abstract
This paper deals with the problem of tracking the motion of a submarine

in shallow waters using adaptive planning for the positioning of passive
sonobuoys. A computational model and an interactive simulation system
were developed and validated. The system is capable of simulating a
submarine hunt using multi-sensor data fusion of signals from passive
sonobuoys and of computing a near-optimal placement of the next buoy to
be deployed. 
Keywords: Submarine tracking, Kalman filter, Position prediction, Sonar
equation, Adaptive planning.

Introduction
The goal of this study is to determine the possible benefits of using

multi-sensor data fusion and adaptive planning when tackling the difficult
problem of determining and tracking the position of a submarine in
archipelagic anti-submarine warfare (AASW). Based on a simplified
gaming scenario, we investigate effects of employing multisensor data
fusion and optimal sensor allocation in shallow-water target tracking using
passive, non-directional sonobuoys (5): a single target moving along a pre-
determined two-dimensional path is to be followed as long as possible,
given a limited supply of sonobuoys and a prespecified tracking
performance.

During the game, either the user or the system itself may place buoys at
optional locations within the area. The information acquired from the
sonobuoys is used to calculate the position of the submarine. This is done
by solving a linear least-squares problem, arising from an average-sensor-
position-centered formulation of the time differences of arrival (TDOA)
equations Blixt (1), Wahlstedt et al (6). The signal-to-noise ratios at the
positions of the sonobuoys are calculated by use of the sonar equation Bur-
dic (2). The sonobuoy-position uncertainties are taken into account to cal-
culate an elliptical confidence region for the location of the submarine (6). 

A Kalman filter-based prediction method Bar-Shalom and Li (3),
Sorenson (4) for the near future position of the target was developed. This
method models the kinematics of a “generic” submarine and fuses this
apriori knowledge with the sensor measurements to obtain an optimal
estimate of the submarine’s position at each point in time. To enable
effective automatic buoy deployment an algorithm was designed and
implemented, which calculates a near-optimal position of the next
sonobuoy to be deployed. 

We are grateful to Erland Sangfelt, Staffan Harling and Sven-Lennart
Wirkander of the Defence Research Establishment, and to Mats Nordin,
Department of Marine Technology at Chalmers University of Technology,
for their expert advice during our validation of the model.

Simulation Model for Position Estimation from 
Sonobuoy Signals

For each discrete time step, the signal-to-noise ratio at the locations of
the sonobuoys is computed. If the ratio is considered to be sufficiently
high, and if the integration time has been reached, the information from
that sonobuoy is taken into account. Next, the TDOA of the sound
reaching the buoys is calculated. Using this the most likely target position
and its confidence region are estimated. 

The source level of the submarine target is dependent on its speed. The
local sound level decreases monotonically with the distance from the
source, as described by the sonar equation.

Since in our concept the distance between target and sensor is much
shorter than is usually assumed in sonar detection models, in the order of a
few hundred meters, it was decided that neither sound refraction nor
reflections from features in the environment need to be considered.

The submarine follows a predefined polygonal path with a predefined
speed. The game starts with a first detection of the submarine being
presented to the player.

The player may interactively specify the location of each sonobuoy.
Sonobuoys can not be retrieved for reuse during a game. Only a limited
(preset) number of buoys are available. 

Sonar Equation
The sonar equation (2) states the relationship between the emitted sound

level, the received sound level, the environment conditions, and the sonar
equipment. The equation is: 

, 

where SL is the Source Level, TL the Transmission Loss between source
and sonobuoy, NL the ambient noise level, DI the Directivity Index,
modelling a noise reduction capability of certain types of sonobuoy, and
DT the Detection Threshold, all expressed in dB. The calculation of DT
will be described below, while for a discussion of the remaining
parameters we refer to Johansson and Svensson (7) and (2).

Detection Threshold
This is a measure of the minimum sound level at the position of the

buoy required to detect the signal. Assuming the target is a modern
submarine without discernible resonances, the broadband detection
threshold needs to be used. From (2):

             (1)

Here T  denotes the integration time of the signal and β denotes the
bandwidth. The choice of integration time is crucial to the behaviour of the
system. If it is set too short, detection becomes impossible and if it is set
too long tracking will not be possible.

To determine the signal-to-noise ratio d we have to decide values of Pfa,
the false alarm probability, and PD, the detection probability. Once this has
been done the corresponding value of d can be obtained from the ROC
curve (2). We have chosen Pfa =0.0001, PD =0.99, β=1000 Hz and T=4
sec. Thus we get d=36 and finally, DT=-10.

SL TL–( ) NL DI–( )– DT=

DT 5 dlog 5 Tβlog–=
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The Least Squares Fix Method
The Hyperbolic Fix Method (6) is commonly used to calculate target

positions from sonobuoy signals, based on TDOA measurements from two
pairs of sonobuoys and resulting in a generally non-unique solution of a
non-linear system of equations. To efficiently utilize information from a

larger number of buoys, when  sonobuoys hear the target, an

overdetermined, non-linear system of equations can be set up whose
solution is an estimate of the unknown position of the target. This system
can be transformed into a linear system of n-1 equations, plus one equation
of the original type (1), (6). The linear system can be solved using a stan-
dard least squares method. We will call this technique the Least Squares Fix
Method.

Uncertainty Ellipse Computation
The least squares solution for the position of the target provides an

estimate of the mean value of the statistical distribution for the submarine’s
position. To model also the variance, or mean square error, of the position,
the uncertainties of the sonobuoy positions and of the time differences of
arrival need to be represented as stochastic variables. The uncertainty is
modelled by assuming that these variables are Gaussian-distributed with
zero mean. For a derivation of the parameters of the uncertainty ellipse the
reader is referred to (1) and (6). 

Predicting the Position of the Submarine
The buoy configuration delivers a position estimate and the uncertainty

in this estimate for every time step. To reduce the uncertainty and to enable
the motion of the submarine to be predicted, a Kalman filter was developed,
whose target kinematics submodel is given by the first order stochastic
differential equation:

             (2)

Here x is the state vector, describing the kinematic properties of the

target.  f  is the system state function.  is the system noise and represents

unpredictable events in the system.

Since if possible we want to keep our model linear, all nonlinearities are
placed in the noise vector. This gives us the following state function and
noise vectors:

             (3)

The parameters that need to be estimated are the variances of the

acceleration components  and . For a single-propeller submarine

operating under sound emission limitations, the practical maximum values

of the acceleration components have been assumed to be ap=0.02 m/s2 and

an=0.04 m/s2. By choosing the variances as  and  the filter can make

good predictions of realistic manoeuvres. 

Normally in a Kalman filter the measurement covariance matrix is
constant, given a priori by the characteristics of the measuring instrument,
but here it will change over time. One could picture this situation as a
succession of measurements with different instruments.

The Buoy Deployment Problem
 The tracking problem would be trivial if one had sonobuoys enough to

cover the entire possible area (volume in case a two-dimensional view of
the problem is inadequate) with a sufficiently dense grid of sensors, but

assuming there are too few sonobuoys to achieve such coverage, when and
where should the available buoys be allocated ? 

Estimation of the buoy range
Both when estimating the uncertainty in a future position estimation of

the target and when calculating an optimal buoy position, it is important to
be able to estimate the buoy range as accurately as possible. This range is
dependent on the speed and type of the target as well as on the sea
conditions. In order for the algorithms described in this paper to work
accurately in practice, the sensitivity of each buoy would need to be
calibrated with respect to an absolute normal.

After the speed of the submarine has been estimated, the corresponding
source level SL can be interpolated from a table. Using the sonar equation
(2), the buoy range BR can be calculated as:

, where NL is the noise level and TL the

transmission loss.

Deciding when to deploy a buoy 
For each time step the buoy configuration delivers an estimated position

of the target and the uncertainty in this estimate (1), (8). These values could
be used as the final estimate of the system state, but then one would not use
all available information, i. e., our apriori knowledge of the target’s dynamic
limitations. By using the Kalman filter however, the information from every
new measurement can be fused with all information gathered until current
time.

Using the Kalman filter to predict the position of the submarine, we

obtain for each time step  a confidence ellipse  within which

the submarine will be located with given probability p at time .

Wherever in this confidence ellipse the submarine may be, we want to be
able to measure its position with an error less than δ. If and only if this is
possible, there is no need to deploy another buoy.

Deciding where to position the buoy 
In every simulation step we want to gain as much information as possible

from the buoy configuration. Therefore the position for the next buoy
deployment should satisfy two requirements:

• There should be no other buoy position which would enable the 
buoy configuration to add more information to the system 
in the next simulation step, whatever may be the future 

target position within the predicted area (local 
optimization problem).

• In order to save buoys, the position should be chosen so that the 
buoy can be of use for as long time as possible (global 
optimization problem).

These requirements are in conflict and a balance between them has to be
found. To solve the first optimization problem, we should choose the
position for the next buoy so that the information from our next
measurement will have as small uncertainty as possible. Thus, a buoy must
be deployed at time tj+1. The submarine will then be in the known

confidence region E(tj+1)  with probability p. 

Let , ri denoting the position of buoy i and  the area where

buoy i can be deployed so as to cover E(tj+1).

Further, let denote the length of the major axis of the

uncertainty ellipse associated with the position measurement of a target

located at  with buoy i deployed in position ri. Then:

             (4)
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E(tj+1).

Now we can formally state our first optimization problem:

Minimize G(ri) subject to the constraint              (5)

If we were allowed to consider this requirement only, we would place the
buoys as far away in the direction of motion as possible. But then the buoys
would eventually end up in a row, leading to a singular system matrix, and
the resulting confidence ellipse would grow indefinitely. To achieve a
balance between these different requirements the following strategy was
chosen:

Fix a tolerance  δ for G(ri). We consider the first requirement to be

fulfilled if a buoy position results in G(ri) < δ. If the position for ri which

maximizes the distance e along the direction of motion covered by the buoy
i is chosen, we have a candidate for the optimal position but this position is
still only optimal in a local sense. Figure 1 illustrates the effect of the buoy
position on the accuracy of the target position estimate. The position in the
(x,y)-plane for which we have a minimum in the G(ri) direction corresponds

to the first requirement above. A buoy position in the grey area,
corresponding to points in the (x,y)-plane with G(ri) < δ, with maximal e is a

candidate for the optimal position.

Regaining Contact
The game will start from a point in time and a position for an initial

observation of the submarine. At the later time for the tracking to start, the
travelling distance for the submarine can be estimated given its speed. The
speed is unknown but is expected to be low since the submarine is operating
under sound emission limits. Let:

• dt = time difference between the initial observation and the start 
of tracking

• si = the assumed speed of the target in the first attempt

• bi = the approximate buoy range when the target is travelling 

with speed si

• ri = sidi is the travelling range of the submarine given its 

speed si

The simulator uses the following strategy: On a radius = ri around the

observation the buoys are deployed at distances < 2bi. This continues until

one of the buoys indicates a detection. Around this buoy a few more buoys
are deployed in a circle so as to get at least four hearing buoys. If no
detection was made, the procedure is repeated assuming the speed si+1=2si.

The critical parameter in this strategy is the time difference dt. If it is too
long, the assumption of constant direction of motion and speed of the
submarine will be unrealistic. The error in the speed estimation will also
increasingly deteriorate the estimated travelling range as dt increases.

Conclusions
We have developed a simplified two dimensional model without islands

and bottom structure and all conclusions below are related to the model and
not to reality.  On the other hand, the model is based on the application of
simple but well-established physical theories, and the substitution of
numerical values for the model parameters has been done in cooperation
with domain experts. Thus, we expect our main conclusions to be valid if
the model were applied to real sonobuoy data. 

In summary, in the model’s world, it is possible to track a hostile
submarine in shallow-water environments using only passive, non-
directional sonobuoys; with four or more sonobuoys in suitable positions
the submarine’s position can be estimated and a confidence ellipse for this
position can be calculated; from a Kalman filter not only a prediction of the
motion is achieved, but also a reduction of the uncertainty in the same. The
more one knows about the dynamic properties of the target the larger
reduction can be obtained; by determining the uncertainty of future
measurement one can position the buoy in a suitable way. A critical factor in
the simulation is the time span from the initial observation until contact has
been regained.

Before the technique can be tested in a real submarine tracking scenario,

one needs to obtain practical solutions to the following problems: (1)
computing on-line the  TDOA for each interesting pair of sonobuoys and (2)
determining on-line good estimates for the location of each sonobuoy, at
least for testing purposes. The latter problem could be solved for example
by measuring the sound transmission time to each sonobuoy from three or
four underwater sonic beacons whose positions are known. In our
simulations, a standard deviation of 15 m in buoy position allows tracking
down to a buoy hearing range around 100 m. For practical application, it is
desirable, perhaps required, that an all-passive, non-detectable system can
be utilized and that the tracking principle can be used also in disturbed
conditions such as presence of intense surface traffic, multiple targets, bad
weather conditions, etc.

This study does not attempt to solve all these problems, nor are we
proposing or analyzing a detailed design of a future underwater surveillance
system. We find it encouraging and thought-provoking, however, that the
notoriously difficult problem of tracking a submarine in an archipelagic
environment might lend itself to a solution which requires neither
sophisticated and inherently uncertain modelling of long-range signal
propagation patterns nor a vast network of static sensor elements.
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Fig. 1 An optimal buoy position has 
maximal e and stays within the grey area.
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