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Abstract—A new functional model for burst firing in the dorsal 
thalamus is proposed where thalamocortical pattern recognition 
systems, based on kernel machine principles, are connected by 
burst signaling. The systems include input trapping in the dorsal 
thalamus, cortical learning state memory and processing in the 
thalamic reticular nucleus. Misclassified events are captured as 
training examples in the waking state and the pattern recognition 
systems are trained by extensive thalamic bursting in deep sleep. 
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I.  WHAT IS THE FUNCTION OF  THALAMIC BURSTS? 
The thalamus routes sensory data to the neocortex and 

relays also data between cortical domains. Relayed signals are 
filtered and shaped in the thalamus (see [1] for an in-depth 
review of the thalamus). Thalamic relay neurons have two 
firing modes. Tonic firing has an effectively linear relation 
between inputs and outputs. The burst mode is an all or nothing 
response where subthreshold inputs have no effect but 
suprathreshold inputs triggers a long burst of dense spikes. 
Both modes convey information efficiently but the coding is 
very different with less noise in the burst mode but high fidelity 
in the tonic mode [2]. Thalamic burst firing is common during 
slow-wave sleep but appears also in the waking state. Bursts 
deactivate spontaneously after ~100 ms and are followed a 
quiescent period of about 100 ms [3] [4]. Bursting relay 
neurons resemble a digital register that traps the input and 
holds a snap-shot for the duration of the burst.  

The precise function of the burst relay mode is not known. 
It has been suggested that bursts control attention [5] and that 
bursts are wakeup signals for alerting cortical centers to 
qualitative new sensory input [6]. The tonic mode allows 
detailed analysis of detected new features once attention has 
been summoned by burst firing. Bursting in slow-wave sleep is 
explained [1] as a signal of the idle state of the thalamus.  

In-depth understanding of brain systems requires a close 
interplay between theoretical and experimental work where 
mathematical modeling inspires comprehensive explorations. 
In that spirit, we launch a new hypothesis about the role of 
thalamic bursts – they drive kernel machine pattern recognition 
in the thalamocortical system.   

II. THE PATTERN RECOGNITION HYPOTESIS 
We hypothesize that one of the functions of the 

thalamocortical system is to perform pattern recognition on the 

many different signals that are conveyed by the system. The 
neocortex includes memory for the learning state, the dorsal 
thalamus provides a register for inputs and the thalamic 
reticular nucleus (TRN) is the processing engine of the pattern 
recognition machine.  In the following “thalamus” shall mean 
dorsal thalamus and “cortex” shall mean neocortex. The 
operation of the system is governed by higher-order brain 
systems (HOBS) including elements of the cortex and the 
limbic system.  

There are three modes of the pattern recognition system - 
all requiring that the relevant parts of the thalamus shift to burst 
mode. Qualitatively new sensory data trigger the classification 
mode. Sensory inputs and learning state data from the cortex 
are processed in the TRN and the resulting classification is 
forwarded to HOBS.  Misclassifications cause the anomalous 
input patterns to be impressed in the cortical memory. The 
system is tuned and optimized in deep sleep. Remembered 
burst patterns are repeatedly copied from the cortical memory 
to the thalamic register thus simulating significant experiences. 
Feedback from the TRN modifies the strength of the memories 
thereby optimizing the system. 

III. KERNEL MACHINE MODEL 
To provide a mathematical framework for the outlined 

model we conjecture that the thalamocortical system 
implements support vector machines (SVM) [7]. SVM are 
efficient pattern recognition algorithms that work by implicitly 
projecting inputs to a large-dimensional feature space where 
linear classifiers are applied. The solution is a hyperplane in 
feature space that separates training example classes with a 
maximal margin. This approach strikes a fine balance between 
learning the training examples accurately and good 
generalization when faced with new examples. For simplicity 
we shall only consider binary classifications. Multi-value 
classifications can readily be produced by a bank of binary 
classifiers. 

Zero-bias n-SVM is a special case of a support vector 
machine that is uniquely apt for biological implementation [8]. 
This section provides a bare-bone definition. Consider at set of 
m training examples (xi, yi) where xi is an input vector with 
binary or real-valued components and {1, 1}iy ∈ − is the correct 
binary classification of the example. The support vector 
machine classifies a test input vector x as positive if and only if 

( ) 0f ≥x  where 
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Zero-bias means that there is no constant factor in (1) as for 
most support vector machines. The classification function f(x) 
depends of the training examples, the weights ai and the non-
linear symmetric kernel function K. The weights defines the 
solution to the optimization problem where the dual objective 
function, 
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The parameter 0<n<1 controls the trade-off between 
accuracy and generalization. This model is a specialization to 
zero-bias of the n-SVM described by [9] where the constraint 
(4) is used as suggested by [10].  

There are no local optima so the solution to equations (2)-
(4) is found by gradient ascent in the hyperplane defined by 
(4). Gradient ascent can be implemented so that each weight ai 
incrementally is updated (subject to (3)) according to, 
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where Dai is the increment of ai and Ci is given by, 
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Conceptually Ci is understood as the classification margin of 
the i:th example. 

     The solution partitions the training examples in two groups: 
support vectors with weights 0iα > and trivial examples 
with 0.iα = Only support vectors contribute to classifications.  
Support vectors are found close to the boundary between 
positive and negative domains. They are extreme cases that are 
hard to classify correctly. Trivial examples are mainstream 
members of their class. Memory-saving algorithms where 
trivial examples are discarded from the training set have been 
shown to be efficient [11].   

IV. THALAMOCORTICAL SUPPORT VECTOR MACHINES 
The thalamocortical system includes, according to our 

hypothesis, many different pattern recognition systems that 
may apply to e.g. visual, somatosensory or corticocortical 
inputs. This section describes how one of these pattern 
recognizers is realized as a neural zero-bias n-SVM. Note that 

anatomical facts described in the following are accurate but 
computational functions are speculations. 

The functional parts of one of our pattern recognizers are, 

 - A relay matrix module in the thalamus (RM) for holding 
the stimuli to be evaluated.  

- A processing module (CL) in the TRN. 

- A memory for support vectors in the cortex (OM).  

The thalamocortical system is mapped so that an organized 
field of inputs is related to a well-defined set of relay cells in 
the thalamus, a matching topological map in the thalamic 
reticular nucleus (TRN) and corresponding maps in the cortex. 
The RM, CL and OM are hence mapped to each other by 
driving neural projections (see Fig. 1). HOBS manages the 
pattern recognizer, activates the three processes of the system 
and incites the RM to operate in burst mode. 

 

 

 

Figure 1.  Outline of one of many thalamocortical  pattern recognition 
systems. Solid ovals stand for known brain components where higher-order 
brain systems (HOBS) is a place holder for management functions in the 
cortex and in the limbic system. The pattern recognition system consists of 
hypothetical modules RM, CL and OM that are shown as dashed rectangles. 
RM is a part of the thalamic relay matrix, CL is the core pattern recognition 
logic in  the TRN and OM is a cortical associative memory. Solid lines (D1, 
D2, D3, D4, D5) are broad driving projections carrying immediate or recalled 
sensory data. Dot-dashed lines (M1, M2, M3, M4, M5) are other narrow 
connections. Afferents (D1) from sensors (or the cortex) drive the relay matrix 
of the  thalmus. Driving pathways (D2) from mapped thalamic relay cells 
innervate the corresponding map in the thalamic reticular nucleus (TRN) and 
project (D3) to the OM. Corticothalamic projections innervate the TRN (D4) 
and carries “dream stimuli” from the OM to the thalamic relay matrix (D5). 
Classifications are computed in the TRN and are forwarded (M1) to the  
thalamus for relay (M2) to HOBS.  HOBS initiates learning of initially 
misclassified examples (M3). Learning feedback for adjusting memory 
weights relays (M4) via the  thalamus (M5) to the OM. The connection pattern 
is anatomically feasible but the detailed function is speculative. 

A. The classification process 
We shall first consider the classification process in a trained 

system that receives sensory data (D1). See Fig. 1 for 
references to neural connections. HOBS activates the pattern 
recognizer by triggering the burst mode of the RM.  Each relay 
cell in the RM is either quiescent or fires a long spike train. 
The resulting pattern is the input vector x of the SVM.  
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The OM is an unstable associative memory for support 
vectors. It oscillates rapidly between support vector states. The 
average duration of each state xi is proportional to the SVM 
weight ai. The OM oscillation frequency is much faster than 
the rate of burst episodes in the thalamus. See [12] and [13] for 
simulations showing the feasibility of such oscillating 
memories and [8] for an in-depth analysis of the OM. 

Projections (D4) from the cortical OM and relays of stimuli 
(D2) from the thalamic RM adjoin in the CL of the TRN. The 
kernel function K(xi,x) is calculated in the dendritic trees of 
reticular cells where afferent relay projections are combined 
with efferents from the cortex. The classification function (1) is 
approximated by temporal summation in cells of the CL where 
the duration of the cortical signal provides for the weight ai and 
the valence yi of the support vector is reflected as an inhibitory 
or excitatory contribution to the temporal sum. The CL 
performs hence a temporal stochastic integration. The 
refractory period of ~100 ms following a burst inhibits any 
interference between classification episodes. 

Since TRN cells project no axons to the cortex but connect 
abundantly to the thalamus, we assume that the output 
classifications are relayed (M1, M2) to HOBS via diffusively 
projecting cells in the thalamus.  

B. Surprise Learning 
New training examples are engraved in the OM when 

classifications fail and the animal is surprised. This process is 
managed by HOBS (M3). The extended duration of thalamic 
bursts means that the stimuli x still is projected (D3) to the 
cortex when the failed classification is detected so that the 
surprising event can be imprinted in the OM by an appropriate 
spurt of neuromodulators. The emotional valence of the 
surprise determines the labeling y of the example. The weight 
of the new memory is not yet adjusted to reflect its relative 
importance. All the weights must typically be tuned. The 
individual that just has suffered a surprise may e.g. overreact to 
similar stimuli because the pattern recognizer is unbalanced. 

C. Importance Learning 
A good night’s sleep puts new experiences in context. Deep 

slow-wave sleep is characterized by synchronized bursting of 
the thalamic relay cells in a TRN-induced ~10 Hz rhythm [14] 
[15]. Thalamic relay cells are not sensitive to sensory inputs 
during rhythmic bursting [16]. Contreras et al. suggest that 
significant experiences are imprinted during slow-wave cycles 
[17]. We expand on this hypothesis by proposing that the 
cortex learns support vector weights in deep sleep. While 
classification episodes are comparatively rare in the waking 
state and in REM sleep, the deeply sleeping brain tunes the 
pattern recognition machines by simulating such events. The 
detailed mechanism may work as follows.  

The OM oscillates incessantly between support vector 
states. The duration of each such transient memory pattern is 
proportional to the weight ai. The probability of presenting a 
support vector xi at any given time is hence proportional to ai.  

Projections (D4, D5) from the cortex to the relay matrix of 
the thalamus are here conjectured to serve as relays for OM 

memories. The RM accepts “dream stimuli” from the OM 
since the normal sensory input that dominates in the waking 
state is quiescent in deep sleep. Dream input is coded as bursts 
since the thalamus is enticed to rhythmic bursting in deep 
sleep. The rhythm synchronizes the relay cells of the RM. 

 A dream stimulus is a copy of an old percept (xi, yi) that 
has been preserved as a memory in the OM. The relay matrix 
module will, after each burst episode, lock on the support 
vector that happens to be projected at the onset of the new burst 
cycle. The OM oscillates much faster than the TRN ~10 Hz 
cycle. The RM presents therefore support vectors with a 
distribution such that the probability of each support vector is 
proportional to the support vector weight. 

The CL in the TRN generates the SVM kernel function 
while calculating the classification function. This process 
continues in deep sleep using dream stimuli as inputs. We 
assume that a weighted version ( , )j i jy K x x  of the kernel 
function is forwarded to the OM via the thalamus (M4, M5).  
Note that (xj, yj) is the example that is trapped in the thalamic 
relay matrix and (xi, yi) is the current state of the OM.  The OM 
receives hence a feedback signal (M5) that, weighted with the 
label yi of the present OM state and the probability distribution 
of  xj, on average is proportional to the quantity Ci of (6). 

The sleeping OM is in a slightly plastic phase where 
support vector memories on average are boosted or diluted 
according to the rules: 

1) Depress the current memory pattern in proportion to Ci. 

2) Potentiate all memory patterns in proportion to 1
iC

m
. 

When applied in sufficiently small steps in a long series of 
randomly selected dream stimuli, these learning rules 
correspond to a gradient ascent solution of the zero-bias n-
SVM problem according to (5). The details of this argument 
are spelled out in [8]. This hypothetical but biologically 
feasible learning process finds a good approximation of the 
optimal support vector weights. The weight for a trivial pattern 
decays to zero and such patterns are therefore eventually erased 
from memory. 

V. DISCUSSION AND CONCLUSIONS 
 

The explicit model for thalamocortical kernel machines 
suggested here is anatomically feasible but the assumed 
mapping of model to brain is not the only possible choice. For 
brevity we present here the configuration that appears to be 
best supported by the admittedly scant evidence.  As an 
example of an alternative mapping we can mention the 
possibility that corticothalamic driving pathways that have 
been interpreted as a higher-order relay between cortical 
centers in fact are the D4 and D5 connections in Figure 1. This 
option would be more credible if it turns out that all thalamic 
nuclei mix first and higher order relays as surmised in [1]. The 
temporary summation in the computation of the classification 
function can also be located to the thalamus rather than to the 
TRN. The association with thalamic bursts appears, however, 
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to be essential. The key advantages of the burst mode as 
compared to the tonic mode are that i) bursts trap inputs thus 
allowing an extended evaluation period during which the OM 
can oscillate many times, ii) the burst mode minimizes 
interference with normal perception in the tonic mode and iii) 
the burst mode signals to all sub-systems that the pattern 
recognition mode is on. A tentative evolutionary path for the 
suggested apparatus and a neural representation of the 
parameter n in (4) are found in [8]. Further evidence of 
relevance for suggested model is discussed in the following. 

Thalamic bursts in the waking state are triggered by novel 
sensory inputs as suggested by the higher frequency of burst in 
the lateral geniculate nucleus (LGN) of cats viewing natural 
scenes as compared to cats viewing featureless artificial 
environments [18]. Bursts are in particular associated with 
sudden movement of the viewed objects. 

Functionally related thalamocortical and corticothalamic 
connections are coupled in the TRN by a widespread network 
of axons and dendrodendritic synapses that would be capable 
of correlating information over an extended  local map [1]  
[19]. This is precisely what is needed for computing the kernel 
function of our model. 

A thalamic relay cell can innervate several cortical areas 
and would therefore be able to supply burst signals to the OM 
as well as tonic signals to other brain centers [1].  

Corticothalamic synapses are more peripheral than afferent 
sensory synapses in the dendritic arbors of thalamic relay cells 
[1]. Real sensory inputs would therefore override dream inputs 
in the waking state. Dream stimuli are expressed only when 
sensory inputs are silent in deep sleep as required by our 
model. The long time constant of the metabotropic receptors 
that connect corticothalamic projections to thalamic relay cells 
makes sense if these are used for setting up dream stimuli in 
the relay matrix.   

Corticothalamic connections to first-order nuclei are 
usually thought to be modulators and not drivers. The evidence 
for the modulatory nature of these connections is based on 
experiments where the originating cortical area is disabled and 
yet no loss of receptive field is recorded [1]. This is, however, 
also in line with the present hypothesis where sensory drivers 
dominate in the waking state and cortical drivers only take over 
in deep sleep.  

There is an order of magnitude more axons from the cortex 
to thalamus than vice versa [20]. This can be explained if many 
support vector machines operate on the same input channels. 
The same visual map could e.g. be scanned for familiar faces, 
dangerous flying objects or edible berries depending on the 
present focus of attention. The high corticothalamic to 
thalamocortical axon ratio may reflect the wide range of 
possible contexts for pattern recognition.  

The following predictions, suggested by the present 
hypothesis, are open for experimental validation or 
falsification.  

1) “Modulatory connections” from the cortex to the 
thalamus are in fact driving and capable of inducing 

meaningful burst patterns in the thalamic relay matrix during 
deep sleep or if the burst mode is induced while afferent drivers 
are disabled.   

2) The cortex holds many associative memory modules that 
incessantly cycles trough the impressed patterns with an 
oscillation frequency of ~100 Hz. Corticothalamic projections 
from these nodes innervate the TRN.  

3) Some of the signals from the TRN to the thalamus are 
forwarded to the cortex by diffusively projecting relay cells.  

4) Damage to the TRN without impact to thalamocortical 
relay can yet destroy low-level pattern recognition skills. 
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