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The Distribution of Time to Recovery
of Enterprise I'T Services

Ulrik Franke, Hannes Holm, and Johan Ko6nig

Abstract—The context of this article is the availability of enter-
prise IT services, a key concern for many enterprises. While there
is a plethora of literature concerned with service availability, there
is no previous systematic empirical study on IT service time to re-
covery following outages. The existing literature typically assumes
a distribution, or builds on analogies to related areas such as soft-
ware engineering. Therefore, our objective is to find the statistical
distribution of IT service time to recovery. Method-wise, this in-
vestigation is based on logs of more than 1800 incidents in a large
Nordic bank, corresponding to more than 11 000 hours of recorded
downtime. Five possible distributions of time to recovery from the
literature were investigated using the Akaike Information Crite-
rion to find the distribution offering the best fit. The results show
that the log-normal distribution outperformed the others for all
tested service channels (collections of IT services). It is concluded
that the log-normal distribution offers the best fit of IT service time
to recovery. Using this distribution in simulation and decision-sup-
port tools offers the prospect of better predictions of downtime and
downtime costs to the practitioner community.

Index Terms—Enterprise IT services, incident logs, log-normal
distribution.

ABBREVIATIONS & ACRONYMS

AIC Akaike Information Criterion

CDF Conditional Distribution Function

CI Confidence Interval

COCOMO  Constructive Cost Model

EXP Exponential Distribution

GAM Gamma Distribution

IT Information Technology

LN Log-normal Distribution

LTLN Laplace Transform of the Log-normal
Distribution

PDF Probability Density Function

SLA Service Level Agreement

TOGAF The Open Group Architecture Framework

WBL Weibull Distribution
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NOTATION
AIC; The AIC value of a model ¢ being evaluated
AICin The AIC value of the model with the lowest AIC
Ay AIC; — AIC i
K The number of parameters in a model
n The size of a sample

I. INTRODUCTION

ITH increasing market competition and increasing

reliance upon information systems, Information Tech-
nologies (IT) is becoming ever more important to business
operations [14]. Unfortunately, this importance also entails
an increased sensitivity to failing IT services and IT systems
downtime. While the Encyclopedia of Information Assurance
contains numerous entries on Business Continuity Planning,
it also acknowledges that “Business resumption and disaster
recovery planning is probably the part of information security
that is easiest to overlook and postpone™ [25]. Nevertheless,
continuity planning is becoming increasingly important fol-
lowing the growth of the Internet and e-business [26], and is
stressed in practitioner frameworks such as the Information
Technology Infrastructure Library (ITIL) framework [54].
Renowned consultancy Gartner regularly produces reports not
only on how to assess IT service availability levels [51], but
also on how to calculate the costs of downtime [35], and how
to assess the cost of maintaining continuous service availability
[36]. Furthermore, these issues receive a lot of management
attention. For example, in a 2010 survey of Chief Executive
Officers’ and business executives’ top 10 IT uncertainties, the
reliability of IT comes second [24]. It is also instructive to
consider media reporting on IT outage incidents. When Bank
of America suffered an online banking outage in January 2011,
this event brought about a landslide of bad publicity, including
reminders of previous unavailability incidents [10]. The outage
itself lasted for approximately ten hours, but the consequences
lasted much longer.

In today’s business environment, where IT is increasingly
procured as a service regulated by Service Level Agreements
(SLAs), detailed knowledge of statistical distributions for
outage durations is becoming more valuable. Recent tech-
nology trends such as cloud computing further underscore the
importance of availability risk management [42], but the need
to properly balance the cost for achieving high availability
against the cost of unplanned outages remains a key challenge
also for companies that maintain their own data centers [6].
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In the insurance business, actuarial data are a crucial asset.
Insurance companies can go out of business if they do not use
correct probability distributions for the hazards they insure.
As the IT service provision market matures, service providers
who have agreed to pay fines for lengthy service outages will
be prudent to obtain similar statistical knowledge. How ser-
vice-providers should best allocate their resources to maximize
revenue while not violating availability SLAs is an active
topic for academic research [7], [23]. Nevertheless, companies
still have poorly characterized availability objectives, and IT
departments struggle to express availability so that it makes
sense to the business side [45]. Recent research suggests that IT
decision-makers assigning availability SLAs might be less than
rational in their risk management [18], and that the information
currently used in SLAs can lead to suboptimal decisions [31].
However, as the field of availability management becomes
more mature, perhaps turning into a systematically developed
“service level engineering” [30] discipline, we can expect
explicit, standardized decision-making criteria for availability
management to evolve. This evolution is similar to the way
measures like standard deviation and value at risk (VaR) have
become standard in financial reporting. This paper offers an
applied availability risk management example in Section VII.
The overall aim of this paper is to further this maturation,
including the development of decision-making criteria that
facilitate rational decision-making.

A. Scope of the Paper

This paper contributes to quantitative IT service availability
management by investigating the statistical distribution of re-
covery times in enterprise IT services. The investigation is based
on logs of more than 1 800 incidents in a large Nordic bank. An-
other, more exploratory contribution is an investigation into the
root causes of these downtime incidents. The incidents recorded
all concern IT service continuity relevant for business processes,
which is precisely what enterprises such as Bank of America
care about.

The scope of the article is the time to recovery of enterprise IT
services. This scope is different from software repair as studied
in software reliability. Whereas software repair is about finding
and removing bugs in code, enterprise IT service recovery po-
tentially concerns everything that causes service disruptions,
including hardware, software, configuration, and human error.
Software repair can play an important role here, but the ser-
vice is then typically recovered through a roll-back to the last
working version for the duration of the actual debugging ef-
fort. Once the bug has been found and removed, the software
is deployed again. Hence, while software repair can take days
or weeks, service recovery in critical systems often takes min-
utes. This distinction is further elaborated in Section IV-A.

B. Outline

The remainder of the paper is structured as follows. Section II
explains the importance of knowing the proper distribution
of time to recovery. Section III contrasts the present contri-
bution with some related work, followed by some method
considerations in Section IV. Section V introduces the data
set. Section VI is the locus of the main contribution. Here, the

results of the studies are described, followed by an applied
example in Section VII, illustrating the potential financial
impact of modeling time to recovery using the wrong distri-
bution. A discussion on validity and reliability then ensues
in Section VIII, followed by a discussion of the strengths
and weaknesses of the contribution in Section IX, and some
concluding remarks in Section X.

II. THE IMPORTANCE OF THE TIME
TO RECOVERY DISTRIBUTION

The importance of knowing the time to recovery distribu-
tion has been stressed repeatedly in the literature. For example,
Snow et al. have simulated the chances of SLA violations, and
emphasize that the tail of the repair distribution is crucial [53]. In
later work, Snow and Weckman extend the argument, and warn
against reasoning about availability based on averages rather
than full distributions [52]. Building on this strand in the lit-
erature, Section VII goes on to practically demonstrate how the
distribution of time to recovery has a financial impact for a ser-
vice provider.

Marques et al., who investigate how to best design SLAs, ex-
plain the importance of knowing both parameters (e.g., means)
and distributions of time to recovery. While means suffice for
some agreements, agreements such as having 95 percent of re-
quests served within a certain time, require knowledge about
the full distribution [37]. Similar conclusions are reached by
Gonzalez and Helvik [22].

To summarize, with erroneous assumptions about distribu-
tions, models will give the wrong results, and predictions will
not be valid.

III. RELATED WORK

The scope of this paper is the time to recovery of enterprise IT
services. As explained above, this differs importantly from the
field of software reliability. This distinction is further elaborated
in Section IV-A. Nevertheless, much of our related work comes
from software reliability. The following exposition shows how
our investigation has been inspired by methods and results from
this area, even though no previous work precisely shares our
scope.

Software reliability has mostly been concerned with time
to failure (producing famous failure rate models such as the
Jelinski-Moranda model [27], the Schick-Wolverton model
[49], and the Goel-Okumoto imperfect debugging model [20]).
However, papers that have empirically explored the repair rates
of various types of failures are more closely related to our work.

For example, Gokhale and Mullen [21] analyzed software
defect repair times for nine different Cisco Systems product
families and a total of more than 10 000 samples. Each sample
consists of a time from identifying a bug in a software to cre-
ating a patch for that bug. The authors compared the data fit
for the exponential distribution (EXP), the log-normal (LN)
distribution, and the Laplace Transform of the log-normal dis-
tribution (LTLN). The fit of the distributions to the data was
evaluated using the Akaike Information Criterion (AIC). The
best fit was found for the LTLN and LN, with a slight favor to-
wards the LTLN. However, while software defect repair rates
are valuable for e.g., vulnerability discovery models such as
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Alhazmi’s [2], their application is less straightforward for en-
terprise IT services, which is our scope. That is, the translation
from time to repair for software defects to time to recovery for
higher-level business services is not trivial, as a software de-
fect does not need to imply service availability issues, and vice
versa.

Khoshgoftaar and Woodcock [29] applied AIC to select the
best among different software reliability models for predicting
the number of remaining errors, and the time to their discovery
during software development and testing. This approach differs
from our scope in that we consider IT services in operation, not
software being developed, and that we study time to recovery,
not number of remaining errors.

Schroeder and Gibson [50] studied the mean time to repair
for availability issues of 20 different systems, mostly large
clusters of SMP (Symmetric-Multi-Processing) and NUMA
(Non-Uniform-Memory-Access) nodes at Los Alamos National
Laboratory. 23 000 failures from a period of nine years were
analyzed. The authors analyzed distribution fit for Weibull
(WBL), gamma (GAM), EXP, and LN distributions. LN was
found to provide the best fit out of the four distributions con-
sidered. While the topic certainly is relevant to the enterprise
level, there are several issues that could create problems if one
were to apply the results to enterprise IT services directly. (i)
The formal statistical analyses are not fully characterized in the
article; a quantitative comparison of the candidate distributions
is missing. This quantitative comparison is the role played by
AIC in our study. (ii) The data were collected over a period of
nine years. It is therefore likely that several major software and
hardware changes have been carried out during the time. (iii)
Only 20 systems were studied, possibly for validity reasons, as
this was the population over which the researchers had suffi-
cient control to conduct a study. Nevertheless, most enterprises
have hundreds, if not thousands, of systems, as reflected in our
data set.

Plank and Elwasif [41] used the results of three workstation
monitoring projects to study the applicability of theoretical
equations concerning the performance of checkpointing. As the
mathematical model assumes failure and repair to be Poisson
processes, with correspondingly exponentially distributed
times, part of the paper investigates this assumption. The
authors show that the EXP distribution provides very low
degrees of fit. No other distributions were analyzed. Similarly
to Plank and Elwasif, Long et al. [34] carried out a survey
regarding Internet host reliability, and evaluated the suitability
of the Poisson process for time to repair. The authors concluded
that the EXP distribution was a poor fit for repair times. Such
studies, showing the poor performance of the EXP distribution,
are an important motivating factor for our work, which tests
multiple distributions for the best fit.

Labovitz et al. [33] studied network failures in two scenarios:
(1) 3 years of network failures in five of the U.S. Internet routing
exchange points, and (ii) 12 months of network failures in a
large regional service backbone. While the paper provides cu-
mulative distributions for the time to recovery of these sce-
narios, it does not explore the fit of any theoretical distributions.
Also, the results are probably limited to the domain of the study,
network failures on the Internet.
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To conclude, while there are many authors who have explored
repair rates for different kinds of failures, none of these studies
is fully applicable in the enterprise IT service context.

IV. LOoG DATA ANALYSIS METHOD

A. Data on Enterprise IT Service Recovery Times

Our scope of investigation is enterprise IT services. An IT
service, as defined in the ITIL framework, “is based on the use of
Information Technology and supports the Customer’s Business
Processes. An IT Service is made up from a combination of
people, Processes, and technology and should be defined in a
Service Level Agreement” [55]. An enterprise, as defined in The
Open Group Architecture Framework (TOGAF) standard, is the
“highest level (typically) of description of an organization and
typically covers all missions and functions. An enterprise will
often span multiple organizations” [56]. Enterprise IT services,
therefore, are Information Technology used to support business
processes on the highest level of an organization.

To better understand the relation between a piece of software
and an enterprise IT service, it is useful to consider the descrip-
tion of Johnson et al. [28]):

“Although system users might sometimes feel that the
systems fail to deliver, the information systems in a com-
pany are there to provide value to the business. Even when
successful, however, the information systems themselves
need support to continue delivering services to their users.
As briefly mentioned in the previous chapter there is thus a
causal flow from the IT organization through the informa-
tion systems to the business |[. . .]”

Thus, an IT service is not only about technology, but about tech-
nology in an organizational setting. Software might be a neces-
sary precondition for a successful enterprise IT service, but it is
not a sufficient one.

For the purpose of this article, we define time to recovery as
the time from loss of service until it is restored to operation. This
definition is similar to the definition given by Milanovic [38],
and includes the times to report, locate, investigate, and repair a
system, as well as the time it takes for a repair team to physically
show up, and any time required to restart the system afterward.
The end-to-end term is sometimes used to signal the explicit
inclusion of each of these times. Following the importance of the
business process in the ITIL definition of an IT service, loss of
service occurs only when someone in the business takes notice.
Availability of an IT system by itself is of no consequence until
it reaches the business; and conversely, unavailability that does
not impact a business process is not (yet) a problem.

This scope is very different from e.g., Gokhale and Mullen
[21] who investigate repair times in a much more restricted soft-
ware engineering sense, considering only the process of finding
and repairing an actual bug. Such a debugging effort by a pro-
grammer can take a day, a week, or a month. Service recovery,
on the other hand, is typically a matter of a one-minute roll-back
to the last working version (and when it is not, media coverage
such as that given by Charette [9] often sets in). On top of that,
a software bug or a hardware fault do not necessarily entail ser-
vice downtime.
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To properly investigate the time to recovery of enterprise IT
services, a few criteria have to be met: (i) the data must not
reflect just a single technical solution or architecture, because
enterprise IT services are diverse in this respect; (ii) the data
must not measure a mere part of end-to-end recovery time, and
(ii1) the data must not reflect technical solutions rather than ser-
vices (e.g., hard drive crashes rather than storage outages). Our
dataset, made available from a large Nordic bank, satisfies these
criteria, and will be further described in Section V.

B. Statistical Analysis

Based on the previous work presented in Section III, we con-
sider five distributions in terms of degree of fit to recovery times
of enterprise IT services: EXP, LN, LTLN, WBL, and GAM.
LN, LTLN, WBL, and GAM have displayed the highest de-
gree of fit in previous studies [21], [50], [57], [41]. It should be
noted that even though these studies do not concern enterprise
IT services, they are the most natural starting point available.
While EXP to our knowledge has not shown good fit in any
published study, it is a simple, closed-form distribution for time
to recovery of enterprise applications known from the literature
[17], [40], and thus imperative to research.

EXP The exponential distribution is widely used to
model repair time distributions [21]. However,
its popularity is mostly due to its mathematical

simplicity rather than its precision [43], [44], [17].

LN A random variable X is log-normally distributed
if its natural logarithm is normally distributed,
i.e., In X € N(u,0). The LN distribution is often

used as a more realistic model of repair times [43].

LTLN  The Laplace transform of the LN distribution is
based on work by Mullen, including Gokhale and
Mullen [21]. It assumes that the time to repair

is determined by a randomly drawn repair rate,
A, which itself follows an LN distribution. It is
thus a doubly stochastic model. With the repair
time being exponentially distributed conditioned
on a given repair rate A, the probability that the
defect of rate A is not repaired until time ¢ or
later is e ~**. It follows that the probability that
the defect is repaired before time # is 1 — e ™%,
Knowing that A is LN distributed, the cumulative
distribution function (CDF) of the time to repair
can be obtained by the following integral.

M(t)=1-— /OO e MdL())

A=0
o 1 (In A—y)2
=1- e M——— ¢ 27 dA 1
‘/)\:() Aoy 2T &

This integral is equivalent to the Laplace
transform of the LN CDF, and has no simple form.
A numerical method for solving it, used in this
paper, is given in [39].

TABLE I
EMPIRICAL SUPPORT FOR MODELS USING AIC DIFFERENCES;
RULES OF THUMB REPRINTED FROM [5]

Ay Level of empirical support of model ¢
0—-2 Substantial
4-7 Considerably less

> 10 Essentially none

WBL The Weibull distribution is known for its ability
to describe a number of phenomena, and is
sometimes used to model the repair times of
general systems [13], [8], [58]. By adjusting
two parameters a and ¢ (both being positive
real numbers), the WBL distribution can be
parameterized into various other probability

distributions.

GAM The gamma distribution is a continuous function
with two adjustable parameters » and ¢ (both
being positive real numbers), that is sometimes

used to model time to repair [50], [57].

1) The Akaike Information Criterion: To compare the rela-
tive statistical goodness of fit of the distributions to the data, the
AIC, a standard technique to rank alternative models, was used.
The AIC was introduced to extend the method of maximum like-
lihood estimation to the situation of multimodel choice [1]. As
pointed out by Burnham and Anderson [5], Akaike’s criterion
links Boltzmann’s entropy, Kullback-Leibler information, and
maximum likelihood, thus tying together information theory
with statistics. Essentially, the AIC is an estimator of the ex-
pected relative Kullback-Leibler information [5].

Conceptually, the AIC can be seen as adding a penalty to
models with many parameters, thus rewarding not only fit but
also simplicity [21]. The AIC is a measure of the badness of
fit of a model (larger AIC means worse model) defined with
parameters estimated by the maximum likelihood method [1].
It is defined as

AIC = =2 log likelihood 4 2 - number of parameters.

2

The lower its AIC, the better a distribution fits the data. To
evaluate distributions against each other, the difference A; =
AIC; — AIC .y, is formed, where AIC; is the value of the
model being evaluated, and A7C;, is the value of the model
with the lowest AIC. By definition, ATC\;,, thus has A; = 0.
Some rough rules of thumb given by Burnham and Anderson
[5] are given in Table I.

There are many other rules of thumb, all expressing essen-
tially the same verdict. For example, Sakamoto et al. [47] main-
tain that, if the difference of AIC between models is larger than
1 ~ 2, then the difference is considered to be significant. Ac-
cording to Gokhale and Mullen [21], a difference of four is con-
sidered very significant.

If there are too many parameters (K') in relation to the size
of the sample (n), AIC may perform poorly [5]. According to
Burnham and Anderson [5], the ratio n/ K should be above 40
for AIC to perform well. In our case, we have removed a few
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small sub-datasets to consistently meet the n/K > 40-rule,
as described in the next section. The K used was 2, because
this value is the largest number of parameters used in any of
the statistical distributions considered, thus giving a sample size
threshold of 80.

V. DATA

The analysis is based upon incident data from a major Nordic
bank. The full dataset consists of 2 335 incidents recorded from
January 2009 to May 2011. In all, these incidents correspond to
709 558 minutes, or almost 12 000 hours of recorded downtime.

The incidents are categorized by the bank in a number of
ways:

* by service affected, i.e., which one out of several hundreds

of distinct IT services that was down;

* by department affected, i.e., which IT department was re-

sponsible for the IT service that was down;

* by cause, i.e., an unstructured textual description of the

cause of the downtime;

* by impact, i.e., a classification into the categories Down,

Partly down, No impact, or Planned, along with some blank
(i.e., not classified) entries; and

* by channel, i.e., a business side categorization of services.
The analysis in Section VI builds upon the categorization of
services into channels such as Automated Teller Machines
(ATMs), Internet banking, credit card payments, etc. A channel
contains a number of inter-related IT services working in
concert to offer these more coarse-grained business services.
There are 14 different channels available when categorizing an
incident. These channels are pre-defined by the business side,
not by the IT department. Even though some services partici-
pate in several channels, incidents are reported channel-wise.
Whenever a service incident is reported for channel A, only
channel A is affected. Other channels can still use the service,
and if they cannot then it is reported as a separate incident. All
categorizations are done by the team (typically 2 or 3 people)
working to resolve the incident. If they are uncertain about how
to categorize something, they go back and check how similar
incidents have been categorized historically. In this sense,
the categorization is reliable over time. The only category
where the members of the response team are free to describe
the problem on their own without pre-defined templates or
categories is the description of the cause of the downtime.

The categorization by impact is important because the scope
of the paper is to study the time to recovery of enterprise ser-
vices. Therefore, incidents recorded as in the Planned or No
Impact categories were removed from the data set, as were inci-
dents with downtime recorded as having durations of 0 minutes
(these 0 minute incidents largely coincided with the Planned and
No Impact incidents).

However, incidents where the service was recorded as Partly
Down were included. The reasons are twofold. (i) On a strict
reading, partly down means that something is wrong, and that
there is indeed an outage of some kind. (ii) More importantly,
however, the incidents are recorded with a start time, a stop time,
a problem description, and a resolution following recovery ef-
forts, thus fulfilling reasonable requirements to constitute times
to recovery in the sense relevant to be measured, and therefore
are included in the analysis.
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Fig. 1. CDFs for the recovery times of the 5 channels (#-axis in minutes).

TABLE 11
PERCENTAGE OF DOWN-TIME IN 2010 FOR TWO
CHANNELS, DISTRIBUTED OVER 14 ROOT CAUSES

Channel 2

Minutes

Channel 4

Percentage  Minutes  Percentage

Physical environment & Infrastructure redundancy 5 0.01% 912 1.00%
Requirements and procurement 3295 5.43% 0 0.00%
Operations 10422 17.16% 32021 35.07%
Change control 20277 33.39% 19983 21.89%
Technical solution of backup 0 0.00% 1966 2.15%
Process solution of backup 205 0.34% 0 0.00%
Data & Storage architecture redundancy 190 0.31% 1933 2.12%
Internal application failures 15929 26.23% 12159 13.32%
External services that fail 10140 16.70% 8285 9.07%
Network redundancy 18 0.03% 0 0.00%
Network failures 5875 9.67% 405 0.44%
Physical location 0 0.00% 0 0.00%
Resilient client/server solutions 2952 4.86% 9294 10.18%
Monitoring of the relevant components 661 1.09% 9455 10.36%
Other 682 1.12% 15019 16.45%

Furthermore, some of the channels contained too few inci-
dents to pass the n/K > 40-rule of [5]. Out of the 14 chan-
nels, 9 were removed from further consideration as each of
them contained fewer than 80 incidents over the 2.5 year span.
The remaining 5 channels together contains 1876 incidents,
corresponding to 672272 minutes, or just over 11 000 hours
of recorded downtime. The channels analyzed are themselves
composed of 322 individually named services, provided by par-
ticular IT systems. Fig. 1 depicts the cumulative distribution
functions for the recovery times of the 5 channels investigated.

Unfortunately, as described above, the causes are not catego-
rized into distinct, well-defined categories in the bank reporting
system. Therefore, to gain an understanding of the causes, a new
categorization of incidents had to be made. 14 different cate-
gories from Franke et al. [19] (where full definitions are also
given) were used for taxonomy, and a categorization of a subset
of the data was made with the assistance of the bank. The subset
thus selected for manual categorization consisted of all incidents
that occurred from January to December 2010 in channels 2 and
4. This data set corresponds to 364 incidents, totaling 152 031
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TABLE III
MAXIMUM LIKELIHOOD PARAMETER ESTIMATES FOR DIFFERENT CHANNELS AND DISTRIBUTIONS

Channel A (EXP) u (LN) o (LN) | u (LTLN) o (LTLN) | a (WBL) ¢ (WBL) | p (GAM) a (GAM)
1 0.003152 4.51918 1.568718 -5.04408 1.130726 202.0314 0.633572 0.510346 621.7372
2 | 0.002531 | 4.799661 1.638889 -5.35148 1.134507 27173 0.650241 0.533271 740.8047
3 0.003416 4.689199 1.360495 -5.17643 0.935257 217.9972 0.707761 0.620953 471.4182
4 0.002305 4.929999 1.492937 -5.44585 1.045473 293.8988 0.659519 0.548046 791.7077
5 0.002702 4.937629 1.370357 -5.44216 0.863051 275.8705 0.714759 0.628647 588.7442
TABLE IV TABLE VI
DISTRIBUTION COMPARISON BY AIC VALUE FOR CHANNEL RECOVERY 95% CONFIDENCE INTERVALS FOR THE PARAMETER
TIMES. THE LN DISTRIBUTION SHOWS THE BEST FIT IN ALL CASES ESTIMATES j¢ AND ¢ OF THE LN DISTRIBUTION
Channel EXP LN LTLN WBL GAM n Channel  95% CI for p (LN) 95% CI for o (LN) n
1 11588.38 10952.68 10984.05 11103.19 1124493 857 1 [4.414004, 4.624356] [1.497804, 1.646733] 857
2 5320.007 5118.015 5120.244 5150.254 5190.779 381
2 [4.634571, 4.964751]  [1.530197, 1.76433] 381
3 2019.132  1940.628 1953.605 1975.136  1993.439 151
3 [4.470435, 4.907962] [1.222417, 1.534017] 151
4 5631.945 5375.747 5394.32  5451.042 5510.229 398
5 1232.658 1190.552 1194.942 1207.479 1219.261 89 4 [4.782878, 5.077119] [1.395925, 1.604549] 398
5 [4.64896, 5.226298] [1.194382, 1.607629] 89
TABLE V

EMPIRICAL SUPPORT FOR DIFFERENT DISTRIBUTIONS. A; < 2
GIVES SUBSTANTIAL SUPPORT, 4 < A; < 7 CONSIDERABLY LESS,
AND A; > 10 ESSENTIALLY NONE, ACCORDING TO [5]

Channel  Agpxp Arny Arriy AwsrL  Acam
1 635.7068 0 3137301 150.5072  292.2508
2 201.9924 0 2229666 32.23886 72.76411
3 78.50434 0 1297756 34.50862 52.81074
4 256.1982 0 18.57285 75.29468 134.4823
5 42.10582 0 4.39031 16.92771 28.7094

minutes, or approximately 2 500 hours of recorded downtime,
i.e., roughly a fifth of the entire material. The distribution of
root causes per channel is given in Table II. It should be noted
that the percentages do not sum to unity, because the categories
are not fully mutually exclusive. (Downtime can have several
causes. First, a system may go down because of an internal ap-
plication failure, and then fail to come back up due to inadequate
monitoring. Such downtime can reasonably be attributed to both
factors.)

VI. RESULTS

The maximum likelihood estimates of the parameters of the
EXP, LN, LTLN, WBL, and GAM distributions for each of the
5 channels are given in Table III.

The distributions are compared in terms of AIC in Tables IV
and V. The LN distribution shows the best fit, i.e., the lowest
AIC, in all cases.

Using the rules of thumb for empirical support given by
Burnham and Anderson [5], we can conclude that no alter-
native to the LN distribution gets any substantial support.
The EXP, WBL, and GAM distributions all get essentially no
support in any of the five channels. The LTLN distribution also
gets essentially no support in three of the five channels, whereas
in one channel it gets considerably less support and in another
it gets somewhere between substantial and considerably less. It

is clear that all the channels in the dataset considered are best
described by the LN distribution.

Even though the focus of this article is to find a statistical
distribution suitable for modeling enterprise IT service recovery
times, it is interesting also to say something about the parameter
values of the estimated distribution.

Table VI gives the 95% confidence intervals for the parameter
estimates y and o of the LN distribution from Table III. As is
to be expected, the intervals are quite narrow for the larger data
sets.

VII. AN APPLIED EXAMPLE

This section gives a small example that illustrates how the
distribution of time to recovery has a financial impact for a ser-
vice provider.

Consider a service provider about to sign an SLA. One of the
provisions in the SLA stipulates that a fine must be paid when-
ever the time to recovery of a service exceeds / hours. How
should the service provider determine a reasonably reliable /2?

First, of course, the service provider needs to set its risk level
(accounting for the size of the fine, among other things). As-
sume that the acceptable risk level is deemed to be that a frac-
tion 7 (for risk) of outages are handled within the stipulated
time frame (e.g., 95%). If the distribution of time to recovery
is known, finding % then corresponds to solving the following
integral equation

h
7= Ix(x)dz. 3)
Jo
Asbefore, fx is the probability density function, which depends
upon distribution specific parameters. In some simple cases,
such as that of EXP, & can be found explicitly:

CIn(1—r)

5 @

-h
= / Ae Mdr=1—e M= h=
0

Other distributions, such as LN, require numerical methods.
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TABLE VII
DIFFERENT A VALUES (IN HOURS) FOR CHANNEL 1, SHOWING THE IMPACT
OF MODELING USING DIFFERENT DISTRIBUTIONS AT DIFFERENT RISK
LEVELS r. RECALL THAT THE PARAMETERS USED ARE ALL MAXIMUM
LIKELIHOOD ESTIMATES MADE FROM THE SAME DATA SET

Channel 1 [hours]

r= 90% 95% 99%
EXP 122 158 244
LN 114 202 588
LTLN 115 193 50.0
WBL 126 19.0 375
GAM 142 202 347

Solving (3) using the parameters of Table III for Channel 1
(the channel with the most samples) yields h, for different r
levels, as illustrated in Table VII.

Table VII exhibits some interesting features. First of all, the
number of hours % required to reach the desired risk level r
increases sharply as r grows for all distributions, as expected.
But, second, this increase depends a lot on the distribution of
time to recovery. For example, LT and LTLN are virtually in-
distinguishable at the 90% level, but differ markedly at the 99%
level. Third, the rank order of the distributions also changes as
r grows. While GAM requires the most hours to meet the 90%
risk level, it is surpassed by all but EXP at the 99% level. EXP it-
self has a much lighter tail than the others, and requires less than
half the number of hours to reach the 99% risk level than does
LN. It is clear that a service provider who signs an SLA using
the EXP assumption, but whose time to recovery is actually LN
distributed, will need to pay far more fines than expected. These
findings are consistent with the importance of recovery time dis-
tribution tails stressed by the work cited in Section II.

The importance of correct distribution assumptions is fur-
ther emphasized by the decreasing margins of service providers.
Renowned consultancy Gartner recommends service providers
to continuously analyze their competitive position, and protect
margins [46]. In some sectors, such as communications, the
pressure on profit margins even calls for rethinking whole busi-
ness paradigms to remain competitive [ 15]. In this environment,
every dollar of profit margin is important, and service providers
need solid quantitative decision support, including reliable dis-
tributions of time to recovery, to build robust business cases.

VIII. VALIDITY AND RELIABILITY OF FINDINGS

Overall, validity refers to “the best available approximation
to the truth of falsity of propositions” [11]. While there are many
facets of validity that can be discussed, the arguably most impor-
tant to address concern internal validity, external validity, con-
struct validity, and reliability [3], [4]. The validity of the findings
from the present study are discussed along three of these dimen-
sions in the three next subsections. Internal validity, the truth
value that can be assigned to the conclusion that a cause-effect
relationship between a statistically independent variable and a
statistically dependent variable has been established within the
context of a particular research setting [4], is left out on purpose
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as the study does not evaluate any causal relationships. It is not
within the scope of the paper to investigate how different vari-
ables affect recovery times, as we study the goodness-of-fit for
different statistical distribution models.

A. External Validity

External validity refers to the generalizability of causal find-
ings with respect to the desired population and settings [4].

An argument for the validity of the study is the fact that it
is based upon the very metrics that are of business relevance
to the enterprise. The logs examined concern precisely the ser-
vice downtime noticed by customers and staff in their work, i.e.,
concrete cost-driving downtime and service recovery times. If
these downtimes were not valid, such as if they did not measure
something that is interesting and relevant to measure, the bank
would surely discontinue their measurement.

A more complex issue has to do with selection bias in the
population of enterprises, and the final verdict on the validity of
this study might have to wait until the analysis has been repeated
on different sets of data in future studies.

B. Construct Validity

Construct validity refers to the extent to which an identi-
fied causal relationship can be generalized from the particular
methods and operations of a specific study to the theoretical
constructs and processes they were meant to represent (rather
than the desired population and settings, as for external va-
lidity) [4].

In terms of operationalized theories, this study covers two
areas: statistical goodness-of-fit, and time to recovery. While
the prior did not require any adaption (merely use of standard
statistical techniques), the operationalization of time to recovery
could be discussed. In the study, downtimes were recorded as ei-
ther Down, Partly Down, Planned, or No Impact. This study op-
erationalizes time to recovery as incidents causing either com-
plete (Down) or partial (Partly Down) unavailability, and ex-
clude incidents that were planned (Planned) or yielded no im-
pact (No Impact) on the availability of a service. These choices
are reasonable in the sense that they reflect recoveries from sig-
nificant incidents (rather than scheduled maintenance or inci-
dents without impact). However, the actual business impact of
incidents corresponding to these categories (especially Partly
Down) is not completely certain. Findings from the study should
be considered in the light of these design choices.

C. Reliability

Reliability is the extent to which an instrument produces con-
sistent or error-free results [3].

One potential reliability concern is the reliability of the map-
ping of incidents to the right channels. However, there are two
reasons to believe that this categorization is reliable. First, the
classification is made by 2 or 3 experts, not by the users them-
selves. Second, in case of doubt, the experts use previous clas-
sifications as guidance. Thus, the classification should be re-
garded as robust over time.

Another potential reliability concern is the reliability of the
recovery times. The times are set manually, and thus subject
to human error. However, as noted above, the staff managing
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the incident logs is small and professional, and they also use
a validation system to avoid simple data entry errors. Further-
more, as the statistics are used for monthly evaluation and re-
porting, large aberrations from data entry errors are likely to be
detected.

IX. ANALYSIS AND DISCUSSION

As pointed out in Section I'V-A, the enterprise IT service re-
covery scope of this paper is different from the software repair
scope in much of the literature. This difference is very clearly
illustrated by the different z-axis scales in Fig. 1 (minutes), and
the corresponding Fig. 6 in Gokhale and Mullen [21] (measured
in days).

That said, from an enterprise IT service availability perspec-
tive, software repair is still an important activity to understand,
as it is often related to the recovery of IT services. For instance,
a bug in the software supporting an online banking system can
cause unavailability, more or less intermittent, of the supported
enterprise IT services until the error has been repaired by the
developers. Consequently, the results by Gokhale and Mullen
[21] should be viewed as complementary to those described in
this paper, and enterprise decision-makers should consider both
to enable well-informed availability estimates and decisions.

While root cause analysis is not the primary subject of this
paper, the root cause mapping shown in Table II does offer some
preliminary insights. It is worth noting that the two top cate-
gories (Operations, and Change control) are also among the top
causes identified previously in an expert survey [17]. However,
other top causes from the expert survey such as Requirements
and Procurement are not reflected as prominently in Table II. It
may well be the case that more abstract causes such as Require-
ments and Procurement are rarely reflected in logs. Measuring
such causes probably requires other research methods that re-
flect the earlier phases of system life-cycles, not only the oper-
ations phase.

How can availability be improved and outage risks properly
managed? Knowing the distribution of time to recovery is not in
itself sufficient. This knowledge needs to be incorporated into
decision-making, as illustrated for example in Section VII.

The importance, and relative ease, of availability modeling
for enterprise information systems is demonstrated by Nérman
et al. [40], where it is shown that accurate availability estimates
(precision within eight hours downtime per annum) of relatively
complex enterprise services can be achieved with no more than
20 man-hours of work. Investing in such modeling seems very
worthwhile. Using the LN distribution, the precision of mod-
eling frameworks such as Narman’s [40] (which builds on EXP)
can be further improved.

However, with the advent of cloud computing, not all compa-
nies can model their enterprise architecture in detail. Rather, the
SLA is their only interface to their IT services, which is man-
agement by contract, as it is called by Sallé [48]. In these con-
texts, there is a need for careful availability modeling before-
hand, to avoid costly mistakes. Such decision-making needs to
account for the different requirements of different businesses,
e.g., whether (i) more but shorter or (ii) fewer but longer outages
ought to be preferred [16]. As a general rule for availability risk
management, the business side and the IT department need to

communicate, so that the business consequences of different IT
decisions are clearly understood and quantified. Enterprise ar-
chitecture models, useful for both communication and analysis
[32], can play an important role here, as can IT service manage-
ment frameworks such as ITIL [54].

X. CONCLUSIONS AND FUTURE WORK

Previous research on availability in the enterprise setting has
often assumed EXP or LN distributions of service recovery
times. However, only rarely have such assumptions been justi-
fied with empirical data. Instead, analogies have been made to
quite different systems such as grid computers or to software
engineering, where bug fixing has been put on a par with
service recovery.

In this paper, incidents causing downtime in five enterprise
IT service channels in a major Nordic bank were investigated.
In all, more than 1800 incidents, corresponding to more than
11 000 hours of recorded downtime, were evaluated to see
whether the recovery times conform to any of the distributions
from the literature. Based on this investigation, recovery times
of enterprise IT services seem to be best described by the LN
distribution.

This work opens several avenues for further research. One
is to repeat the analysis on different sets of data. Does the LN
distribution describe service recovery times in other enterprises
as well? Another direction has to do with the actual parame-
ters of the LN distribution. What are the factors determining
1 and o? Do the parameters differ (significantly) between dif-
ferent lines of business, different technical architectures, or even
different SLAs (as one should hope, but not take for granted)?
The root cause investigation, reflected in Table II, offers another
interesting perspective. Are i+ and o different for different root
causes? Sometimes, though not always, the root cause is a bug
that needs to be fixed. Here one might investigate whether there
is a correlation between the time to recovery (this study) and the
time to bug repair (e.g., [21]).

It is also instructing to look at incident data as a strategic
asset. Properly used, incident data could not only help devel-
opment teams to take corrective actions to avoid future outages,
but also to manage uncertainty at the beginning of projects, and
to develop enterprise risk management. Here, more research is
needed both conceptually (what is possible?) and empirically
(what is the current state of the practice in companies?).

Incident management can serve as a tool for learning, if done
properly. For example, the ITIL framework prescribes the fol-
lowing incident management steps [54] (p. 60): Problem detec-
tion, problem logging, categorization, prioritization, investiga-
tion and diagnosis, create known error record, resolution, and
closure. It would be interesting to investigate whether maturity
in this process is reflected in a quicker time to recovery, or per-
haps in a smaller standard deviation. Learning from incidents
has been explored using simulation models [12]; empirical data
would add another dimension.

For the business community, the results offer the prospect
of better predictions of downtime, and downtime cost. By im-
plementing mathematical models with more realistic assump-
tions about service recovery times, better decision support can
be achieved.
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