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Abstract

This paper presents a particle filtering formulation for
tracking an unknown and varying number of vehicles in
terrain. The vehicles are modeled as a random set, i.e. a
set of random variables, for which the cardinality is itself a
random variable. The particle filter formulation is here ex-
tended according to finite set statistics (FISST) which is an
extension of Bayesian theory to define operations on ran-
dom sets. The filter was successfully tested on a simulated
scenario with three vehicles moving in terrain, observed by
humans in the terrain.

1. Introduction
Tracking of multiple objects simultaneously over time is
an important problem in many signal processing, computer
vision, and information fusion applications. The objects
could either be moving freely, or be dependent on or con-
nected to each other.

The application considered here is tracking of multiple
vehicles in terrain. The tracking is guided by reports of ve-
hicle sightings from human observers on the ground, and in-
formation about the terrain from a map database. No data is
available from sensors on the vehicles. The vehicles move
independently of each other. However, due to the terrain,
the motion is highly non-linear. Furthermore, the multi-
object observation model becomes non-linear due to object-
data association abiguities. Due to the non-linearities of the
system, particle filters [8, 11] are used to track the vehicles.
Particle filtering is presented in Section 3.

The difference between tracking a single object and a
known number, n, of objects is the object-data association
problem [2, 6], resulting in non-linear observation models.
Using these observation models, Bayesian methods like par-
ticle filtering can be used to estimate the distribution over
the concatenated state-space [x1

t ,x
2
t , ...,x

n
t ] of all objects.

A new problem arises when the number of objects to

track is unknown or varies over time. The number of ob-
jects, N , is then a discrete random state variable. The state-
space has different dimensionality for different values n of
N . This introduces difficulties, since one needs to formal-
ize a measure for comparing state-spaces with different di-
mensionality. The path we take to address this problem, is
to the set of objects to track as a random set [7, 15], i.e. a
set of random variables, for which the cardinality is itself a
random variable. Statistical operations on random sets are
formulated in finite set statistics (FISST) [7, 15], which is
an extension of Bayesian formalism to incorporate compar-
isons between state-spaces of different dimensionality. This
enables us to treat N as a random variable with a discrete
probability distribution and to estimate the distribution over
N jointly together with the distribution over the rest of the
state-space. The FISST formulation of the tracking problem
is presented in [15], and the theory in [7].

The contribution of this paper is a general particle fil-
ter for random sets, the FISST particle filter, designed for
tracking an unknown number of multiple vehicles with ter-
rain motion models. The filter is a direct general particle
filter implementation of the FISST multi-object filter equa-
tions described in [15], with two extensions:

• The formulation of the object birth model (Eq (6)).1

Here, objects are born from observations at the previ-
ous time step, as opposed to uniformly generated ob-
jects [15]. This allows for a more efficient exploration
of the state-space.

• A motion model for terrain tracking (Eq (16)), taking
into account type of terrain. The terrain model is de-
scribed in Section 6.1.

Results (Section 6.6) from a simulated scenario of three
vehicles show that the particle filter is successful up to cer-
tain noise limits. Since the time scale of terrain tracking is

1It should be noted that a birth model allows for implicit initialization
of the tracking. Thus, the algorithm will recover from a temporary “lost
track” at the next observation of that vehicle.
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quite large (compared to e.g. air target tracking) the rela-
tively large complexity of the particle filter poses no great
problems for a real-time implementation.

2. Related work

The problem of tracking in terrain is that the motion model
is highly non-linear, due to the variability in the terrain.
This makes linear Kalman tracking approaches like Inter-
acting Multiple Models (IMM) [17] inappropriate, since it
is there difficult to model the terrain influence in a general
manner. However, in a simplified environment, such as a
terrain map with only on/off road information, IMM-based
approaches are successful [14]. Other type of approaches
are HMM formulations [14] or potential fields [13, 23]
which are computationally heavy [13].

We take a different approach. To cope with the non-
linearities of the terrain tracking problem in a mathemati-
cally principled way, we use particle filtering (also known
as bootstrap filtering [8] or Condensation [11]), which has
proven useful [4] for tracking with non-linear and non-
Gaussian models of motion and observations.

In many applications of multi-object tracking, the num-
ber of objects to track, n, is known beforehand. Compared
to single object tracking, the main issue in tracking a known
number of objects is the object-data association problem.
A number of approaches adressing this problem have been
presented, e.g. PDA [2] and JPDA [6]. The task of tracking
an unknown and changing number N of objects is, from
a modeling perspective, an even more challenging one. In
principle, the number of objects is then treated as a discrete
state variable. However, since each object has its own vec-
tor of state variables, the dimensionality of the combined
state-space changes with the number of objects.

One approach to address this problem [6, 10] is to es-
timate N separately from the rest of the state-space, and
then, given this, estimate the other state variables. This cor-
responds to approximating the marginal distribution over
N with a delta function – a simplification of reality that
can lead to errors in the tracking. Alternatively, the model
of Stone [24] consists of a constant (large) number of ob-
jects, only some of whom are visible in each time-step. In
this manner, the problem with changing dimensionality is
avoided. However, the method has been criticized [15] for
a vague mathematical foundation.

The particle filters of Isard and MacCormick [12] and
Ballantyne et al. [1] maintained distributions for all values
of N , just as in our case. However, the problem of com-
paring states of different dimensionality was there elegantly
eliminated since the observations were made in the form
of images, and the likelihood was formulated in the image
space, with constant dimensionality. Since our type of sen-
sor is different, we do not have this possibility.

The mathematical foundation for multi-object tracking
used in this paper, FISST, enables the modeling of a state-
space with changing dimensionality. Thus, a distribution
over N can be estimated with the rest of the state-space,
without the need for special cases or simplifications. FISST
has been used extensively for tracking [15, 16, 19] but no
particle filter implementation has yet been presented.

Other approaches to tracking a changing number
of objects include jump Markov systems (JMS) and
IPDA/JIPDA. JMS [5, 9, 18] are Monte Carlo methods in
which the state space is switched according to a Markov
chain. The relationship between JMS and FISST needs to
be investigated in the future [5]. IPDA [21] and JIPDA
[20] are extensions of PDA and JPDA dealing with tracking
of a changing number of objects. Challa showed recently
[3] that these methods can be formulated within the FISST
framework under some assumptions of linearity.

3. Bayesian filtering
We start by describing the formulation of the discrete-time
tracking problem for a single target, with exactly one obser-
vation in each time-step.

In a Bayesian filter, the tracking problem is formulated
as an iterative implementation of Bayes’ theorem. All in-
formation about the state of the tracked target can be de-
duced from the posterior distribution fXt |Z1:t

(xt | z1:t)
over states Xt, conditioned on the history of observations
Z1:t from time 1 up to time t. The filter consists of two
steps, prediction and observation:
Prediction. In the prediction step, the prior distribution
fXt |Z1:t−1

(xt | z1:t−1) at time t is deduced from the poste-
rior at time t − 1 as

fXt |Z1:t−1
(xt | z1:t−1) =

∫

fXt | Xt−1,Z1:t−1
(xt |xt−1, z1:t−1)

fXt−1 |Z1:t−1
(xt−1 | z1:t−1) dxt−1 (1)

where the probability density function (pdf)
fXt |Xt−1,Z1:t−1

(xt |xt−1, z1:t−1) is defined by a model of
motion in its most general form.

Often, however, the state at time t is generated from the
previous state according to the model

Xt = φ(Xt−1,Wt) (2)

where Wt is a noise term independent of Xt−1. This gives
fXt |Xt−1,Z1:t−1

(xt |xt−1, z1:t−1) ≡ fXt |Xt−1
(xt |xt−1),

with no dependence on the history of observations z1:t−1.
Observation. In each time-step, observations of the state
are assumed generated from the model

Zt = h(Xt,Vt) (3)
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where Vt is a noise term independent of Xt. From this
model, the likelihood fZt |Xt

(zt |xt) is derived. The pos-
terior at time t is computed from the prior (Eq (1)) and the
likelihood according to Bayes’ rule:

fXt |Z1:t
(xt | z1:t) ∝

fZt |Xt
(zt |xt) fXt |Z1:t−1

(xt | z1:t−1) . (4)

To conclude, the posterior pdf at time t is calculated from
the previous posterior at t − 1, the motion model, and the
observations at time t according to Eqs (1) and (4). The
iterative filter formulation requires a known initial posterior
pdf fX0 |Z0

(x0 | z0) ≡ fX0
(x0).

3.1. Particle implementation
If the shape of the posterior distribution is close to Gaus-
sian, and the functions h(.) and φ(.) linear, the system can
be modeled analytically in an efficient manner, e.g. as a
Kalman filter. However, if the models of motion and ob-
servation are non-linear or highly distorted by noise, the
posterior distribution will have a more complex shape. In
these cases, a Kalman filter is no longer applicable.

Particle filtering, also known as bootstrap filtering [8]
or Condensation [11], has proven to be a useful tool for
Bayesian tracking with non-linear models of motion and
observation. For an overview of the state of the art in appli-
cations of particle filters, see [4].

The posterior is represented by a set of N state hypothe-
ses, or particles {ξ1

t , . . . , ξ
N
t }. The density of particles in a

certain point in state-space represents the posterior density
in that point [8, 11]. A time-step proceeds as follows:
Prediction. The particles {ξ1

t−1, . . . , ξ
N
t−1}, representing

fXt−1 |Z1:t−1
(xt−1 | z1:t−1), are propagated in time by sam-

pling from the dynamical model fXt |Xt−1
(xt | ξs

t−1) for

s = 1, . . . , N . The propagated particles, {ξ̃
1

t , . . . , ξ̃
N

t },
represent the prior fXt |Z1:t−1

(xt | z1:t−1) at time t.
Observation. Given the new observation zt of Zt,
each propagated particle ξ̃

s

t is assigned a weight πs
t ∝

fZt |Xt
(zt | ξ̃

s

t ). The weights are thereafter normalized to
sum to one.
Resampling. Now, N new particles are sampled
from the set of particles with attached weights,

{(ξ̃
1

t , π
1
t ), . . . , (ξ̃

N

t , πN
t )}. The frequency with which

each particle is resampled is proportional to the weight
(Monte Carlo sampling). The result is a particle set with
equal weights, {ξ

1
t , . . . , ξ

N
t }, representing the posterior

distribution at time t.

4. FISST multi-object filtering
As discussed in the introduction, Bayesian equations for
tracking a single object does not readily extend to cases

where the number of objects is unknown or varying. Here,
we employ random set formalism to account for this. The
set of objects to be tracked can be considered a random set
[7, 15]. A random finite set is a finite set whose elements,
as well as their number, are random.

The mathematical framework for handling random sets
in a probabilistic manner is called finite-set statistics
(FISST) [7, 15]. FISST is a generalization of Bayesian the-
ory to describe statistical properties of random sets.

FISST has been used (e.g. [15]) for formulating a frame-
work for tracking of an unknown number of objects from a
set of observations. Here, it is reformulated to encompass a
motion model dependent on the observations in the previous
time-step, as shown in Eq (1).

The set of tracked objects at time t is a random set Γt =

{X1
t , . . . ,X

NX

t

t }, where Xi
t is the state vector of object i

and NX
t is the number of objects in the set. A certain out-

come of the random set Γt is denoted Xt = {x1
t , . . . ,x

nX

t

t }.
Similarly, the set of observations received at time t is a

random set Σt = {Z1
t , . . . ,Z

NZ

t

t }, where NZ
t can be larger

than, the same as, or smaller than NX
t . A certain outcome

of the random set Σt is denoted Zt = {z1
t , . . . , z

nZ

t

t }.
The FISST equivalent of a pdf fYt

(yt) for a random vec-
tor Yt is a multi-object probability density function fΥt

(Yt)

where Υt = {Y1
t ,Y

2
t , . . . ,Y

NY

t

t } is a random set [7, 15].
The goal of the FISST multi-object filter is to maintain the
posterior function fΓt | Σ1:t

(Xt | Z1:t) over Γt conditioned
on the history of sets of observations up to t, Σ1:t.

One time-step in the filter will now be described. The
organization follows that of Section 3 to enable comparison.
Prediction. The prior distribution over the random set Γt

can be expanded [15] as

fΓt | Σ1:t−1
(Xt | Z1:t−1) =

∞
∑

nX

t−1
=0

1

nX
t−1!

∫

fΓt | Γt−1,Σ1:t−1
(Xt | {x1

t−1, . . . ,x
nX

t−1

t−1 }, Z1:t−1)

fΓt−1 | Σ1:t−1
({x1

t−1, . . . ,x
nX

t−1

t−1 } | Z1:t−1)

dx1
t−1 . . . dx

nX

t−1

t−1 (5)

where nX
t−1 denotes a certain value of the number of objects

at time t − 1.
The motion model is used to generate the density

fΓt | Γt−1,Σ1:t−1
(Xt | {x1

t−1, . . . ,x
nX

t−1

t−1 }, Z1:t−1) for each
value nX

t−1. The motion model for a single object is de-
fined as in Eq (2), i.e. with no dependence on the observa-
tions, only on the state at t − 1. If the number and identi-
ties of objects were unchanged over time, the motion model
for a random set of objects, moving independently, would

be Γt = {φ(X1
t−1,W

1
t ), . . . , φ(X

NX

t−1

t−1 ,W
NX

t−1

t )} where
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W1
t , . . . ,W

NX

t−1

t are i.i.d. random vectors. However, both
birth and death of objects can occur during a step in time.
The probability of death is pD, of birth pB .

Objects are born according to a birth model. If the in-
verse of the observation function h(.) with respect to Xt,
h−1
Xt

(.), in Eq (3) exists, it is possible to generate an object
from an old observation Zt−1:

Xt = φ(h−1
Xt

(Zt−1,Vt−1),Wt) (6)

where Vt−1 is the observation noise at t − 1. For
our type of sensor (human observers) this is possible.2

This enables us to explore the state-space more efficiently.
The birth model defines the pdf fXt |Zt−1

(xt | zt−1)
which also is a special case of the propagation pdf
fXt |Xt−1,Z1:t−1

(xt |xt−1, z1:t−1) (Eq (1)).
Using this model of birth, death and motion, the motion

distribution in Eq (5) can be expressed as a combination of
the motion models of the individual objects in the set. For a
specified cardinality nX

t−1 of Γt−1, the motion distribution
is, for each cardinality level nX

t , equal to

fΓt | Γt−1,Σt−1
(Xt | {x1

t−1, . . . ,x
nX

t−1

t−1 }, Zt−1) =

min(nZ

t−1,nX

t
)

∑

k=max(0,nX

t
−nX

t−1
)

Pm(k)

(

nX
t

k

)

∑

l1 6=···6=lk∈[1,nZ

t−1
]

∑

lk+1 6=···6=l
nX

t

∈[1,nX

t−1
]

Fm(l) , (7)

Pm(k) = (pB)k(1 − pB)nZ

t−1−k

(pD)nX

t−1−(nX

t
−k)(1 − pD)nX

t
−k , (8)

Fm(l) = fXt |Zt−1
(x1

t | zl1
t−1) . . . fXt |Zt−1

(xk
t | zlk

t−1)

fXt |Xt−1
(xk+1

t |x
lk+1

t−1 ) . . . fXt |Xt−1
(x

nX

t

t |x
l
nX

t

t−1 ) . (9)

Pm(k) is the transition probability of objects from level
nX

t−1 at time t − 1 to level nX
t at t, given that k objects are

born from observations. Fm(l) is the joint distribution over
objects, conditioned on a certain configuration l of previous
objects and observations.3

2In general, h−1

Xt
(.) exists for sensors for which the observation space

Θo is the same as the state space Θ. Negative examples, for which h−1

Xt
(.)

is often impossible to obtain, are image sensors.
3The parameter k is the number of objects generated from observa-

tions, while nX

t
−k is the number of objects propagated from the previous

objects in Xt−1. The binomial term
(

nX

t

k

)

, the number of ways k el-

ements can be drawn from a set of nX

t
, compensates for the fact that only

the first k elements of Xt are considered drawn from observations, not any
k elements. The notation l1 6= · · · 6= lk ∈ [1, nX

t−1
] means k different

integers (indices) l = [l1, . . . , lk] drawn from the interval [1, nX

t−1
]. Tak-

ing the sum over l means taking the sum over all possible combinations of
k different integers between 1 and nX

t−1
.

Observation. The FISST equivalent [15] of Eq (4) is

fΓt | Σ1:t
(Xt | Z1:t) ∝

fΣt | Γt
(Zt | Xt) fΓt | Σ1:t−1

(Xt | Z1:t−1) (10)

where fΣt | Γt
(Zt | Xt) is a likelihood function. An obser-

vation is, as in the single object case in Eq (3), generated
from exactly one object.

At a certain time-step, there can be both missing obser-
vations – with probability pFN – and clutter (i.e. spurious
observations that do not correspond to real objects) – with
probability pFP . Clutter is generated according to a uni-
form function over the observation space Θo, Zt ∼ U(Θo),
which gives the uniform observation density fZt

. Each of
the nS sensors (here, humans) send zero or one observation.
This definition yields the likelihood density

fΣt | Γt
(Zt | Xt) =

min(nZ

t
,nX

t
)

∑

k=0

Po(k)(fZt
)nZ

t
−k

∑

l1 6=···6=lk∈[1,nZ

t−1
]

∑

m1 6=···6=mk∈[1,nX

t
]

Fo(l,m) , (11)

Po(k) = (pFN )nX

t
−k(1 − pFN )k

(1 − pFP )nS−(nZ

t
−k)(pFP )nZ

t
−k , (12)

Fo(l,m) = fZt | Xt
(zl1

t |xm1

t ) . . . fZt |Xt
(zlk

t |xmk

t ) . (13)

Po(k) is the probability that k observations originate from
real objects. Fo(l,m) is the joint likelihood of a certain
configuration l of observations originating from a certain
configuration m of objects.

Using Eqs (5)–(13), the posterior function over Γt can
be propagated in time.

4.1. Particle implementation
We will now describe the particle filter implementation of
Eqs (5)–(13).

For each level nX
t in the random set representation, the

marginal probability over the number of objects

pNX

t
| Σ1:t

(nX
t | Σ1:t) =

1

nX
t !

∫

fΓt | Σ1:t
({x1

t , . . . ,x
nX

t } | Z1:t)dx
1
t . . . dxnX

t (14)

is maintained. Furthermore, each level nX
t > 0 is repre-

sented by a separate set of particles. The particle set at level
nX

t thus represent the joint pdf over the state-space of all
objects given that the number of objects is known to be nX

t .
If the particle filter at level 1 has dimensionality d, then the
filter at level 2 has dimensionality 2d and so on.

Consider the filter for object level nX
t . The posterior

function 1
nX

t
!
fΓt | Σ1:t

({x1
t , . . . ,x

nX

t

t } | Z1:t) at time t is rep-

resented by the marginal probability for nX
t objects, ΠnX

t

t =

4



pNX

t
| Σ1:t

(nX
t | Z1:t) (see Eq (14)), and a set of N compos-

ite particles {[ξ1,1
t , . . . , ξ

1,nX

t

t ], . . . , [ξN ,1
t , . . . , ξ

N ,nX

t

t ]}.
Each particle ξ

s,i
t corresponds to hypothesis s about the

state of object i at level nX
t . One time-step proceeds as:

Prediction. For each level nX
t at time t, the transition

probabilities Pm(k) (Eq (8)) from old levels nX
t−1 are com-

puted. These probabilities depend on the probability of
death and birth and on the number nZ

t−1 of observations that
were received at t − 1.

For each new level, particles are sampled from all
old levels with transition probability > 0, and propa-
gated in time by sampling from the motion distributions
Fm(l) (Eq (9)). For each term Fm(l) in the sum in Eq
(8), N single-object particles (of dimensionality d) are
sampled from each pdf in Fm(l). The particles are then
concatenated to form composite particles (of dimen-
sionality nX

t d). Each composite particle s is given a

weight $
s,nX

t

t = Pm(k)Π
nX

t−1

t−1 . The propagated particles

with attached weights, {([ξ̃
1,1

t , . . . , ξ̃
1,nX

t

t ], $
1,nX

t

t ),

. . . , ([ξ̃
aN ,1

t , . . . , ξ̃
aN ,nX

t

t ], $
aN ,nX

t

t )}, where a is
a positive integer4, represent the prior distribution

fΓt | Σ1:t−1
({x1

t , . . . ,x
nX

t

t } | Z1:t−1).
Observation. All composite particles

([ξ̃
s,1

t , . . . , ξ̃
s,nX

t

t ], $
s,nX

t

t ) are now assigned new weights

π
s,nX

t

t = $
s,nX

t

t fΣt | Γt
(Zt | [ξ̃

s,1

t , . . . , ξ̃
s,nX

t

t ]) according to
their likelihood (Eq (11)).

For each level nX
t , the probability Π

nX

t

t is computed as
the sum over all particle weights on that level. The probabil-

ities are then normalized so that
∑∞

nX

t
=0 Π

nX

t

t = 1. After

that, the particle weights π
s,nX

t

t are normalized to sum to
one for each filter nX

t .
Resampling. For each filter nX

t , N new parti-
cles are Monte Carlo sampled from the particle sets

with attached weights {([ξ̃
1,1

t , . . . , ξ̃
1,nX

t

t ], π
1,nX

t

t ),

. . . , ([ξ̃
aN ,1

t , . . . , ξ̃
aN ,nX

t

t ], π
aN ,nX

t

t )}. (As noted in Section
3.1, this means that the frequency with which each particle
is resampled is proportional to the weight.) The result is a

set of particles {[ξ1,1
t , . . . , ξ

1,nX

t

t ], . . . , [ξN ,1
t , . . . , ξ

N ,nX

t

t ]},
with equal weights, for each level nX

t . Together with the

weights Π
nX

t

t , the particle clouds represent the posterior
multi-object probability density fΓt | Σ1:t

(Xt | Z1:t).

5. Extracting expected object states
In the single object case, the result of the tracking at time
t is often considered to be the expected value of the object

4The integer a depends on how many terms there are in the sums in Eq
(7) since each term Fm(l) contributes with N particles.

state. The corresponding function in FISST is the probabil-
ity hypothesis density (PHD) [16]:

DXt | Σ1:t
(xt | Z1:t) =

∫

fΓt | Σ1:t
({xt} ∪ Y | Z1:t) δY .

(15)
This entity is a distribution over Θ, which has the properties
that, for any subset S ⊆ Θ, the integral of the PHD over S
is the expected number of objects in S at time t.

Given that the objects are separated (on a certain scale) in
Θ, the estimated object states can be detected as peaks in the
PHD. Thus, it is important to develop a good peak-detector
[16]. Here, we fit a mixture of Gaussian distributions to the
PHD and take the mean of each Gaussian as the estimated
state of that object.

5.1. Approximate PHD
We now describe the computation of the PHD from a FISST
particle filter.

Each composite particle [ξi,1
t , . . . , ξ

i,nX

t

t ] is divided into
nX

t parts, each representing one of the objects. The parts

of all particles are weighted by the probability Π
nX

t

t (Sec-
tion 4.1), and collected into a histogram covering the state-
space Θ. The histogram is normalized to sum to E[NX

t ] =
∑4

n=0 nΠn
t . Now, the histogram constitute a discrete ap-

proximation of the PHD. Figure 1 show an example of such
an approximated PHD.

From the PHD, local maxima are detected by fitting a
mixture of Gaussians to the histogram.

6. Terrain application
A simulated scenario of three vehicles moving in terrain is
here used to visualize FISST particle filtering.

The reason to use particle filtering for terrain tracking is
clarified in Section 6.3 – the motion model of the vehicles
is non-linear and dependent on the terrain. Using particle
filtering, we avoid the need to construct an analytical model
of the motion noise, since the particles provide a sampled
representation of the motion distribution.

The result of the tracking is considered to be an estimated
PHD over the area traveled by the vehicles. Peaks in the
PHD correspond to estimated vehicle locations. These are
detected by fitting a mixture of Gaussians to the PHD.

6.1. Scenario
The scenario is 841 seconds long, simulated in time-steps of
five seconds. Three vehicles (of the same type) travel along
roads in the terrain, with a normally distributed speed of
mean 8.3 m/s and standard deviation 0.1 m/s. At one time,
one of the vehicles travel around 500 m off-road.

The terrain is represended by a discrete map m over
position. A pixel in m can take any value T =
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(a) 1 object, Π1
t

= 0.00 (b) 2 objects, Π2
t

= 0.01 (c) 3 objects, Π3
t

= 0.95 (d) 4 objects, Π4
t

= 0.04 (e) Estimated PHD

Figure 1: Computation of the PHD from the FISST particle filter. (a)-(d): Particles (black dots in the terrain map) conditioned on different
hypotheses of object count n

X

t . Since particles simultaneously represent n
X

t objects, each particle is visualized as n
X

t dots, one for each
object. This means that plot (d) contains four times as many dots as plot (a). (e): The particles for each level n

X

t = 1 to 4 are weighted

with Π
N

X

t

t
and collected into a histogram that approximate the PHD over the terrain area. In this case, the PHD is mainly influenced by

the level 3 particles. Each pixel is grey-level coded according to the expected number of objects in the area covered by the pixel (black –
0, white – 0.2).

{road ,field , forest} (exemplified in Figure 1a-d where
light grey indicates road , white field , and grey forest).
The probability pT (t) that a vehicle would select terrain
of type t to travel in is defined to be pT (road) = 0.66,
pT (field) = 0.33, pT (forest) = 0.01.

At each time-step, each vehicle is observed with proba-
bility 0.9, 0.5 or 0.1 (corresponding, e.g., to different sight
conditions for the observer). This means that pFN = 0.1 in
the first case, pFN = 0.5 in the second, and pFN = 0.9 in
the third. Since the observations in this application originate
from human observers rather than automatic sensors, the
probability of false observations, pFP , is very low, 10−10.
An observation generates a report of the observed vehicle
position, speed and direction, which is a noisy version of
the real state, and of the uncertainty with which the ob-
servation was made, expressed as standard deviation, here
σR = [50, 50, 1, π/8] (m, m, m/s, rad).

6.2. State-space
The state vector for one vehicle is xt = [pt, st, vt] where pt

is position (m), st speed (m/s) and vt angle (rad). The ran-
dom set of vehicles is in every time-step limited according
to NX

t ≤ 5 vehicles for computational reasons.

6.3. Motion model
The motion model of the vehicles is

Xt = Xt−1 + dXt−1 + Wt (16)

where dXt−1 is the movement estimated from the speed
and direction in Xt−1. The noise term is sampled from
a distribution which is the product of a normal distribu-
tion with standard deviation σW = [10, 10, 2, π/4], and of
a terrain distribution. The terrain distribution depends on

probabilities of finding a vehicle in different types of ter-
rain. The sampling from this product distribution is imple-
mented as follows: Sample particles ξi using the normally
distributed noise term. Each particle i now obtains a value
πi = pT (m(ξi)). Resample the particles according to πi

using Monte Carlo sampling.

6.4. Birth model
We assume the birth rate pB and death rate pD of objects to
be invariant to position and time-step, and only dependent
on the probability of missing observations pFN . The goal
of the tracking is most often to keep track of all objects (i.e.
represent all objects with a particle cloud at all times) while
not significantly overestimating the number of objects. We
design the birth and death model for this purpose. A high
degree of missing observations should give a higher birth
rate since it takes more time steps in general to “confirm”
a birth with a new observation (while hypotheses can die at
every time-step regardless of pFN ). The mean number of
steps between observations is 1

1−pF N
. Therefore, we set

pB = K1−pF N , (17)

pD = K . (18)

The constant K = 10−6 is set empirically.5

6.5. Observation model
As mentioned in Section 6.1, observations Zt are of the
same form as the state-space for one object Xt (Section 4),

5In principle, a high death and birth rate gives more noise in the esti-
mated number of objects, whereas a low death and birth rate leads to low
flexibility when the number of objects change and when an object is lost
by the tracker. A high birth rate alone will lead to an overestimation of the
number of objects, while a high death-rate will have the opposite effect.
See also Section 6.6.

6



0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

Time [s]

N
um

be
r 

of
 o

bj
ec

ts

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

Time [s]

P
os

iti
on

 e
rr

or
 [m

]

(a) pF N = 0.1
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(b) pF N = 0.5
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(c) pF N = 0.9

Figure 2: Tracking errors. (a) Observation probability 0.9. (b) Observation probability 0.5. (c) Observation probability 0.1. The upper
graph in each subfigure shows estimated (solid line) number of objects, compared to the true (dashed line) number. The lower graph shows
position errors for the three vehicles. Solid, dashed and dotted lines denote different vehicles. The dotted object appears after 101 seconds,
the dashed object disappears after 687 seconds and the solid object after 702 seconds. Position error is measured as the Euclidean distance
from the true object position to the nearest detected maxima in the estimated PHD (Section 5.1).

which means that Eq (3) is simplified to

Zt = Xt + Vt . (19)

The observation noise Vt is normally distributed with stan-
dard deviation σV = σR (Section 6.1).

6.6. Results
Using the settings described above, three simulations were
generated to show the performance of the tracker. The num-
ber of particles on each level was N = 200. The results are
shown in Figure 2.6 The tracking performance was mea-
sured in two ways, comparing the estimated number of ob-
jects with the true value (upper graph in each subfigure),
and measuring the Euclidean distance between the ground
truth object positions and the local maxima in the PHD his-
togram.

In Figure 2a, a simulation with pFN = 0.1 is shown.
Both the number of objects (upper graph) and the location
of the objects (lower graph) is accurately estimated. When
pFN = 0.5 (Figure 2b), there are a few errors in the esti-
mated number of objects, but the model still maintains track
of all objects.

However, when pFN = 0.9 (Figure 2c), both the esti-
mation of the number of vehicles, as well as of the vehicle

6Movies of the three tracking examples can be found at
http://www.foi.se/fusion/mpg/WOMOT03/. Two movies
relating to each of the Figures 2a, 2b, and 2c can be found. For, e.g.,
Figure 2a, the movie phdFigure2(a).mpg shows the PHD histogram
(blue – 0, red – 0.2) with white 95% error ellipses indicating the Gaussians
fitted to the PHD (Section 5.1). The movie terrainFigure2(a).mpg
shows the particle clouds (deep red for levels with high probability, lighter
for lower probability) and Gaussians (deep blue for high PHD peaks,
lighter for lower peaks). True vehicle positions are indicated by green +,
observations by green *.

locations, fail. One reason could be that each level is repre-
sented by too few particles. To test this hypothesis, the same
experiment was performed with N = 1000 particles. How-
ever, this did not improve the performance of the tracking,
which lead to the conclusion that N = 200 particles were
sufficient to represent the distributions.

The reason could instead be, that even though the birth
rate is very high, the hypotheses often die out before they
are “confirmed” by a second observation. Therefore the
number of objects is often underestimated. Another reason
could be that the motion model is not informative enough to
maintain track of the vehicles with such few observations.

The filter was implemented in Matlab, running in Linux
on an ordinary desktop computer. One iteration of the filter
required 4.9 seconds on average. Since the time-steps in this
application are relatively long (here 5 seconds), this indicate
the usability of the filter in a real-time system for terrain
tracking.

7. Conclusions

The problem addressed in this paper was tracking of vehi-
cles in terrain. Due to the terrain, the motion of the vehicles
was highly non-linear, making Kalman approaches inappro-
priate. Furthermore, the number of vehicles was unknown
and varied over time.

To address these problems, a generalized particle filter,
approximating the optimal posterior distribution over a ran-
dom set, was presented. A particle filter in its original form
can be seen as a special case of this filter, when the cardi-
nality of the set is known to be 1. The FISST filtering for-
mulation was also extended with an birth model in which
the object hypotheses were born from old observations. Re-
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sults from a simulated scenario of three vehicles showed the
particle filter is successful up to certain noise limits.

In the future, the formulations of birth and death models
for high pFN need to be investigated further as discussed in
Section 6.6. The effect of other parameter values, such as
N , should be thoroughly investigated as well.

Furthermore, it should be noted that the time complexity
of the filter increases with the maximum number of targets
to track. One solution could be to have multiple, spatially
limited, filters. Another approach is to propagate the PHD
directly, without modeling the full random set [16]. The
formulation requires high signal-to-noise ratio and objects
moving independently of each other. Recently, a PHD par-
ticle filter implementation [22] has been presented.

Finally, the filter should be implemented and tested in a
real-time system. The low number of particles needed indi-
cates that the filter could be suitable for a real-time imple-
mentation in an application such as this, where the iteration
time is relatively long.
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