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ABSTRACT

In Intelligence Analysis it is of vital importance to manage uncertainty.
Intelligence data is almost always uncertain and incomplete, making it necessary
to reason and taking decisions under uncertainty. One way to manage the
uncertainty in Intelligence Analysis is Dempster-Shafer Theory. We may call this
application of Dempster-Shafer Theory Evidential Intelligence Analysis. This
thesis contains five results regarding multiple target tracks and intelligence
specification in Evidential Intelligence Analysis.

When simultaneously reasoning with evidence about several different events
it is necessary to separate the evidence according to event. These events should
then be handled independently. However, when propositions of evidences are
weakly specified in the sense that it may not be certain to which event they are
referring, this may not be directly possible. In the first article of this thesis a
criterion for partitioning evidences into subsets representing events is established.

In the second article we will specify each piece of nonspecific evidence by
observing changes in cluster and domain conflicts if we move a piece of evidence
from one subset to another. A decrease in cluster conflict is interpreted as an
evidence indicating that this piece of evidence does not actually belong to the
subset where it was placed by the partition. We will find this kind of evidence
regarding the relation between each piece of evidence and every subset. When this
has been done we can make a partial specification of each piece of evidence.

In the third article we set out to find a posterior probability distribution
regarding the number of subsets. We use the idea that each single piece of
evidence in a subset supports the existence of that subset. With this we can create
a new bpa that is concerned with the question of how many subsets we have. In
order to obtain the sought-after posterior domain probability distribution we
combine this new bpa with our prior domain probability distribution.

For the case of evidence ordered in a complete directed acyclic graph the
fourth article presents a new algorithm with lower computational complexity for
Dempster’s rule than that of step by step application of Dempster’s rule. We are
interested in finding the most probable completely specified path through the
graph, where transitions are possible only from lower to higher ranked vertices.
The path is here a representation for a sequence of states, for instance a sequence
of snapshots of a physical object’s track.

The fifth article concerns an earlier method for decision making where
expected utility intervals are constructed for different choices. When the expected
utility interval of one alternative is included in that of another, it is necessary
make some assumptions. If there are several different decision makers we might
sometimes be interested in having the highest expected utility among the decision
makers. We must then also take into account the rational choices we can assume to
be made by later decision makers.

Keywords: Belief functions, Dempster-Shafer theory, evidential reasoning, nonspecific
evidence, evidence correlation, cluster analysis, directed acyclic graph,
computational complexity, decision making.
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PREFACE

This thesis is divided into four chapters and five appendices containing the
articles “On Nonspecific Evidence” [Johan Schubert, Int. J. Intell. Syst. 8(6), 711-
725, 1993], “Specifying Nonspecific Evidence” [Johan Schubert, Manuscript],
“Finding a Posterior Domain Probability Distribution by Specifying Nonspecific
Evidence” [Johan Schubert, Manuscript], “Dempster’s Rule for Evidence Ordered
in a Complete Directed Acyclic Graph” [Ulla Bergsten and Johan Schubert, Int. J.
Approx. Reasoning 9(1), 37-73, 1993], and “On Rho in a Decision-Theoretic
Apparatus of Dempster-Shafer Theory” [Johan Schubert, Manuscript]. The first
chapter gives an overview of management of uncertainty, the fundamentals of
Dempster-Shafer theory and a brief summary of the state of the art in evidential
reasoning, especially concerning belief propagation. The objective of the work,
decision support in anti-submarine intelligence analysis is the focus of Chapter 2.
In Chapter 3 we give a summary of the results of the five articles. Finally,
conclusions are drawn (Chapter 4).
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1. INTRODUCTION

This chapter we will serve as a background to the five articles [“On
Nonspecific Evidence,” Int. J. Intell. Syst. 8(6), 711-725, 1993; “Specifying
Nonspecific Evidence,” Manuscript; “Finding a Posterior Domain Probability
Distribution by Specifying Nonspecific Evidence,” Manuscript; “Dempster’s Rule
for Evidence Ordered in a Complete Directed Acyclic Graph,” Int. J. Approx.
Reasoning 9(1), 37-73, 1993; and “On Rho in a Decision-Theoretic Apparatus of
Dempster-Shafer Theory”]. In Section 1.1 we will discuss management of
uncertainty and its knowledge representation, control strategies and different
approaches to combination of evidence. In Section 1.2 we will give the
fundamentals of Dempster-Shafer theory needed to understand the five articles
and in Section 1.3 we will give a brief summary of the state of the art in evidential
reasoning.

1.1. Management of Uncertainty

Management of uncertainty concerns the reasoning process of deciding how
to act under uncertainty. In uncertainty management, knowledge representation
and the calculus for combination of evidence is of vital importance. For instance,
we must ensure that our knowledge representation structure does not violate the
models assumption about independence between different items of information.
The control strategies (Cohen [6, 7]) employed may be of equal importance. Even
when uncertainty is not explicitly represented, with a good control strategy it may
sometimes be possible to choose actions wisely.

When using intelligent systems to solve problems, the systems’ reasoning is
guided by the control strategies. We must infer these strategies from the domain
expert. For instance, a physician may describe his problem-solving strategy as
follows (Cohen [6]):

“First I take a history, which usually triggers a few possibilities. I
iry to narrow the differential as much as possible during the history.
Next I do a physical exam. I’'m looking for signs that help me to narrow
the differential further. The physical can also help me refine my
suspicions: The history may tell me there’s a cardiac problem, but the
physical can narrow it to, say, mitral valve prolapse. I avoid tests,
especially invasive ones, and rarely perform them except to confirm
something 1 already believe pretty strongly from the history and
physical.”

We recognize four kinds of actions: gathering of evidence through history,
physical examination, invasive and noninvasive tests. The initial gathering of
evidence is done by the study of history. Further gathering of historical evidence
and evidence from the physical examination are combined and used to reduce and
refine the set of possible hypotheses. From the remaining hypotheses a subset,
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focus of attention, is selected, the “differential.” Finally, tests are made, but here
inference is greatly restricted. The only tests that are made are those that can
confirm the hypotheses of attention that are strongly believed.

From this example we see how control strategies such as selection of focus of
attention, control of inference and control of action can be extracted from the
domain problem and used to guide the reasoning and evidence gathering
processes. The purpose of the control strategies are to achieve the domain goals,
e.g. the diagnosing of a patient, in an efficient manner. If the control strategies are
implemented declaratively the system may reason about its own control and
decide which control strategies are most appropriate in a particular situation. In
the medical domain there might for instance be two different control strategies
depending on whether a patient is stable or critical. Evidence gathering might, for
instance, be more restricted when the patient is critical because of time
requirements.

When evidences are uncertain we must also manage the uncertainty by
control strategies. This can be done by treating the reduction in uncertainty as any
other goal. The domain goals, such as diagnosing a patient, is now complemented
with the goal of reducing uncertainty. Any action to gather evidence may now be
chosen both for the purpose of reducing uncertainty and for achieving domain
goals.

The introduction of uncertain evidence may actually facilitate the
construction of control strategies. For instance, attention may be focused on
hypotheses where the evidence gathered by additional actions have the best
estimated trade-off between cost and reduction in uncertainty. On the other hand,
in order to solve domain goals, we may want to focus on the hypotheses with the
highest belief. The evidence gathering action is selected to confirm, disconfirm or
depending on the outcome, either confirm or disconfirm the focus of attention.

The control strategy decides how to proceed under uncertainty. By control
strategies we mean internal functions in the system used to improve the systems
computational strategy by choosing focus of attention, which part of a problem to
work on, and to control inferences, what methods to use. Most problems can be
broken down into subproblems. The focus of attention is selected by the control
strategy among the different subproblems. The control of inference then decides
which reasoning methods to apply to the chosen subproblem. If we did not have a
focus of attention or had a constantly changing focus of attention there would be
no steering of the reasoning process towards a solution of the problem. If on the
other hand the focus of attention is difficult to change, the process may lock into a
wrong solution. It is the task of the control of inferences to specify which
reasoning methods to apply to the subproblem, i.e. how to solve it, and put a limit
on the number of inferences. Without a limit on inference we would falter under a
confusion of possibilities. If on the other hand the inferences are too restricted we
may not reach important possible solutions and we may also make some false
conclusions. Finally, a system might also have a control of action. An action is
here any event, internal or external, that changes the state of the environment. The
control of action is an internal function either taking actions internally in a system
or requesting external actions taken. It decides how to interact with the
environment. For instance, when should we pay the cost of gathering additional
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evidence.

One additional problem when reasoning under uncertainty is how to decide
when to stop taking evidence gathering actions. The strategies must decide the
estimated benefit of a further reduction in uncertainty versus the increasing cost of
gathering additional evidence.

There are two main competing philosophies for combination of evidence in
uncertainty management, that of symbolic truth maintenance by assumption-based
truth-maintenance system (ATMS) (de Kleer [13]) and that of numeric
propagation. In ATMS uncertainty are represented qualitatively, where
propositions are true, false, assumed true, assumed false or unknown. These
Systems use non-monotonic reasoning, changing and retracting assumptions when
internal conflicts are detected to restore consistency. We can integrate symbolic
truth maintenance and numeric propagation if probabilities are attached to
assumptions in an ATMS and its symbolic machinery is used to compute the
probabilities that an arbitrary proposition is provable (Laskey and Lehner [16,
17]), i.e. the belief in the proposition is the probability of provability of the
proposition (Pearl [23, 24]). This would enhance the value of the control strategy.
For instance, the control of inference could avoid inference rules whose
antecedents are unlikely and the control of action could search for evidence that
will distinguish between uncertain and competing hypothesis.

The integration could also modify the conflict resolution strategy of the
assumption-based truth-maintenance system, now being able to hold conflicting
hypothesis as long as the conflict is not too large and only when the conflict is too
large would we change defaults to restore consistency in the system.

There are two different approaches to numeric propagation, the
“probabilistic” approach based on probability theory (mostly Bayesian theory of
subjective probability or its generalization, Dempster-Shafer theory of belief
functions) and the “possibilistic” approach based on fuzzy sets. In contrast to the
probabilistic approach the uncertainty in the possibilistic approach is not one of
truth but one of degree of membership. Here a membership function indicates to
which degree an element of the universe belongs to the fuzzy set.

In many problems we are faced with judgement-based probabilities that can
not be said to be frequencies of an event. Using subjective probabilities, Bayesian
theory, for uncertainty management (Pearl [23]) in these cases might seem natural,
but the choice is not without its problems. One major problem when building
systems based on subjective probability theory is that the conditional probabilities
of all cause-effect relations have to be obtained. When those probabilities are not
available, approximate methods must be used to complete the model. For this
reason only a few systems have been made using subjective probabilities,
predominantly in medicine.

For instance, a team of researchers at Aalborg University have developed
Hugin (Andersen er al. [1]), an expert system shell for probabilistic reasoning.
HUGIN uses a causal probabilistic network with conditional probabilities
describing uncertain cause-effect relations. It has been used in the medical domain
to construct MUNIN: a knowledge-based assistant for electromyography, using a
network of several hundred nodes to diagnose muscle and nerve diseases.

The Dempster-Shafer theory of belief functions (Dempster [8], Shafer [26,
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28, 29]) is a generalization of the Bayesian theory. It avoids the problem of having
to assign non-available prior probabilities and especially all conditional
probabilities of cause-effect relations. That is, no assumptions have to be made
about not available probabilities. The belief of a proposition is instead drawn from
the sum of probabilities for those propositions that are subsets of the proposition
in question. When different pieces of evidence are independent their beliefs can
be combined with Dempster’s rule to compose an overall belief in the proposition.

There are however two other major reasons in favor of Dempster-Shafer
theory. These are the representation of ignorance and the lack of requirement to
fix the probability of every propositions negation to one minus the probability of
the proposition. In complete ignorance between two outcomes a “Bayesian” would
be forced to assign probabilities to the two outcomes that sum to one, say an equal
probability of 1/, to both outcomes. This makes it impossible to differentiate
between the completely ignorant case and a case with known 1/, probabilities. In
Dempster-Shafer theory, on the other hand, no probability is assigned to an
outcome when there is no evidence, leading to a zero belief in both outcomes.

The degree to which an outcome is plausible, i.e. one minus the degree of
belief in the negation of the outcome, is in the Bayesian case /> in both outcomes
due to the fixing of probabilities, while they are equal to one in Dempster-Shafer
theory since there is no available evidence against the outcomes. Thus, the belief
and plausibility in Dempster-Shafer theory make up an attractive representation of
ignorance, different from the case with known 1/, probabilities.

1.2. A Mathematical Theory of Evidence

In this section we briefly explain the fundamentals of evidence theory (also
called Dempster-Shafer theory of belief functions). In evidence theory probability
is assigned to a proposition by a basic probability assignment. The proposition
states that the truth is in a subset A of an exhaustive set of mutually exclusive
possibilities, a frame of discernment ©. It is not required that any probability is
assigned to individual elements of A, nor is it required to assign any probability to
the complement of A. The remaining probability that is not assigned to A may be
assigned to any other subsets of the frame or to the whole frame of discernment
itself.

1.2.1. Basic probability assignment

The basic probability assignment is a function from the power set of © to
(0, 1]

m: 29 10,1

whenever

m(d) =0
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and

Y mA) =1

AcCO®
where m(A) is called a basic probability number, that is the belief committed

exactly to A.

1.2.2.  Belief, Plausibility and Commonality functions

The total belief of a proposition A is drawn from the sum of probabilities for
those propositions that are subsets of the proposition in question and the
probability committed exactly to A

Bel(4) = Y m(B)

BcA

where Bel(A) is the total belief in A and Bel(-) is a belief function
Bel: 2° - [0,11.
A subset A of O is called a focal element of Bel if the basic probability number for

A is non-zero. The union of all focal elements is called the core of Bel. It is
possible to recover the basic probability assignment from the belief function by

m@A) = Y (-1)'478 . Bel(B)

BcA
where A - B means A N B°,

In addition to the belief in a proposition A it is also of interest to know how
plausible a proposition might be, i.e the degree to which we do not doubt A. The
plausibility,

Pls: 2° 10,11
is defined as

Pls(4) = 1- Bel(4°).

We can calculate the plausibility directly from the basic probability assignment

Pls(4) = > m(®).

BNnAzJ
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From plausibility we may easily go back to belief and basic probability
Bel(4) = 1-PIs(A°)
and

m&) = Y (-1)'A-B+1.pis(BY).
BcA

Thus, while belief in A measures the total probability certainly committed to
A, plausibility measures the total probability that is in or can be moved into A4, i.e.
Bel(A) < Pls(A).

Finally, we are interested in all probability that can freely be moved to any
point in A, the commonality number of A.

A commonality function,

Q: 210,11
is defined by
Q@) = Y m(®B).
BDoA

We may also calculate the commonality number from belief or plausibility

Q@) = Y (-'® - Bel(B%)

BcA

and

QW) = Y (-1)!B+1.PIs(B).

BcA

From commonality we may just as easily go back to belief and plausibility

Bel(d) = Y (-1'B'-Q®)

BcA°

and

Pls(A) = ~1'"B+1.QeB).
D#BCA
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1.2.3. Combination of belief functions

If we receive a second item of information concerning the same issue from a
different source, the two items can be combined to yield a more informed view.
Combining two belief functions is done by calculating the orthogonal combination
with Dempster’s rule. This is most simply illustrated through the combination of
basic probability assignments. Let A; be a focal element of Bel; and let Bj be a
focal element of Bel,. Combining the corresponding basic probability assignments
my and my results in a new basic probability assignment m; ®m,

m@myd) =K. Y m(A) myB)
A;NB;=A

where K is a normalizing constant

-1
K=(1- Y m@): myB)) .
&m%:@
This normalization is needed since, by definition, no probability mass may be
committed to . The new belief function Bel; @ Bel,() can be calculated by the
above formula from m, ® my(-). The combination of two commonality functions is
simply done by taking the normalized product of the two commonality numbers

Q;®Q,4) = K-Q,(4)- Q,4)

where

K=( Y DH+1.Qm-Q,m) "

D+#BcO

When we wish to combine several belief functions this is simply done by
combining the first two and then combine the result with the third and so forth. As
an alternative it is possible to extend the combination to n belief functions. For
combining the n corresponding basic probability assignments we have

meme®..em =K- D my(A) -myB) - ... - m,(Cp)

&m%m“qu=A

where

-1
K= (1- D my(A) myB) - ...-m,(CY) .

mm%mmmq=®
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1.3. Evidential Reasoning

In a review article on the theory and practice of belief functions [28], Shafer
argues that “interactive systems seem appropriate to belief functions, since the
theory practically requires that the relation between evidence and questions of
interest should be unique to each application.” This means that belief networks
and numerical judgments must be constructed separately for each case.

A number of interactive evidential reasoning systems have been implemented
using Dempster-Shafer theory. Two of the better known are the interactive
systems Gister (Lowrance et al. [20]) and DELIEF (Zarley et al. [40]). Gister
which was developed at SRI International contains two main subsystems, the
Curator and the Analyzer. In the Curator the user constructs the set of possible
propositions and their relations. By using the Analyzer he may examine available
evidences. Here evidences can be projected one or more time units according to
projection relations, changing the proposition of evidence over time. If two or
more evidences are projected to the same time they may be combined by a fusion
operator. Finally, belief and plausibility are calculated for propositions through an
interpretation operator.

In DELIEF, developed at the University of Kansas, the user graphically
creates a network of variables describing propositions and between them joint
variables describing relations. After having supplied the evidence to variables and
joint variables the evidence can be propagated. For reasons of computational
complexity the belief functions are combined step by step using local
computations. Recently, there has been a new implementation, TRESBEL (Xu [38]),
developed at the Université Libre de Bruxelles, based on DELIEF but with an
additionally optimized propagation scheme.

1.3.1. Previous work on decision methodologies

To make decisions under uncertainty is somewhat complicated in Dempster-
Shafer theory because of the interval representation. In [22] Nguyen and Walker
discussed different approaches to decision making with belief functions. They
found three different basic models. The first is based on the Choquet integral that
yields the expected utility with respect to belief functions;

o 0
Ep(u) = jF(u>t)dz+ j [F(u>1t)—1]dt
0 —oo

where F is a belief function defined on 2° by F(A) = inf{PA):Pe P} and
P = {P:F<P} is a class of probability measures on ©. This leads to the
pessimistic strategy of ranking alternatives by their minimal expected utility.

In the second basic model the decision maker uses some additional information
or subjective views. Instead of searching for the alternative that maximizes
expected utility the utility function will be supplemented by some new function
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dependent on the utility and some other parameter corresponding to the additional
information or subjective views. An article by Strat [34] is an example of the
second basic model.

The third basic model consists of models using the insufficient reason principle
or equivalently the maximum entropy principle.

Smets and Kennes [33] have developed a two-level model of credal belief and
pignistic probability, called the ‘Transferable belief model’ (TBM), that belongs
to the third category of Nguyen and Walker [23].

On the credal level of this model the reasoning process takes place in the usual
manner as within Dempster-Shafer theory. Here beliefs are held by belief
functions and combined by Dempster’s rule. One addition in this model is the
possibility to choose an ‘open-world assumption’ where belief may be given to &
and where there is no normalization in Dempster’s rule.

When a decision must be taken, the belief on the credal level is transformed to a
probability at the pignistic level by a “pignistic transformation” based on
Laplace’s insufficient reasoning principle;

m(A) lx N Al
BetP(x) = e m(A) - )
e A 2" T
B IBNA|
BetP(B) = A;mm(A) A

where BetP(-) is the pignistic probability we should use to ‘bet’ with in a utility
maximization process. Here R is the set of all propositions. It is called the betting
frame. If IT is some partition of the frame of discernment © then R, the betting
frame, is the boolean algebra of the subsets of © that is generated by II, e.g. if
0= {a)l, 0,, w3} and let us assume that IT = { {“)1’ mz}, {0)3}} then
R={ {0, 0,}, {0}, {0, 0, ®,} }. The sets A and B in the equation above
are elements of R and x which is called an atomic element is an element of R that
is also an element of IT.

One justification of the pignistic transformation within the TBM is that it is the
only transformation that can transform belief functions at the credal level to
probability functions at the pignistic level, such that two different belief
functions, Bely and Bel,, with different propositions but with equal frames should
yield the same pignistic probability for the disjunctive proposition, BetPq;,
regardless of whether we first transform the two belief functions to two pignistic
probability functions, BetP; and BetP,, by the pignistic transformation and then
find the pignistic probability for the disjunctive proposition, BetP;,, from those
two probabilities, or if we do it the other way around by first finding the belief
function for the disjunctive proposition, Belj;, and then transform this belief
function by the pignistic transformation to the sought after pignistic probability,
BelPlz.

It is obvious that the received pignistic probability regarding some proposition
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A depends on the organization of the betting frame R itself. But regardless of the

organization of the betting frame we always have BetP(A) > Bel(A) VA € R.
Another method for decision making has recently been developed by Strat

[34]. In this method an expected utility interval is constructed for each choice;

[Ex(x), E"(x)]

where

EmE Y infla) - mg(A),
A, cO

E®2 Y sup@)- m@).
A, cO

If the intervals of two different propositions do not overlap we have a clear
choice. But if they do we must choose a value from each interval to be able to rank
them. Let this value be the expected utility

E0) 2 E.+p - (B°0) - E. ()

where p is defined as the probability that the ambiguity about the utility of every
non-singleton focal element will turn out as favorably as possible, i.e. the
probability that nature will turn out as favorably as possibly towards us as
decision makers. If both interval limits of the utility interval are higher for one
alternative than for another, then this one is always preferable regardless of the
value of p, otherwise our preference will depend on the assumed value of p. When
we make an assumption about the value of p we should not confuse ambiguity
with risk. Our risk preference is handled by adopting utilities. In a comparison
with Bayesian decision analysis about necessary assumptions, we are not forced to
make the assumptions about non-available probabilities necessary in the Bayesian
analysis. Instead we only have to make the assumption about p.

Other authors have also looked into decision analysis with belief functions.
Lesh [18], for instance, used an empirically derived coefficient to interpolate a
point value in the evidential interval he called expected evidential belief rather
than choosing a discriminating point in the utility interval. This coefficient
reflects the decision makers’ preference towards ignorance. Shafer [27], on the
other hand, focused on goals since these unlike utilities do not change under
refinement of the frame of discernment. In his constructive decision theory goals
were related to actions by available evidence offering support that certain goals
may be achieved by a specific action, 8. The preference of an action is here based
on the difference between the expected total weight of goals achieved and
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precluded by that action;

Ew*@®) = Y w,-Bel(4)

i=1

and

E( () = Y w,;-Bel(A?).

i=1

Kleyle and de Korvin [14] focus on the course of action without being directly
concerned about a goal or the utility of some proposition. Evidences are simply
delivering a probability for the proposition that one course of action is “best”.
Their model for decision making is based on an elimination process utilizing
sequentially acquired information. A simple elimination rule is to eliminate, at the
kth cycle, any course of action whose plausibility is less than some other course of
action’s belief. However, to protect against the possibility of an early wrong
elimination, the elimination rule may be modified, e.g. stipulating that a course of
action must be chosen for elimination in a number of cycles before it is actually
eliminated. After a course of action is eliminated from the frame of discernment
the belief structure is updated. This is done by assigning zero mass to basic
probability assignments supporting those subsets that include the eliminated
action, renormalizing all other basic probability assignments and recalculating
belief and plausibility. After having applied the elimination rule and a possible
updating any new information that may have arrived is brought into the analysis.
When only one course of action is remaining this one is deemed to be the
preferred one. Kleyle and de Korvin states that the mass function tends to be ever
more focused on subsets containing only a few courses of actions as the
elimination and updating loop proceeds, eventually almost entirely focused on
singletons. The evidential intervals of every course of action is then shrinking
swiftly, making it highly unlikely that there will ever be a state where no course of
action can be eliminated. However, to preclude this possibility the best course of
action may then simply be chosen by the highest belief after a fixed number of
loops without elimination.

1.3.2.  Previous work on cluster methodologies

Some work has been done combining cluster methodologies (Jain and Dubes
[11]) with Dempster-Shafer theory. Lowrance and Garvey [19] suggested that the
conflict could be used as a distance measure between bodies of evidence in some
clustering algorithm. Lesh [18] suggested the same and pointed to a work on
synthesizing knowledge with cluster methods (Chiu and Wong [5]) that might be
of interest. Here, samples where partitioned into clusters using a maximum
within-cluster nearest-neighbor distance and then iteratively regrouped by
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minimizing a probabilistic information measure.

Others have pursued solutions where traditional cluster methods were used to
partition evidences into subsets and Dempster-Shafer theory was used to
determine the meaning of the subset. In a paper on multiple target tracking for
automatic tracking systems Rasoulian, Thompson, Kazda and Parra-Loera [25]
considered a clustering technique to associate evidences from different sensors
that agree on time and space coordinates. Each cluster was here a representative
for an object at a particular time and space coordinate. A distance measure
between any two sensor reports was derived from the sensors’ gaussian
distributions. A relational matrix of thresholded distance measures described
when any two sensors had detected some object at the same time and space
coordinate. A transformed relational matrix satisfying transitivity was used to
create an equivalence relation with which sensor reports could be partitioned into
clusters. The sensor reports also carried information about object type and if all
reports within a cluster were not of the same object type the meaning of the cluster
was determined by fusing all evidences within the cluster by Dempster-Shafer
theory. Since the sensor reports either confirmed or disconfirmed a single object,
the evidences were in the form of simple support functions focused on singletons
or their complements, so that they could be combined in linear time with Barnett’s
method [2]. Thus, Dempster-Shafer theory was used to determine the meaning of
clusters but not used in the clustering process itself.

1.3.3.  Previous work on belief propagation in hierarchies

There has been some work on generally applicable improvements of the time
complexity of Dempster’s rule, e.g. [12, 36], reducing the exponential time
complexity in the general case from 0(3|®|) to O(|0| ~2|6|). However, most
improvements have concerned important special cases. Foremost among these are
methods dealing with belief propagation in trees.

In 1985 Gordon and Shortliffe [9] suggested that when evidence supports
singletons or disjoint subsets of the frame, a hierarchical network of subsets could
be pruned to a hierarchical tree. The assumption is that a strict hierarchy of
hypotheses can be defined from some subsets of 29 and that a system will only
receive information for these subsets. They proposed a method partly based on the
work of Barnett [2] for reasoning about hypotheses with hierarchical
relationships.

Barnett showed that simple support functions focused on singletons or their
complements can be combined with a time complexity, for each considered subset
of ©, that is linear in the size of the frame, |©|. In order to obtain linear time
complexity, it is assumed that simple support functions with the same foci have
already been combined.

Barnett’s method can be described as first combining all simple support
functions with equal foci and then, for each singleton, combining the resulting
simple support functions for and against the singleton. For each singleton, this
results in a separable support function with three focal elements, i.e. the singleton,
its complement and ©. Finally, the separable support functions are combined
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separately for each considered subset of ©® in such a way that a linear time
complexity is obtained;

Bel) = ¥ m(B) 2 K- Y I m®)
BcA D#BcA NB;=B 1<i<n
=K- IT m@).

D+ NA,cA 1<i<n

where K = (1 - k)'1 and £ is the conflict.

In the summation over NA;, A;e {{i},—={i}, 0}, in the last term there
are only two ways the intersection of all A;’s will not be empty. First, if there is
only one A; that is a singleton and all others are either complements of singletons
or offer support for the whole frame, then the intersection of all A; will be that
singleton. The intersection will obviously be empty if there is more than one A;
that is a singleton. Secondly, if there are no A;’s at all that are singletons and there
is at least one A, that offers support to the whole frame, then the intersection is a
subset of the frame that contains all elements of the frame except those elements
where there is an A; that offers support for the complement of the element’s
singleton. When all A;’s offer support for complements of singletons this subset
will be empty.

The summation can then be divided into three terms. The first term represents
the case where exactly one 4, is a singleton. The second term represents the case
where no A;’s are singletons. From the second term we subtract the third term, the
case where all A; offer support to complements of singletons. The second and third
terms correspond together to the second way the intersection will not be empty;
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From the last equality it is evident that belief for each instance can be calculated
in O(n) time, where K is calculated in a similar manner. One realizes that Barnett’s
technique will also work when the simple support functions are focused on subsets
or their complements if all subsets considered are disjoint.

Besides the assumption that the domain allows a hierarchical network to be
pruned to a hierarchical tree and that a system will only receive information about
those subsets of the frame that are in the tree, the method by Gordon and
Shortliffe is approximate in that it does not assign belief to subsets that are not in
the tree. It is this approximation that changes the time complexity from
exponential to linear.

The first step is borrowed from Barnett’s method. All evidences with equal
foci, confirming and disconfirming, are combined, with the only difference that
what Barnett did with simple support functions focused on singletons is done here
for all subsets of the frame that are in the tree, 7. The resulting basic probability
assignments are calculated for each subset by the simple formula

VilA;AAfe T.mA) = 1- [ (1-mA)).
Vil A; = 4,

Now there are two bpa’s for each subset of the frame that is in the tree, one
confirming the subset and one disconfirming it, we want to combine all bpa’s in
the entire tree. However, combining bpa’s where some focal elements are
complements of subsets in the tree might produce an intersection that is not a
subset or a complement of a subset that is in the tree. We begin with the
confirming bpa’s. These are easily combined since the intersection between two
focal elements is either empty or the smaller of the two sets. This is because of the
tree structure where the focal element of a child is a subset of the focal element of
the parent and where focal elements at different branches are disjoint. That is,
when m; is combined with m; and 4; is above A; in the tree the intersection of A;
with both focal elements of m; will be A;, since A JNA,; = ©@NA, = A,. Therefore
these bpa’s will not influence the calculation of mp(4; ) where mT( ) 1s the result
of the combination of all bpa’s. When m; is combined with m; and Ay is below A;
in the tree the intersections will be A; and A;, respectively, and when Ay is neither
above nor below A;, the intersections will be empty and A;, respectively. Thus,
mp(4;), A; # O, can be calculated as

myA) = K-myA)- H m{(©)

Vil A,z A;
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where

=2mi(Ai)- [T m®.

Vil Az A,

Finally, the disconfirming bpa’s are combined one by one with mp. When belief is
assigned to a subset, X, that is not in the tree this belief is reassigned to the
smallest subset, A;, such that X is a proper subset of A;, X CA;.

When a disconfirming bpa with focal element Ac is combmed with mp we
have the following.

* For subsets, X, equal to or below A; in the tree, belief will only be assigned
to X through its intersection w1th 0, i.e. YﬁA” #X. No belief will be
assigned to X N A since this intersection is empty

* For subsets, X, above A; in the tree X mAC may or may not belong to the
tree. If X r\AjC is in the tree then this subset will be assigned belief. If on
the other hand Xr\A]C is not in the tree then the belief assigned to XmA]C is
reassigned to the smallest subset, A;, such that XmAf CA,;. Since XmAC
contains elements from both branches of X this smallest subset will always
be X itself. Thus, X will be assigned belief from both intersections with the
focal elements, i.e. XNAf=XNnO =X,

* When the subset X is neither above, equal or below Aj, then the intersection
between X and the focal element AJC is X itself. Bes1des the belief assigned
by the intersection of X with the two focal elements of the disconfirming
bpa, X will also be supported by the intersection of AC with ¥ when A;cY
and X U A

Shafer and Logan [30] improved on the method by Gordon and Shortliffe.
They showed that, while the algorithm by Gordon and Shortliffe usually produced
a good approximation its performance was not as good when used with highly
conflicting evidence. Besides not being approximate, the algorithm by Shafer and
Logan also calculates belief for A7 of every partition, A;, that is in the tree, thus it
calculates the plausibility for all partitions in the tree. Both algorithms run in
linear time. Interestingly, Shafer and Logan showed that the linear time
complexity of their algorithm is linear in the number of the nonterminal nodes due
to the local computations of their algorithm and linear in the tree’s branching
factor due to Barnett’s approach.

The algorithm by Shafer and Logan can briefly be described as follows. First,
for each subset in the tree, combine all the evidences for the subsets and against
the subsets, respectively, Barnett style. The two resulting simple support functions
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for each node are then combined into a belief function with focal elements
{4, Af, 0}.
Then we propagate the belief in the tree.

» For each parent, A;, of terminal nodes we combine the belief functions for
all the children, store the belief in A; and Af at this parent node. This can
be done with Barnett’s method. These stored values will be used later when
we propagate belief downwards through the tree. We combine the resulting
belief function of the previous combination with the belief function for this
parent and store the beliefs in A; and A{ from the children and the parent at
the parent node. These values will be used when we continue propagating
belief upwards the tree. The procedure is repeated for the parents of these
parents and so on climbing up the tree until we reach and store these values
for the children of ©.

« At the top we combine the belief functions from all the children of © and
take one step down the tree to calculate the total belief in A; and A7 for all
children A; of ©.

 Finally, we climb down the tree step by step until we reach all terminal
nodes and calculate on the way the total belief in A; and A for all subsets
A, in the tree.

First, in the last step down the tree we calculated the total belief in A;
and A for a particular parent. When climbing up the tree we stored with
the same parent node the belief in A; and A; from the combination of all
belief functions below the parent. From these values we can calculate the
belief in A; and A from all belief functions that are not below the parent.

Secondly, for the parent, A;, we once again combine all belief
functions that are below the parent, as we did when we climbed up the tree,
but this time we find the belief in A}, AJ? and A; U A{, where A; is a child of
A;. This is again done with Barnett’s method.

Thirdly, the total belief in A; and Ac for a child is now found by
combining these two belief funcuons from the first and the second step, i.e.
the belief function of all subsets below the parent with the belief function
of all subsets not below the parent.

The algorithm by Shafer and Logan can handle evidence and calculate belief
in partitions of the form {A,A{} for all subsets, 4;, in the tree. It can also
calculate belief in partitions of the form C, v {A{}, where Cy 18 the set of
children of A,;. However, their algorithm can not handle evidence for C 4V {A7}.
Since these two types of evidence correspond to data and domain knowledge
respectively, this is a significant restriction. A generalization of the algorithm by
Shafer and Logan that manages to take domain knowledge into account is the
method for belief propagation in qualitative Markov trees by Shafer, Shenoy and
Mellouli [31]. In a qualitative Markov tree the children are qualitatively
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conditionally independent (Mellouli et al. [21]) given the parent, i.e. in
determining which element of a child is true, there is no additional information in
knowing which element of another child is true once we know which element of
the parent is true. Qualitative Markov trees can arise through constructing what
Shafer, Shenoy and Mellouli call the tree of families and dichotomies. This is
simply done by substituting each nonterminal node with subset A; in a hierarchical
tree by a parent-child pair with the dichotomy {A, A7} as subset at the parent and
the family C, U {A{} as subset at the child and furthermore substituting terminal
nodes with subset A; with the dichotomy {A,A¢} .

The algorithm for computing the total belief for every node in the tree of
families and dichotomies is very simple.

* We will propagate belief to every neighbor, i.e. parent or child, A; of every
node A; in the tree. We begin with the terminal nodes. Project the belief
functions stored at every terminal node to its parent. For all neighbors but
Aj, if belief functions have been projected to A; from these neighbors then
combine these belief functions and the belief function stored at A; with
Dempster’s rule and project the result towards A;. Whether or not belief
has been projected from A; to A; is without significance to this rule.

 Finally, for every node A; in the tree, when belief functions have been
projected from all neighbors of A; we calculate the total belief in A; by
combining all these projected belief functions and the belief function
stored at A;.

In [32] Shenoy and Shafer list the axioms under which local computations at
the nodes are possible.

Shafer, Shenoy and Mellouli point out that this computational scheme
reduces the time complexity from being exponential in the size of the frame to
being exponential in the size of the largest partition.

1.3.4.  Previous work on other topics

In any system it is of great importance to be able to construct explanations
for the result. Such a methodology has been developed by Strat and Lowrance
[35]. By using the discount operator we can for every body of evidence
numerically calculate the derivative of belief and plausibility of any hypothesis.
The more positive the derivative of support is, the more the body of evidence
argues for the hypothesis and the more negative the derivative of plausibility is,
the more the body of evidence argues against the hypothesis. Furthermore, it may,
for example, be important to identify those evidences that strongly disagree with
conclusions of an analysis. We can define consonance as
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1

Cons(mg) = T TEatng)

where Ent(mg) is Yager’s entropy [39];

Ent(mg) = — Y, me(A,) - logPls(4).
A, c®

The more negative the derivative of consonance for an evidence is, the more that
evidence disagrees with the overall results of the analysis.

The control problem discussed in Section 1.1 may be handled with evidential
reasoning methods. For instance, Wesley [37] suggests that control knowledge
sources may offer evidence about which control feature values have been
observed. These control knowledge sources are similar to any other knowledge
sources, except that their evidence concerns observations regarding the control of
possible actions. The evidences may consist of a disjunction of several control
feature values, each control feature value corresponding to a subset of all possible
actions. After combining all evidence from the control knowledge sources with
Dempster’s rule we may extend the result from feature values to actions. Choosing
the preferred action is now done by finding the action with the best evidential
interval.

Finally, regarding other theories, both bayesian and possibility theories can
be seen as subtheories of Dempster-Shafer theory (Klir [15]). When all focal
elements are singletons the evidential interval of every proposition will have zero
length, giving us a probability measure. This is when Dempster-Shafer theory
reduces to Bayesian theory. On the other hand if all focal elements are ordered by
set inclusion, ie. A, cA,c...cA,, Dempster-Shafer theory reduces to
Possibility theory with belief and plausibility as necessity and possibility
measures, respectively.
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2. OBJECTIVE OF THE WORK

The objective of this work is to develop methods that will offer decision
support to anti-submarine warfare intelligence analysts (Bergsten er al. [3, 4])
through sitnation assessment based on a quantitative analysis of available
intelligence reports, geographical knowledge and negative information from
knowledge of intelligence forces whereabouts. More specifically, the objective is
to support the intelligence analyst in those decisions that are based on knowledge,
like number of units and previous, current and predicted positions of those units.
Since every intelligence report contains information such as time, position,
velocity, direction and submarine type, that might be uncertain and in fact every
intelligence report itself comes with a general probability classification as to
whether the report is true or false, these methods must be able to reason under
uncertainty. Any such method should observe four guidelines of managing
uncertainty in intelligence analysis (Gulick and Martin [10]):

* In intelligence analysis we are dealing with uncertain data which makes it
fruitless to pursuit certainty in decision making.

* The source of uncertainty in data may arise directly from sensors or
indirectly from inference of several sources or from interpretations.
Whatever the case, this should be stated explicitly.

* We should apply an appropriate methodology to handle the uncertainty
explicitly.

* Finally, the uncertainty of different interpretations must be communicated
to the intelligence analyst. A suppression of uncertainty would result in a
false sense of security.

It is obvious that this makes management of uncertainty one of the most important
components of intelligence analysis.
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3. SUMMARY OF ARTICLESI-V

This thesis contains five results regarding multiple target tracks in Evidential
Intelligence Analysis. The first article [“On Nonspecific Evidence,” Int. J. Intell.
Syst. 8(6), 711-725, 1993] concerns the situation when we are reasoning with
multiple events which should be handled independently. In this situation we may
have evidences that are not only uncertain but their propositions may also be
weakly specified in the sense that it may not be certain to which of many different
events a proposition is referring. Thus, when a proposition is weakly specified it
may be difficult to directly judge if it and a second proposition are referring to the
same or to different events. If the proposition is not carrying any such
information, this would be impossible.

Instead we will use the conflict between two propositions as an indication
whether or not they are referring to the same event. This is an obvious choice
since the conflict measures the lack of compatibility among evidences and
propositions are more likely compatible when they are referring to the same event
as compared to the situation when they are referring to different events where the
actions are also most likely different. Consequently, the conflict will serve as a
distance measure between bodies of evidence.

The distance measure may be used when partitioning the evidences into
disjoint subsets. We will view the conflict within each subset not only as a
measure of the lack of compatibility among evidences within the subset but also
as an evidence against the current partitioning of the set of evidences, i.e. an
evidence against the partitioning. This is acceptable since a critique against a part
of the partitioning, the lack of compatibility among evidences, is a critique against
the entire partitioning.

We may also have uncertainties in our domain knowledge. That is, our
knowledge of the current number of events may only be probabilistic.
Accordingly, we will also have a domain dependent conflict from a probability
distribution about the number of events, partially conflicting with the actual
number of events. This conflict will also be seen as an evidence against the
current partitioning of the set of evidences.

The article establishes a criterion function of overall conflict when reasoning
with multiple events. With this criterion we may handle evidences whose
proposition is weakly specified. We will use the minimizing of overall conflict as
the method of partitioning the set of evidences into subsets representing the
events. This method will also handle the situation when the number of events are
uncertain.

The criterion function is derived from viewing the conflicts within each
subset and the domain conflict as evidences against the partitioning. Since the
combination of these evidences will yield a zero belief in the partitioning, the
most probable partitioning of evidences into disjoint subsets will correspond to
the maximum of the plausibility of possible partitionings. Thus, the criterion
function of overall conflict will be the difference, one minus the plausibility of
possible partitionings. We will call this the metaconflict function.

The method of finding the best partitioning is based on an iterative
minimization of the metaconflict function. Two theorems will significantly reduce
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the number of subsets for which we must find an optimal partitioning of
evidences. Firstly, if we first find the optimal partitioning for the number of
subsets where the domain conflict is smallest, » subsets, we need never consider
any solutions with fewer subsets, and if we then find the optimal partitioning for j
subsets where j > r, then we need never consider any further solutions where the
number of subsets are fewer than j, etc. Secondly, if we have an optimal
partitioning for some number of subsets we need never consider any solutions for
some other number of subsets where the domain part of the entire metaconflict
function is greater than the metaconflict of our best partitioning so far.

An algorithm for minimizing the metaconflict function is proposed. The
proposed algorithm is based on the one hand on the two theorems and on the other
hand on an iterative optimization among partitionings of evidence into disjoint
subsets. This approach is proposed in order to avoid the combinatorial problem in
minimizing the metaconflict function. In each step of the optimization the
consequence of transferring an evidence from one subset to another is
investigated.

After this, each subset of intelligence reports would then be referring tc a
different target and the reasoning can take place with each target treated
separately.

In the second article [“Specifying Nonspecific Evidence,” Manuscript] we
extend the results of the previous article. Here we will not only search for the
most plausible subset for each piece of evidence as was done in the first article. In
addition we will now also specify each piece of evidence by finding the
plausibility for every subset that the evidence belongs to the subset. This is done
by observing changes in cluster and domain conflicts when a piece of evidence is
moved out from, or brought into a subset.

We directly interpret the conflict in a subset as an evidence that there is at
least one piece of evidence that is placed in the subset but does not actually
belong to the subset; the first evidence. If some piece of evidence is taken out
from the subset the conflict decreases. This decrease in conflict is interpreted as if
there exists an evidence indicating that this piece of evidence that we took out
does not belong to the subset; the second evidence. The remaining conflict in the
subsets after this piece of evidence is taken out, is directly interpreted as another
evidence indicating that there is at least one other piece of evidence that is placed
in the remainder of the subset but does not actually belong to the remaining
subset; the third evidence.

We will derive the second evidence that indicates that our piece of evidence
does not belong to the subset. This is done by demanding that the belief in the
proposition that “there is at least one piece of evidence that does not belong to the
subset” should be equal in two different ways of looking at things. First, if that
belief is based on the first evidence, before our piece of evidence is taken out from
the subset, and secondly, if it is based on a combination of the second and third
evidences, after it is taken out from the subset. Since we know the value of the
first and third evidence and the second evidence is defined in such a way that a
combination of the second and third evidence yields the first one, we may
calculate the value of the second evidence.
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Similarly, if our piece of evidence after it is taken out from the subset is
brought into any another subset, its conflict will increase. This increase in conflict
is interpreted as if there exists an evidence indicating that this piece of evidence
does not belong to the new subset.

The domain conflict was interpreted as an evidence that there exists at least
one piece of evidence that either does not belong to any of the subsets, or if this
particular evidence happens to be placed in a subset by itself, as an evidence that
it does belong to one of the other subsets. Thus, the domain conflict is an evidence
indicating that the number of subsets is incorrect.

When a piece of evidence is in a subsets together with other evidences and it
is taken out from the subset and put into a new subset by itself we have a change
in the number of subsets and will observe an increase in domain conflict. We
interpret this increase as if there exists an evidence indicating that our piece of
evidence does not belong to this new subset.

Finally, if our piece of evidence is in a subset by itself and we take it out and
move it to some other subset we also have a change in the number of subsets and
we might have either an increase or a decrease in domain conflict. An increase is
interpreted as if there exists an evidence that our piece of evidence does belong to
the subset where it is placed and a decrease that it does not.

We will find such evidence regarding each piece of evidence and for every
subset.

When this is done we make a partial specification of each piece of evidence.
We combine all evidence from different subsets regarding this piece of evidence
and calculate for each subset the belief and plausibility that our piece of evidence
belongs to the subset. The belief in this will always be zero, with this exception,
since every proposition states that our evidence does not belong to some subset.
The exception is when our evidence is in a subset by itself and we receive an
increase in domain conflict when it is moved to an other subset. That was
interpreted as if there exists an evidence that our piece of evidence does belong to
the subset where it is placed. Then we will also have a nonzero belief in that our
piece of evidence belongs to the subset.

In the combination of all evidences regarding our piece of evidence we may
receive support for a proposition stating that it does not belong to any of the
subsets and can not be put into a subset by itself. That proposition is false and its
support is the conflict in Dempster’s rule, and also an indication that the evidence
might be false.

In a subsequent reasoning process we will discount evidences based on their
degree of falsity. If we had no indication as to the possible falsity of the evidence
we would take no action, but if there existed such an indication we would pay ever
less regard to the evidence the higher the degree was that the evidence is false and
pay no attention to the evidence when it is certainly false. This is done by
discounting the evidence with one minus the support of the false proposition.

Also, it is apparent that some evidences, due to a partial specification of
affiliation, might belong to one of several different subsets. Such a piece of
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evidence is not so useful and should not be allowed to strongly influence the
subsequent reasoning process within a subset.

If we plan to use an evidence in the reasoning process of some subset, we
must find a credibility that it belongs to the subset in question. An evidence that
cannot possible belong to a subset has a credibility of zero and should be
discounted entirely for that subset, while an evidence which cannot possibly
belong to any other subset and is without any support whatsoever against this
subset has a credibility of one and should not be discounted at all when used in the
reasoning process for this subset. That is, the degree to which an evidence can
belong to a subset and no other subset corresponds to the importance the evidence
should be allowed to play in that subset.

Here we should note that each original piece of evidence regardless of in
which subset it was placed can be used in the reasoning process of any subset that
it belongs to with a plausibility above zero, given only that it is discounted to its
credibility in belonging to the subset.

When we begin our subsequent reasoning process in each subset, it will
naturally be of vital importance to know to which event the subset is referring.
This information is obtainable when the evidences in the subset have been
combined. After the combination, each focal element of the final bpa will in
addition to supporting some proposition regarding an action also be referring to
one or more events where the proposed action may have taken place. Instead of
summing up support for each event and every subset separately, we bring the
problem to the metalevel where we simultaneously reason about all subsets, i.e.
which subsets are referring to which events. In this analysis we use our domain
knowledge stating that no more than one subset may be referring to an event.
From each subset we then have an evidence indicating which events it might be
referring to. We combining all the evidence from all different subsets with the
restriction that any intersection in the combination that assigns one event to two
different subsets is false. This method has a much higher chance to give a clearly
preferable answer regarding which events is represented by which subsets, than
that of only viewing the evidences within a subset when trying to determine its
event.

The extension in this article of the methodology to partition nonspecific
evidence developed in the first article imply that an evidence will now be handled
similarly by the subsequent reasoning process in different subsets if these are of
approximately equal plausibility for the evidence. Without this extension the most
plausible subset would take the evidence as certainly belonging to the subset
while the other subsets would never consider the evidence at all in their reasoning
processes.

In the third article [“Finding a Posterior Domain Probability Distribution by
Specifying Nonspecific Evidence,” Manuscript] we extend the work of the
previous two articles. We aim to find a posterior probability distribution regarding
the number of subsets by combining a given prior distribution with evidence
regarding the number of subsets that we received from the evidence specifying
process.

We use the idea that each single piece of evidence in a subset supports the
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existence of that subset to the degree that this evidence supports anything at all
other than the entire frame. In the evidence specifying process of the previous
article we discounted each single evidence for its degree of falsity and its degree
of credibility in belonging to the subset where it was placed. For each subset
separately, we now combine all evidence within a subset and the resulting
evidence is the total support for that subset.

The degree to which the resulting evidence from this combination in its turn
supports anything at all other than the entire frame, is then the degree to which all
the evidence within the subset taken together supports the existence of this subset,
i.e. thatit is a nonempty subset that belongs to set of all subsets.

For every original piece of evidence we derived in the previous article an
evidence with support for a proposition stating that this piece of evidence does not
belong to the subset. If we have such support for every single piece of evidence in
some subset, then this is also support that the subset is false. In that case none of
the evidences that could belong to the subset actually did so and the subset was
derived by mistake. Thus, we will discount the just derived evidence that support
the existence of the subsets for this possibility.

Such discounted evidences that support the existence of different subsets,
one from each subset, are then combined. The resulting bpa will have focal
elements that are conjunctions of terms. Each term give support in that some
particular subset belongs the set of all subsets, i.e. that it is a nonempty subset.

From this we can create a new bpa that is concerned with the question of how
many subsets we have. This is done by exchanging each and every proposition in
the previous bpa that is a conjunction of r terms for one proposition in the new
bpa that is on the form |y| > r, where ¥ is the set of all subsets. The sum of support
of all focal elements in the previous bpa that are conjunctions of length r is then
awarded the focal element in the new bpa which supports the proposition that
Ixl =r.

A proposition in the new bpa is then a statement about the existence of a
minimal number of subsets. Thus, where the previous bpa is concerned with the
question of which subsets have support, the new bpa is concerned with the
question of how many subsets are supported. This new bpa gives us some opinion
that is based only on the evidence specifying process, about the probability of
different numbers of subsets.

In order to obtain the sought-after posterior domain probability distribution
we combine this newly created bpa that is concerned with the number of subsets
with our prior domain probability distribution which was given to us in the
problem specification.

Thus, by viewing each evidence in a subset as support for the existence of
that subset we were able to derive a bpa, concerned with the question of how
many subsets we have, which we could combine with our prior domain probability
distribution in order to obtain the sought-after posterior domain probability
distribution.
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The fourth article [“Dempster’s Rule for Evidence Ordered in a Complete
Directed Acyclic Graph,” Int. J. Approx. Reasoning 9(1), 37-73, 1993] derives a
special case algorithm making it computationally feasible to analyze the possible
tracks of a target. When it is uncertain whether or not the propositions of any two
evidences are in logical conflict we may model the uncertainty by an additional
evidence against the simultaneous belief in both propositions and treat the two
original propositions as non-conflicting. This will give rise to a complete directed
acyclic graph with the original evidences on the vertices and the additional ones
on the edges, where the vertices represent states and the edges transitions between
states. We may think of the vertices as positions in time and space, the edges as
transitions between these positions and the sequence of states as a path along
which some object may have moved. Transitions are only possible from a vertex
with a lower index to one with a higher. The propositions of the evidences on the
edges may, for example, tell us that the time difference between the states may be
to small in relation to their distance.

We are interested in finding the most probable sequence of vertices through
the graph, i.e. the most probable path. The frame of discernment is the set of all 2"
possible different paths through the graph of n vertices, where transitions are
possible only from lower to higher ranked vertices. At every vertex we have
evidence supporting the proposition that this vertex is included in the sequence.
For every pair of vertices there is an edge between the vertices that is associated
with an evidence expressing the degree of doubt about a direct transition between
the two vertices. All the corresponding belief functions are simple support
functions. Our interest is the problem where one begins with a basic probability
assignment for all vertices and against all directed edges, i.e. evidence that the
path does not include the first vertex of the edge or that it does not include the last
vertex of the edge or that the path does include at least one vertex between the
first and last vertices of the edge, thus excluding any direct transfer between the
vertices.

The algorithm reasons about the logical conditions of a completely specified
path through the complete directed acyclic graph. It is hereby gaining
significantly in time and space complexity compared to the step by step
application of Dempster’s rule. Here, we are making the assumption that only one
path at a time is permitted through the graph, i.e. two objects cannot pass through
the graph at the same time. The problem of analyzing paths of multiple objects can
be solved by the partitioning method of the first article after which we may reason
about possible paths separately for each partitioning.

We will first explain the mathematical reasoning behind this algorithm,
which calculates support and plausibility in the following steps: unnormalized
plausibility, unnormalized support, conflict and finally support and plausibility
normalized by the conflict.

Let us start with the unnormalized plausibility and see what is sufficient to
make a path plausible. Plausibility for a path means to which degree a path is
possible, i.e. to which degree no known factors speak against this path. There are
only two types of items which speak against a path, the positive evidence for
vertices that are not included in the path and the negative evidence against edges
between vertices that are included in the path. This means that the degree to which
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we do not assign support to these evidences equals the degree to which the path is
possible.

The algorithm for support is much more complicated than the one for
plausibility. It is not only necessary to find out which evidence speaks against the
path, it is also necessary to insist that the evidence of the vertices and edges that
are included in the path speaks in favor of it.

We have the following conditions. Transitions between consecutive vertices
in the path must be possible, i.e. the evidences that offer support against those
edges disconfirms the path. Furthermore, no vertices outside the path are
permitted to be visited. Thus, evidences that offer support for these vertices will
also disconfirm the path. These are the same arguments as for the plausibility.

But even to the degree that these evidences do not disconfirm the path, we
can not be sure that a vertex outside of the path is not visited. However, certain
evidences will confirm the path. For instance, no transitions should be possible
from vertices before the first vertex of the path to this vertex, i.e. all evidences
against edges from vertices before the first vertex of the path to this vertex will
confirm the path. Also, no transition should be possible from the last vertex of the
path to vertices after this vertex. Furthermore, for the vertices not belonging to the
path which are located between vertices of the path we state that either, no
transition should be possible to these vertices from vertices in the path, or if such
a transition is possible then it should not be possible to rejoin the path at its
following vertex.

Finally, the vertices that belongs to the path offer confirmation to the path.
The first and the last vertex of the path confirm the path by their proposition. For
every intermediate vertex in the path there are two different possibilities. The
evidence at the vertex confirms the path to some degree. To the degree the
evidence does not offer support to the path, the path may still be supported if the
evidence against edges is speaking against all other ways from the last vertex
visited before this vertex to the first vertex visited after this vertex.

The time complexity of support and plausibility for a single completely
specified path when measured in the size of the frame is O(|©)] - log|®|) compared
to O(|6| I"g'el) of the brute force application of Dempster’s rule.

The fifth and final article [“On Rho in a Decision-Theoretic Apparatus of
Dempster-Shafer Theory,” Manuscript] concerns a decision-theoretic apparatus
for Dempster-Shafer theory developed by Thomas M. Strat. In this apparatus,
expected utility intervals are constructed for different choices. To find the
preferred choice when the expected utility interval of one choice is included in
that of another, it is necessary to interpolate a discerning point in the intervals.
This is done by a parameter p. As a result, we will end up with a set of expected
utility intervals ordered by interval inclusion, [E,..EjlcIE,.E;lc...

clE, ..E 1c[0,1]. Here we have renumbered the choices by the order of interval
inclusion. When we have several choices they may be preferred in different
intervals of p. Let us call the point where choices i and j are equally preferable Pij-
We already know that choice 1 is preferred when p = 0, since this choice has the
highest lower expected utility among all choices, and it will remain the preferred
choice while p is less than min; py;, the smallest of all p;;’s and the first point of
preference change. Beyond this point, choice i will be preferable over choice 1.
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Continuing, choice i will now be preferred up to the point where p = min; pj;, ete.
Thus, the probability for the choices to be preferred are not equal. This probability
varies with the length of the interval under which it is preferred.

In Strats apparatus, an assumption has to be made about the value of p. In this
article we demonstrate that it is sufficient to assume a uniform probability
distribution for p to be able to discern the most preferable choice. All we know
about the value of p is that it is a parameter the belongs to the set of real numbers
between 0 and 1, p € [0, 1], i.e. we know that our frame is that same set of
numbers, © = [0, 1]. However, we demand that the nonspecificity of our new
distribution should be equal to the nonspecificity of the original assignment for
any size of the frame. This means that we have only one continuous part of the
probability distribution for p, and that it covers the entire interval from O to 1, i.e.
a uniform probability distribution.

If we are only interested in a simple maximizing of utility then adopting a
uniform probability distribution for p yields the same result as setting p = 0.5.
Then, for simplicity, we might as well set p = 0.5 and choose the alternative that
yields the highest expected utility as our decision.

In a situation with several different decision makers we might sometimes be
more interested in having the highest expected utility among the decision makers
rather than only trying to maximize our own expected utility. If the number of
alternatives is equal to the number of decision makers then all we have to do is to
choose the alternative that is preferred under the maximal interval length. That
will be the choice with the highest probability of giving us the highest expected
utility. When the number of decision makers are less than the number of choices
the situation becomes much more complex. We must here take into account not
only the choices already done be other decision makers but also the rational
choices we can assume to be made by later decision makers. The preference of
each alternative to some decision makers is shown to be the probability that the
alternative has the highest expected utility after all decision makers have made
their choices.
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4. CONCLUSIONS

In supporting intelligence analysts in anti-submarine warfare we have developed a
method based on Dempster-Shafer theory for analyzing tracks of multiple
submarines. This method may be used to obtain general domain knowledge about
operations as well as for analyzing a specific operation before making predictions.

The method partitions intelligence reports into subsets. Each subset is here
representing a possible submarine. The method is based on minimizing a criterion
function of overall conflict in partitions of intelligence reports. It is able to reason
simultaneously about the optimal number of submarines, which may be uncertain,
and the optimal partition of intelligence reports among the submarines. We made a
partial specification of each intelligence report when it was uncertain to which
submarine the report might belong. This specification was made by observing
changes in cluster and domain conflicts when the intelligence report was moved
from one subset to another. We also found probabilities regarding the number of
submarines by combining our prior knowledge with results received from the
specifying process.

Then, for each possible submarine a new algorithm calculates support and
plausibility for possible tracks through the graph of positions of intelligence
reports within the corresponding subset. When calculating the probability of a
possible track we take account of both positive evidence of intelligence reports
and negative evidence against the possibility of transitions between the positions
of those reports. Finally, for each possible submarine its possible tracks are
ranked according to their support, giving intelligence analysts a chance to reflect
upon the current situation and its recent history before making predictions about
the future.

By applying Dempster-Shafer theory to the field of intelligence analysis and
in doing so giving the intelligence analysts the opportunity to directly investigate
the partial specification of intelligence reports and to investigate and influence the
partitioning of intelligence reports as well as all further results based on that
partitioning we believe we have followed the four guidelines of managing
uncertainty in intelligence analysis (Gulick and Martin [10]).
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When simultaneously reasoning with evidences about several different events it is neces-
sary to separate the evidence according to event. These events should then be handled
independently. However, when propositions of evidences are weakly specified in the
sense that it may not be certain to which event they are referring, this may not be
directly possible. In this article a criterion for partitioning evidences into subsets repre-
senting events is established. This criterion, derived from the conflict within each subset,
involves minimizing a criterion function for the overall conflict of the partition. An
algorithm based on characteristics of the criterion function and an iterative optimization
among partitionings of evidences is proposed. © 1993 John Wiley & Sons, Inc.

I. INTRODUCTION

A problem of major importance when reasoning with uncertainty is that
in many situations evidences will not only be uncertain but their propositions
may also be weakly specified in the sense that it may not be certain to which
event a proposition is referring. In some cases the propositions may not carry
any such information, making it impossible to differentiate between different
events. Furthermore, the domain knowledge regarding events may be uncertain.
For instance, our knowledge of the current number of events may only be
probabilistic.

When reasoning about some proposition it is crucial not to combine evi-
dences about different events in the mistaken belief that they are referring
to the same event. For this reason every proposition’s action part must be
supplemented with an event part describing to which event the proposition is
referring. The event part may be more or less weakly specified dependent on
the evidence. If the evidences could be clustered into subsets representing
events that should be handled separately from the others the situation would
become manageable.

A simple example will illustrate the terminology. Let us consider the bur-
glaries of two bakers’ shops at One and Two Baker Street, event 1 (E,) and
event 2 (E,), i.e., the number of events is known to be 2. One witness hands
over an evidence, specific with respect to event, with the proposition: ““The
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burglar at One Baker Street,”” event part: E,, “‘was probably brown haired
(B),” action part: B. A second anonymous witness hands over a nonspecific
evidence with the proposition: ‘‘The burglar at Baker Street,”” event part: E;,
E,, “‘might have been red haired (R),” action part: R. That is, for example:

evidence I: evidence 2:
proposition: proposition:
action part: B action part: R
event part: E, event part: E,, E,
m(B) = 0.8 m(R) = 0.4
m(®) = 0.2 m(®) = 0.6

The aim of this article is to establish, within the framework of Dempster—
Shafer theory,'~ a criterion function* of overall conflict when reasoning with
multiple events. With this criterion we may handle evidences whose proposition
is weakly specified in its event part. We will use the minimizing of overall conflict
as the method of partitioning the set of evidences into subsets representing the
events. This method will also handle the situation when the number of events
are uncertain.

An algorithm for minimizing the overall conflict will be proposed. The
proposed algorithm is based, on the one hand, on characteristics of the criterion
function for varying number of subsets and, on the other hand, on an iterative
optimization among partitionings of evidence for a fixed number of subsets.

This algorithm was developed as a part of a multiple-target tracking algo-
rithm for an antisubmarine intelligence analysis system.>¢ In this application a
sparse flow of intelligence reports arrives at the analysis system. These reports
carry a proposition about the occurrence of a submarine at a specified time
and place, a probability of the truthfulness of the report, and may contain
additional information such as velocity, direction, and type of submarine.

The intelligence reports are never labeled as to which submarine they are
referring to but it is of course possible to differentiate between two different
submarines of two intelligence reports if the reports are known to be referring
to different types of submarines. Moreover, times and positions of two different
reports may be such that it is impossible to travel between the two positions
at their respective times and therefore possible to differentiate between the two
submarines. However, when this is not the case differentiation will not be
possible. Instead we will use the conflict between the two intelligence reports
as a probability that the two reports are referring to different submarines.

Before analyzing the possible tracks for an unknown number of submarines
we want to separate the intelligence reports into subsets according to which
submarine they are referring to and then analyze the possible tracks for each
submarine separately. The most probable partition of reports into subsets is
done by minimizing the criterion function of overall conflict.

In this application the action part of the intelligence report proposition
states that a submarine was at the indicated time and position while the event
part of a report is informal, often weakly specified and contained in the informa-
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tion that to some degree separates reports, such as time and position of the
other reports, nonfiring sensors placed between reports, etc.

In Sec. II we will discuss how to use the overall conflict for separating
nonspecific evidences. Following this, the criterion function for overall conflict
of multiple events will be investigated (Sec. III). We then discuss the behavior
of the criterion function in iterative optimization (Sec. IV). Finally, we propose
an algorithm for partitioning evidences into subsets (Sec. V), based on the
criterion function and a hill-climbing-like iterative optimization. We conclude
with a detailed example (Sec. VI).

II. SEPARATING NONSPECIFIC EVIDENCE

When we have evidences with conflicting event parts we would like to
separate them into disjoint subsets. After this, the reasoning should take place
with the evidences in each subset treated separately. However, when the event
part of a proposition is weakly specified with respect to which of many different
events it is referring, it may be difficult if not impossible to directly judge
whether or not it and a second proposition are referring to the same event. If,
for instance, the first proposition is referring to events 1 or 2 and the second
proposition is referring to events 1 or 3 it is uncertain whether or not they are
referring to the same event. Thus, it will not be possible to separate evidences
based only on their proposition’s event parts.

Instead we will separate evidences by their conflict. This is an obvious
choice since the conflict measures the lack of compatibility among evidences
and the action parts of propositions are more likely compatible when they are
referring to the same event as compared to the situation when they are referring
to different events where the actions are also most likely different. Evidences
are considered conflicting when they have empty intersections between repre-
sentations of the proposition action parts with identical specific proposition
event parts, i.e., propositions certainly referring to one and the same event.
However, since all calculations take place within subsets where the evidences
are presumed to be referring to the same event, we will have a conflict in two
different situations. Firstly, we have a conflict if the proposition action parts
are conflicting regardless of the proposition event parts since they are presumed
to be referring to the same event. Secondly, if the proposition event parts are
conflicting then, regardless of the proposition action parts, we have a conflict
with the presumption that they are referring to the same event. In order to
avoid that evidences with specific and identical event parts end up in different
subsets we may precombine these evidences and henceforth handle them as
one evidence. The idea of using the conflict as distance measure between bodies
of evidence has been suggested earlier by Lowrance and Garvey’ and by Lesh.®

The conflict within each subset will not only be seen as a measure of the
lack of compatibility among evidences within the subset but also as an evidence
against the current partitioning of the set of evidences, x, into the subsets X;-
This is an intuitively correct definition since a critique against a part of the
partitioning, the lack of compatibility among evidences, is a critique against
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the entire partitioning, i.e., an evidence against the partitioning. A zero conflict
is no evidence against the partitioning and a conflict of one is an evidence that
the partitioning is impossible. The frame of discernment is here ® = { Partition,
—Partition}. That is, the basic probability assignment against the partitioning
from subset ¥; is

m, (—Partition) O Conf({e;| e, € x.),

m, () 41— Conf({¢;|e; € x;})

where {¢;|e; € x;} is the set of evidences belonging to subset x, and Conf(-) is
the conflict, k, in Dempster’s rule.

When the evidences are not simple support functions the conflict measure
might, at first glance, seem odd as a distance measure between bodies of
evidence, since two nonsimple support functions with identical sets of focal
elements may have a nonzero conflict. However, this need not be nonintuitive,
as shown by the case of four simple support functions, the two first identical
and in conflict with the two identical remaining simple support functions. If
the two first and the two last functions are combined then a conflict measure
with the intuitive properties of a distance measure is obtained, when the two
resulting simple support functions are combined. If, on the other hand, we
combine the first with the third and the second with the fourth, we receive
two identical nonsimple support functions whose combination will result in a
nonzero conflict. Clearly, if the conflict measure was intuitive as distance mea-
sure in the first combination order then it is also intuitive in the second. Then,
at least for support functions that are derivable from simple support functions,
it is not nonintuitive to have a nonzero distance measure for support functions
with identical sets of focal elements.

In addition there will also be a domain-dependent conflict from a probability
distribution about the number of subsets, E, conflicting with the actual current
number of subsets, #x;. This conflict will also be seen as an evidence against
the current partitioning of the set of evidences into the subsets,

mp(—Partition) 4 Conf({E}, #x:),

|

mp(@) = 1 — Conf({E}, #x,).

Il

Fusing these evidences with Dempster’s rule yields

m(—Partition) = 1 — [I — mp(—Partition)] - [ ] [1 — m, (—Partition)],

i=1
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r

m(®) = [1 — mp(—Partition)] - l_[ [1— mx((ﬁPartition)]

i=1
with belief and plausibility of the partitioning being

Bel(Partition) = 0,

Pls(Partition) = [1 — mp(—Partition)] - H [1 - mxl(ﬁPartition)].

i=1

Finding the most probable partitioning of evidences into disjoint subsets
representing different events will then be the problem of maximizing the plausi-
bility of possible partitionings, or the dual problem of minimizing one minus
the plausibility. The difference, one minus the plausibility of a partitioning, will
be called the metaconflict of the partitioning.

III. METACONFLICT AS A CRITERION FUNCTION

Let us define the metaconflict function, derived in the preceding section,
whose minimization per definition leads to the optimal partitioning of evidences
into disjoint subsets.

DEFINITION. Let the metaconflict function,

Mcf(roep ey, o ve) 21— (1 —¢)- [T =cp, (1)
i=1

be the conflict against a partitioning of n evidences of the set x into r disjoint
subsets x; where

co = >, m(E) )

i#r

is the conflict between r subsets and propositions about possible different
number of subsets and

¢ = E Hm(?f)

10T=8 ey
is the conflict in subset i, where I = {ej’?'|ej € x;} is a set of one focal element
from the support function of each evidence in ;.

Some characteristics of the metaconflict function will be useful when choos-
ing the number of subsets of x for which we must find an optimal partitioning
of evidences.

The first theorem below states that if we have an optimal partitioning for
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r subsets, then we need never consider any solutions with fewer than r subsets
when the basic probability number for r subsets is greater than the basic proba-
bility number for fewer subsets. These solutions need never be considered
because the nondomain part of the metaconflict function always increases with
fewer subsets and when the basic probability number for fewer subsets is
smaller than the basic probability number for r subsets, then the domain part
of the metaconflict function for fewer subsets has also increased, yielding an
overall increase in the metaconflict. The significance of this theorem is that it
can be applied iteratively. If we first find the optimal partitioning for the number
of subsets where m(E,) is greatest, we need never consider any solutions with
fewer subsets than r, and if we then find the optimal partitioning for the greatest
m(E;) where j > r, then we need never consider any further solutions where
the number of subsets are fewer than j, etc.

The second theorem states that if we have an optimal partitioning for some
number of subsets we need never consider any solutions for some other number
of subsets where the domain part of the metaconflict function is greater than
the metaconflict of our present partitioning. This theorem will also be used
iteratively as we gradually find better optimizations, step by step eliminating
some of the possible solutions where the number of subsets is greater than with
our present partitioning.

Together, these two theorems will significantly reduce the number of itera-
tive optimizations we must carry through for different numbers of subsets.

THEOREM 1. For all j with j < r, if m(E;) < m(E,) then min Mcf(r, e;, e,,

., e,) <min Mcflj, e;, e5, . . ., e,).

Proof. From the fact m(E;) < m(E,) and (2) it follows

co =2, mE) =Y mE) + m(E) — mE,)<> mE) = c;. 3)

i#r i#f i)

From (3) and by the definition of metaconflict (1) it is sufficient that
J r
Vimax [[(1 — ¢))=max [][ (1 - ¢)
i=1 i=1

for min Mcf(r, e;, e,, . . . , e,) to be less than min Mcf(j, e;, 5, . . . , €,).
This is equivalent with

Jj+1

J
Vimax [[(1 — ¢)=max [] (1 - ¢).
i=1

i=1

It is sufficient to show that the partition into j subsets that yields the maximum
is less than or equal to any partition into j + 1 subsets.

Let the partition into the j first of the j + 1 disjoint subsets be unchanged
from the optimal partition into j subsets with the exception that one evidence
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is moved from one of the subsets with more than one evidence, say x;, to

subset x;. ;. There is, with only one evidence, no conflict in Xj+15 Cj+1 = 0.
Then

J+1 J J
[Ta-c¢)= 1’[1(1 —c)=(1 —ck)-ﬂl(l -c)
i=1 i= i=

k
J T_Ck J J
:(1—ck)-ﬂ(1—c;):l Jla—=eh=1la =)
i=1 - i=1 i=1

#k

since the conflict in x, after moving out an evidence, ¢, is always less than or
equal to the conflict before moving, c;,.

THEOREM 2. For all j, if min Mcf(r, e, e,, . . . , e,) < 2. m(E;) then
min Mcf(r, ey, e,, . . . , e,) < min Mcf(j, e,, €5, . . . ,e,).

Proof. From the condition of the theorem and by (1) we have

min Mcf(r, e, e5,. . . ,e,) <> m(E,)
i#j
min Mcf(j, e, €5, . . . ,e) + [[(1 = c) =1
= i#
[Ta—e
i#]
- minMcfGoee.. . . .e)
[Ta—e)
i#j
<minMcf(j,e;,e,,. . . ,e,).

There are also two theorems regarding the stability of an optimal solution,
i.e., that the partition of the optimal solution can not self-splinter into new
subsets, Theorem 3, and that the partition is invariant with respect to evidence
incompatible with the partition, Theorem 4.

Since the nondomain part of the metaconflict function decreases with the
number of subsets it is only the domain conflict part of the metaconflict that
prevents the number of subsets to be equal to the number of evidences. Thus
whether or not a partitioning of evidences is stable depends on the relation
between these conflicts.

THEOREM 3. A partitioning is stable, i.e., the metaconflict increases if any
evidence is removed from its subset to form a new subset, if the relative change
in domain conflict is higher than all relative conflict changes of the subsets.

Proof. 1f an evidence e, is removed from x; and included into a new subset
X+ the metaconflict would change to

Il

-0 =) - (=cH)-TTUa=cp

k#i

1= =cp)-U=c)-[]1=cp

k=i

Mcf*
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[ =c)-A=c)—(1—-c)-(1 —c,-)]-kg_(l )

=Md+uq—c@+@?—m—«ﬁmf—%mm!]u—q)
(i
The partition is stable if Vi. Mcf* > Mcf. That is, if

(g — o) _(corc;—cf-cf) = (cf = ¢)

Vi.
1 “‘CO I_Co
. (cf — )
>cf - > ———.
1 - Ci

Finally, a new evidence which is uncompatible with all subsets and intro-
duced into its own subset will not change the partition.

THEOREM 4. If P is a unique optimal partition of the set of evidences, ¥,
and e, ., a new evidence which is highly conflicting with each subset ¥; is
introduced into its own subset x,.,. Then the optimal partition of x U {e, .}
is Pl{e,.}.

Proof. The optimal partition of the new set of evidences is found by minimiz-
ing Mcf*(r + 1, e;, e,, . . . , e,,,). However, since ¢, ., is introduced into
its own subset x,, |, a subset without conflict, this can be rewritten as a function
of the minimization of the old metaconflict, Mcf(r, €;, €5, . . . , €,);

min Mcf*(r + 1, e,,¢5,. . . ,€,.1)
r+1

=minl —(1—c)-[](1=¢)
i=1

:minl—(l—cg‘)-ﬁ(l—ci)
i=1

i 1 — ¢ r
=minl — (I =cy- ] =¢
) i=1
. - cf
=minl — (1 — Mcf(r,e;, ey, . - . ,€,)]
1-C0
1 —cf .
=1- “[1 — min Mcf(r,e;, ey, . - . ,€,)].
I — ¢

That is, finding the optimal partition of x U {e,, ;} when e, is introduced into
its own subset is done by finding an optimal partition of x. Since there is only
one such partition, P, the optimal partition of x U {e, .} is P/{e, . }.

IV. CONDITION FOR ITERATIVE OPTIMIZATION

For a fixed number of subsets a minimum of the metaconflict function can
be found by an iterative optimization among partitionings of evidences into
different subsets. This approach is proposed in order to avoid the combinatorial
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problem in minimizing the metaconflict function. In each step of the optimization
the consequence of transferring an evidence from one subset to another is
investigated. If an evidence e, is transferred from x, to x; then the conflict in
X;» C; increases to

cf=¢+ Em(e{;)'m(A,\.).
AL E x)|Ac# D
eh€e, A Nel =0

with new focal elements and basic probability assignments

m*(A;) = m(A,) - >, m(e?)
E‘ZEE‘(AA[\. = AAﬂ 6’5

and

m*(A, N eh) = m(Ay) - >, m(e?)
ehEe, ]AA#AAﬂep

where {4,} are the focal elements before the transfer of e,and {A;, e N A}
are the focal elements after the transfer. The conflict in x;, ¢; decreases to

ct=c¢ — Zm(eZ)-m*(Ak)
A,\.Ex,» AI‘#Q
ebEe, A Nel =0

where

m*(A,) = m(Ak)/E m(e?)
ehEe, A=A Ner

Here, {A,} are the focal elements after the transfer of e,and {A,, e/ N A} are
the focal elements before the transfer. That is, we ﬁnd the basic probablhty
assignment of the focal elements as if the evidence was not included in x; and
calculate the additional conflict created by transferring the evidence to X;. This
additional conflict is then deducted from the conflict, ¢;, to calculate the conflict
after having transferred the evidence from x;, c¥. Given this, the metaconflict
is changed to

Il

Mcf*=1-(0-c)-(A=c)-A—-cH[]U-cp

k#i,j
1-Q —co)-]kI(l — )
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+ (1 —Co)'<I;[(1 —c)— (0 =cH- —c;“)-kn (1 —ck)>
#i.j
=Mcf+ (1 —cp) [(01-c)-(1=¢)
(1 =)= H 1= cp.

k#*i,j

The transfer of e, from ¥; to x; is favorable if Mcf* < Mcf. From the last
expression, this is the case if

Q=c) =)< —=cF-(—cf).
Rewriting this as

— ¥ -
1 cj>1 c;

L—¢ 1 —¢r
we substitute ¢ and ¢ with their expressions

1 —c¢ - E m(e?) - m(Ay)

eZEqukﬂe§=@> 1 - ¢
=g 1= c; + 2 m(e?) - m*(Ay)
AkEXiAk#@
erEe A Neh =D
which yields
>, mle?) - m(A,)
| efE€e,|ANel = - 1
I=q > mle?) - m*(Ay)
AkEXiAk#Q
eh€e A Nel =0
1+
l—Ci

Finally, we conclude that the transfer of e, from y; to x; is favorable if

>, m(e?) - m*(A,)

Em(eg)m(Ak) AL EX; Ak#g
A E XA~ D eZEqukﬂe‘;:@
e‘,;Equkﬂef]=@< 1 - ¢
l-g > meb) - m*(Ay)
AkEX,-Ak#@
- ehEe, A Nef =0

l—C,-
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Let us call these quotients pf and p¢ respectively, i.e., it is favorable to transfer
e, from x; to x; if p? < p{. It is, of course, most favorable to transfer e, to Xy,
k # i, if Vj. p{ = p?. It should be remembered that this analysis concerns the
situation where only one evidence is transferred from one subset to another.
It may not be favorable at all to simultaneously transfer two or more evidences
which are deemed favorable for individual transfer. It can easily be shown
that when several different evidences are favorable to transfer it will be most
favorable to transfer the evidence e, that maximizes (1 — pf)/(1 — p¥).

V. AN ALGORITHM FOR MINIMIZING METACONFLICT

The algorithm for finding the partitioning of evidences among subsets that
minimizes the metaconflict is based on Theorems 1 and 2 of the metaconflict
function for finding the optimal number of subsets and an iterative optimization
among partitionings of evidences for a fixed number of subsets. The iterative
part of the algorithm, step 4 in the algorithm below, guarantees, like all hill-
climbing algorithms, local but not global optimum.

Algorithm. Let S be the set of natural numbers less or equal to the number
of evidences and 7 the empty set.

L. Calculate Vr. 3., m(E,), the conflict against a partitioning of the evidences into

r subsets.

2. Letr = jlmineg 3. m(E;).
3.T=T+{r}, S=S—-{r,jli<rjeE S}
4. Calculate min Mcf(r, e,, e, . . . , e,).

4.1. Make an initial partition equal to the final partition of the last calculation
of Mcf into the fist t subsets with the exception of moving the r — t most
highly conflicting evidences from these subsets, updating the conflicts after
each movement, one into each of the new r — t subsets. If it is the first
calculation make any partition with at least one evidence in each subset.
Calculate Mcf of the current partition.

42. Lett =r. If r = 1goto4.5.

4.3. For q = 1 to n. Suppose that e, is currently in x;.

43.1. If [x;| = 1 go to 4.3 else calculate for 1 < j < r,

[ S mie) - m(a)
AkEXJ Ak?ég
ehEey A Nel =T
—> J#I
J 1 - ¢
Pl =Y 2 mleh) - m*(A,)
A/(EXI Ak;é@
ehEe|ANel =

1 — ¢

> m(eb) - m*(Ay)
ALExi|A, #D
eh€e,|ANeb =0

s j=1

L1+ 1 — ¢
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4.4. Transfer e, from x; to x;, k # i, if

1—pf _1-pk

V. =
YT T Ty

where Yj. p} < p¥
4.5. Update Mcf, c; and c;,.
4.6. If Mcf is unchanged in step 4.5 then go to 5 else go to 4.3.

5.85=8—-{vjlj>r 1
> m(eX) > min Mcf(r, e, e5,. . . ,e,)
2
6. If S # J then go to 2 else answer min,cy Mcf(t, ey, e;, . . ., €,).

VI. AN EXAMPLE

Let us, as an illustration of the problem solved in this article, consider a
simple example of two possible burglaries, with a couple of evidences with
simple support functions and some of the evidence weakly specified in the
sense that it is uncertain to which possible burglary their propositions are
referring. Assume that a baker’s shop at One Baker Street has been burglarized,
event 1. Let there also be some indication that a baker’s shop across the street,
at Two Baker Street, might have been burglarized, although no burglary has
been reported, event 2. An experienced investigator estimates that a burglary
has taken place at Two Baker Street with a probability of 0.4. We have received
the following evidences. A credible witness reports that ‘‘a brown-haired man
who is not an employee at the baker’s shop committed the burglary at One
Baker Street,”” evidence 1. An anonymous witness, not being aware that there
might be two burglaries, has reported ‘‘a brown-haired man who works at the
baker’s shop committed the burglary at Baker Street,”’” evidence 2. Thirdly, a
witness reports having seen ‘‘a suspicious-looking red-haired man in the baker’s
shop at Two Baker Street,”” evidence 3. Finally, we have a fourth witness, this
witness, also anonymous and not being aware of the possibility of two burglaries,
reporting that the burglar at the Baker Street baker’s shop was a brown-haired
man. That is, for example:

evidence 1: evidence 2:
proposition: proposition:
action part: BO action part: Bl
event part: E; event part: E, , E,
m(BO) = 0.8 m(BI) = 0.7
m(®) = 0.2 m(®) = 0.3
evidence 3: evidence 4:
proposition: proposition:
action part: R action part: B
event part: E, event part: E, , E,
m(R) = 0.6 m(B) = 0.5

m(®) = 0.4 m(®) = 0.5
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domain probability distribution:

0.6,i =1
mE) ={0.4,i=2.
0,i#1,2

Let us use the algorithm in Sec. V to investigate whether we have a one-
or two-event problem and possibly separate the set of evidences into two disjoint
subsets.

Algorithm: Let S = {1, 2, 3,4}, T = &, where S are possible numbers of
subsets and T different numbers of subsets for which we have minimized Mcf.
Step 1: We calculate the domain conflict from the probability distribution,

04,r=1
Co = 0.6,7‘:2.
I,r#1,2

Step 2: The domain conflict is minimal for one subset, r = 1.
Step 3: Update T:= T + {1} = {1}, S:== § — {1} = {2, 3, 4}.
Step 4:

Step 4.1: In the initial partition all evidences are brought into one subset X
= {e,, e,, 3, e,}. Mcf = 0.884.

Step 4.2: t = 1. Since we only have one subset, » = 1, no transfers are
possible, we go to 4.5.

Step 4.5: No evidences has been transferred, Mcf and ¢, is unchanged.

Step 4.6: Since Mcf was unchanged in step 4.5 we go to 5.

Step 5: We update, S == § — {3, 4} = {2}.

Step 6: Since § # J there might exist better solutions, we go to 2.
Step 2: We minimize Mcf for two subsets, r = 2.

Step 3: Update, T:= T + {2} = {1,2}, S = 8§ - {2} = O.

Step 4:

Step 4.1: As the initial partitioning move the most highly conflicting evidence
from x, to x,. We have e,: p| = 0.604, ¢,: p} = 0.578, e5: p} = 0.559, ¢,:
pi = 0.085, i.e., we move e, from subset y, to subset x,. Mcf = 0.804.

Step 4.2: t = 2.

Step 4.3: Since e, is in x, and |x,| = 1, ¢, can not be moved out of x, and
no pi’s are calculated. For ¢ = {2, 3, 4} we get for, e,: p} = 0.3, p} =
0.56, e3: pj = 0.51, p3 = 0.48, ¢,: p} = 0.155, p% = 0.

Step 4.4: We get for, e,: (1 — pD/(1 — p}) = 1, e5: (1 = pD)/(1 = p}) =
1061, e,z (1 — p3)/(1 — p}) = 1.184, i.e., we move e, from x; to X2. We
get x; = {e;, eshand x, = {e;, e,}.

Step 4.5: We update conflicts, Mcf = 0.768, ¢, = 0.42, ¢, = 0.

Step 4.6: Mcf has changed and we continue at 4.3.

Step 4.3: Since [x,| = |[x,| = 2 all evidences can be moved. For g = {1, 2,
3, 4} we get for e;: p| = 0.634, p) = 0, e,: p} = 0.42, p3 = 0.48, ¢;: p°
= 0.42, p3 = 0.54, e,: pt = 0.155, p3 = 0.



724 SCHUBERT

Step 4.4: For all g we have pf = p?, i.e., no evidences are transferred.
Step 4.5: Mcf, ¢, and ¢, are unchanged.
Step 4.6: Since Mcf is unchanged, go to 5.

Step 5: § = (), there are no further possible solutions.

Step 6: Since S = & we answer {X;, X2, - - - » X, Where t € T = {l, 2}
minimizes the metaconflict function,

min Mcf(t, e, e5,. . . ,€,),
teT

i.e., we answer {x,, x,} where x;, = {e,, 3}, x, = {e,, e,} fort = 2.
Concluding, we see from the event parts of the evidences in each subset that
x; corresponds to event 2 and x, corresponds to event 1.

VII. CONCLUSIONS

A criterion function of overall conflict has been established within the
framework of Dempster—Shafer theory. An algorithm has been proposed for
partitioning nonspecific evidence into subsets, each subset representing a sepa-
rate event. The algorithm has a theoretical foundation in the minimizing of
overall conflict of the partition when viewing the conflict within each subset
as an evidence against the partition. The algorithm will not only be able to
reason about the optimal partition of nonspecific evidence for a fixed number
of events, it will also be able to reason simultaneously about the optimal number
of events, which may be uncertain. An obvious drawback is the algorithm’s
inability to guarantee global optimality.

I would like to thank Stefan Arnborg, Ulla Bergsten, and Per Svensson for their
helpful comments regarding this article.
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In an earlier article [J. Schubert, “On Nonspecific Evidence,” Int. J. Intell. Syst. 8(6), 711-
725 (1993)] we established within Dempster-Shafer theory a criterion function called the
metaconflict function. With this criterion we can partition into subsets a set of evidences
with propositions that are weakly specified in the sense that it may be uncertain to which
event a proposition is referring. Each subset in the partitioning is representing a separate
event. The metaconflict function was derived as the plausibility that the partitioning is
correct when viewing the conflict in Dempster’s rule within each subset as a newly
constructed metalevel evidence with a proposition giving support against the entire
partitioning. In this article we extend the results of the previous article. We will not only
find the most plausible subset for each piece of evidence as was done in the earlier article.
In addition we will specify each nonspecific evidence, in the sense that we find to which
events the proposition of the evidence might be referring, by finding the plausibility for
every subset that the evidence belongs to the subset. In doing this we will automatically
receive an indication on how likely it is that this evidence is actually false. We will then
develop a new methodology to exploit these newly specified evidences in a subsequent
reasoning process. This will include methods to discount evidences based on their degree of
falsity and on their degree of credibility due to a partial specification of affiliation, as well
as a refined method to infer the event of each subset.

I. INTRODUCTION

When we are reasoning under uncertainty in an environment of several
possible events we may find some evidences that are not only uncertain but may
also have propositions that are weakly specified in the sense that it may not be
certain to which event a proposition is referring. In addition our own domain
knowledge regarding the current number of events may be uncertain. In this
situation we must make sure that we do not by mistake combine evidences that are
referring to different events.

When the propositions of evidences are weakly specified with respect to
which events they are referring, it is impossible to directly judge whether two
propositions are referring to the same event. Thus, it is not possible to separate
evidences based only on their proposition. Instead we prefer to separate evidences



based on their conflicts. Since the conflict measures the lack of compatibility
between evidences, and evidences referring to different events tend to be more
incompatible than evidences referring to the same event, it is an obvious choice as
a distance measure. The idea of using the conflict in Dempster’s rule as distance
measure between bodies of evidence was first suggested by Lowrance and
Garvey‘l

In an earlier article? we established, within the framework of Dempster-
Shafer theory,3'6 a criterion function of overall conflict called the metaconflict
function. With this criterion we can partition evidences with weakly specified
propositions into subsets, each subset representing a separate event. These events
should be handled independently.

To make a separation of evidences possible, every proposition’s action part
must be supplemented with an event part describing to which event the
proposition is referring. If the proposition is written as a conjunction of literals or
disjunctions, then one literal or disjunction concerns which event the proposition
is referring to. This is the event part. The remainder of the proposition is called
the action part. An example from our earlier article illustrates the terminology:

Let us consider the burglaries of two bakers’ shops at One and Two
Baker Street, event 1 (E|) and event 2 (E,), i.e., the number of events is
known to be two. One witness hands over an evidence, specific with
respect to event, with the proposition: “The burglar at One Baker
Street,” event part: E|, “was probably brown haired (B),” action part:
B. A second anonymous witness hands over a nonspecific evidence with
the proposition: “The burglar at Baker Street,” event part: E,|, E,,
“might have been red haired (R),” action part: R. That is, for example:

evidence 1: evidence 2:
proposition: proposition.
action part: B action part: R
event part: E; event part: E{,E,
m(B) = 0.8 m(R) = 0.4
m(©) = 0.2 m(®) = 0.6

We will have a conflict between two pieces of evidence in the same subset in
two different situations. Firstly, we have a conflict if the proposition action parts
are conflicting regardless of the proposition event parts since they are presumed to
be referring to the same event. Secondly, if the proposition event parts are
conflicting then, regardless of the proposition action parts, we have a conflict with
the presumption that they are referring to the same event.

The metaconflict used to partition the set of evidences is derived? as the
plausibility that the partitioning is correct when the conflict in each subset is
viewed as a metalevel evidence against the partitioning of the set of evidences, ¥,
into the subsets, ;. We have a simple frame of discernment on the metalevel © =



{AdP, —AdP}, where AdP is short for “adequate partition”, and a basic
probability assignment (bpa) from each subset %; assigning support to a
proposition against the partitioning:

m, (—AdP) 8 Conf({e] e, x,}).

m, (©) 81 -Conf({e]e; e %,})

where ¢; is the jth evidence and {ej| €€ X;} 1s the set of evidences belonging to
subset x; and Conf(-) is the conflict, k, in Dempster’s rule. Also, we have a bpa
concerning the domain resulting from a probability distribution about the number
of subsets, E, conflicting with the actual current number of subsets, #x. This bpa
also assigns support to a proposition against the partitioning:

m(—AdP) 2 Conf({E, #31).

mp(©) 21— Conf({E, #7}).

The combination of these by Dempster’s rule give us the following plausibility of
the partitioning:

Pls(AdP) = (1-my(—AdP)) - [] (1-m, (=AdP)).

i=1

The difference, one minus the plausibility of a partitioning, will be called the
metaconflict of the partitioning. The metaconflict function can then be defined as:
DEFINITION.? Let the metaconflict function,

,
A
Mcfir, ey, ey, ...,e) S 1—(1—-co) - [] (1-¢),

i=1

be the conflict against a partitioning of n evidences of the set  into r disjoint
subsets x; where

cg = >, mE,)

i#r

is the conflict between r subsets and propositions about possible different number
of subsets, E; the proposition that there are i subsets, m(E;) the support for it and



o= % [Ime
1 #el

NI=J

is the conﬂtct in subset i, where N1 is the intersection of all elements in I,
I = {e; | e; € X} is aset of one focal element from the support function of each
evzdence ej in y; and ek is the kth focal element of evidence e;.

Thus, |1 = 1% and

{131 =TT I

€€ X,

where ]e | is the number of focal elements of ej.

Two theorems are derived® to be used in the separation of the set of
evidences into subsets by an iterative minimization of the metaconflict function.
By using these theorems we are able to reason about the optimal estimate of
number of events, when the actual number of events may be uncertain, as well as
the optimal partition of nonspecific evidence for any fixed number of events.
These two theorems will also be useful in a process for specifying evidences by
observing changes in the metaconflict when moving a single piece of evidences
between different subsets.

THEOREM 1. For all j with j < r, if m(E;) < m(E,) then min Mcf(r,eq,e;,....e,) <
min Mcf(j,ey,e;,...,e,).

This theorem states that an optimal partitioning for r subsets is always better
than the other solutions with fewer than r subsets if the basic probability
assignment for r subsets is greater than the basic probability assignment for the
fewer subsets.

THEOREM 2. For all j, if min Mcfir e, ey, ..., e,) < Zm(El.) then min
Mcf(r,ey,ey,....e,) < min Mcf(j,ey,e,,....e,). i#]

Theorem 2 states that an optimal partitioning for some number of subsets is
always better than other solutions for any other number of subsets when the
domain part of the metaconflict function is greater than the total metaconflict of
our present partitioning.

The methodology to handle and specify nonspecific evidences was developed
as a part of a multiple-target tracking algorithm for an anti-submarine intelligence
analysis system.” In this application a sparse flow of intelligence reports arrives at
the analysis system. These reports may originate from several different
unconnected sensor systems. The reports carry a proposition about the occurrence
of a submarine at a specified time and place, a probability of the truthfulness of
the report and may contain additional information such as velocity, direction and
type of submarine.

When there are several submarines we want to separate the intelligence
reports into subsets according to which submarine they are referring to. We will
then analyze the reports for each submarine separately. However, the intelligence
reports are never labeled as to which submarine they are referring to. Thus, it is



not possible to directly differentiate between two different submarines using two
intelligence reports.

Instead we will use the conflict between the propositions of two intelligence
reports as a probability that the two reports are referring to different submarines.
This probability is the basis for separating intelligence reports into subsets.

The cause of the conflict can be non-firing sensors placed between the
positions of the two reports, the required velocity to travel between the positions
of the two reports at their respective times in relation to the assumed velocity of
the submarines, etc.

In Sec. II we derive a bpa supporting that an evidence is not belonging to a
certain subset. This is done by observing the cluster conflict variations when a
piece of evidence is moved out from a subset, or when, after that, it is brought into
another subset, or by observing the domain conflict variation when it is put into a
newly created subset by itself. With this derived bpa we then find the bpa for each
evidence and every subset for that evidence. In Sec. III we specify the evidences
by combining all bpa’s from different subsets regarding one and the same piece of
evidence and calculate the plausibility for each subset that the evidence belongs to
the subset. In the combination of all bpa’s in Sec. III we receive support for a false
statement that a piece of evidence does not belong to any of the subsets and can
not be placed in a new subset by itself. We discuss how this situation can be
handled in Sec. IV. In Sec. V we study the usefulness of the now specified
evidences. Obviously, a piece of evidence that can belong to several different
subsets is not so useful and should not be allowed to strongly influence a
subsequent reasoning process within a subset. We then describe an improved
method of finding the event represented by a subset (Sec. VI). Finally, we
illustrate the methodology by an example of some “bakers’ shops burglaries” and
make a comparison of the refined methodology advocated in this article with the
simpler approach in our earlier article? (Sec. VII).

II. EVIDENCES ABOUT EVIDENCES

A. Evidences from cluster conflict variations

A conflict in a subset can be interpreted as an evidence that there is at least
one piece of evidence that does not belong to the subset. Thus, we can refine the
basic probability assignment from subset y; assigning support to a proposition
against the partitioning:

mxi(—|AdP) =c;
mxi(@) =l-¢

to



mxi(Ej.ej € %) =¢p
mx_(O) =1-c;

Let us observe one evidence e in y;. If the evidence e, is taken out from y; the
conflict ¢; in ; decreases to c; .This decrease in conflict ¢; - c can be interpreted
as follows: there exists some ev1dence indicating that e, does not belong to X,

mAxl_(eq € Xi),
5 (©),

and the remainder of the conflict c* is an evidence that there is at least one other
evidence e;, j # g, that does not belong to x; - {eg4},

mx,— {eq}(aj;"sq'e_,‘E (X,-_ {eq})) =¢;,
*
my - {eq}(G) =l-c;.

We will derive the basic probability number of € % Xps My (e € X,), by
stating that the belief in the proposition that there is at least one piece of ev1dence
that does not belong to y;, Jj.¢; ¢ x,, should be equal no matter whether we base
that belief on the original evidence, before e, is taken out from Y;, or on a
combination of the other two evidences My, (e € %) and
My _ e }(Ej;&q.ej € (X - {e 1)), after €y is taken out from ¥, i. e.

i q

Belxi(Elj.eje X) = Bele’_@ - {eq})(ﬂj.eje XD
We may rewrite the original proposition
Jj.eex;
as
(3j¢q.eje£ X)) v (eqe X
and as
(F#g.e;e (x,-{e,})) v (e 2 ).

Then, we have on the one hand, before ey is taken out from ¥;,

Belxi(ﬂj.eje X) = mx'_(Elj.ejE X) = i



and on the other hand, if the evidence that there is at least one other evidence e,
J#4, that does not belong to y; - {e,} is fused with the evidence that e, does not
belong to x;, Figure 1, we may also calculate the belief in 3j. e €y, as

Belay, @ ot~ ey - X)
= BC]AX,-@(Xi“ {eq})((aj;tQ-ejE (Xi“ {eq})) v (qu X,))

- . ) My, ® (- {e,1)X)
Xc((F#g.¢2 (x,—{e,})) vie,ex))

= May0 (- (e, (T #a¢8 (X, {e,})) A (e, 2 7))
e (- (e T # a8 (X = {e, 1)) +my o - L) € & XD
=m {eq}(Elj;tq.eje (X, - {eq})) ) mAx,.(eqé 1)
iy ey T #E g e (= {e,})) - [1-my (e, € X))
tmp e, x) [1=my _ G#g.e;e (1~ {e,})]
=my ey I #a.ge (- {e,}))
gy leg € x) =my (1 @i#q.ei2 (3;- {e,}))]
= ¢ tmy (e, € 1) [1-¢]].

Thus, we have derived the evidence that e, does not belong to x; from the
variations in cluster conflict when e, was taken out from y;:

ci—c
mAx,-(eq gx)= ¥
—c;
©) =1 ci—c;k 1-c¢
my., =1- =
Xi 1—c; R

If e, then is brought into another subset  its conflict will increase from c;, to
*
¢, where

Y#q.ee (x;— {e,}) e
eqE x,‘ (3]¢qejE (Xl_ {eq})) A (qu Xl) qu Xi
S) F#q.¢;e (x;— {e,}) O]

Figure 1.Combining Be]xi_ fe,} and Bel Ay



Yk # i.mxk(Ej;tq.ej € X = Cpo
‘v’k;ti.mxk(@) =1-c¢,.

and

Vk;ti.mxk+ {eq}(ﬂj.eje (X, + {eq})) = cz,

Vk#i.m q}(®)=1—c:.

X+ {e
Thus we will also have evidences regarding every other subset .
The increase in conflict when e, is brought into ¥, is interpreted as if there

exists some evidence indicating that e, does not belong to X, + {e,}, i.e.

May (e, € (Gt Le,1))s
m Axk(e).

Similarly to the last case, we may this time rewrite the new proposition
Elj.eje (Xt {eq})
as
Ftg.ee (x+ Le,))) v (e e (n+ {e,})
and as
(F#q.eex) v (e, (Xt {e,})

Reasoning in the same way as above, we state that

Vk¢i.Belxk+ {eq}(Elj.ejE (X, + {eq})) = Belekexk(Hj.eje (X, + {eq}))
and find that on the one hand, after ¢, is brought into X

Vk#iBel, 1 G2 (g + L)) = my o Glee (utled) =g

and on the other hand,



Vk;ti.Be]Axk@xk(Elj.eje (X, + {eq}))
= Belek@xk((Bj;tq.eje X Vv (e‘qE (Xt {eq})))

= )y My, @ 1,X)
Xc((F#qg.¢ex) vie,e (x,+1{e})))

= Mo (T #q-eep) A le e (x+ {e})))+myy 6, Fizg.eiex)
gy oy(e € (Ut {e,h)
= my G #q.¢,€ X)) My, (e, € (X +e,)
+mxk(3j¢q.eje X [1 —mAxk(qu (X + {e, 1))l
tmyy (e @ (Gt {e,))- [1=m G #q.¢;€ X))
= my G #q.e;€ x)+myy (e, & (p+ {e,1)) [1-m, Gi=q.e;e x)]
= ck+mAxk(eq$ e+ {e,1)) - [1-¢.

Thus, we have then derived an evidence regarding each subset y; +{e,}, k#1, that
e, does not belong to the subset;

*
Ce Sk
l—ck

Vk#imyy (e, (g + {e,})) =

* 1 *
Cr ~Ck —C

B. Evidences from domain conflict variations

Since an evidence from domain conflict is an evidence against the entire
partitioning it is less specific than an evidence from cluster conflict. We will
interpret the domain conflict as evidence that there exists at least one piece of
evidence that does not belong to any of the n first subsets, or if this particular
evidence is in a subset by itself as evidence that it belongs to some of the other n-
1 subsets. This would indicating that the number of subsets is incorrect.

We will now study any changes in the domain conflict when we take out an
evidence e, from subset ;.

When |X;| >1 we may not only put the evidence e, that we have taken out
from y; into another already existing subset, we may also put e, into a new subset
Xn+1 by itself, assuming there are n subsets, i.e. X = {X;, ...,X,}. This will change
the domain conflict, cop- Since the current partition minimizes the metaconflict
function, we know that when the number of subsets increase we will get an
increase in total conflict and Theorem 1 says that we will get a decrease in the
nondomain part of the metaconflict function. Thus, we know that we must get an
increase in the domain conflict. This increase in domain conflict is an indication
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that e, does not belong to an additional subset ¥, ;.

Another way to receive an evidence from the domain conflict is if e, is
moved out from y; when |y | = 1.If ¢, is in a subset X; by itself and moved from
X; to another already existing subset we may get either an increase or decrease in
domain conflict. This is because both the total conflict and the nondomain part of
the metaconflict function increases. Thus, we have two different situations in this
case. If the domain conflict decreases when we move e, out from Y, this is
interpreted as an evidence that e, does not belongs to y;, but if we receive an
increase in domain conflict we will interpret this as an evidence that e, does
belong to ;.

We choose to adopt a metarepresentation consisting of three individual
representations for the domain conflict. The first representation interprets the
domain conflict as an evidence that there is at least one piece of evidence that
does not belong to any of the subsets,

Eij.ej € Xy

The second representation interprets the domain conflict as an evidence that there
is at least one subset to which no evidences belongs,

JkVj.e; & %y

and the third as an evidence that there is either at least one piece of evidence that
does not belong to any of the subsets or there is at least one subset to which no
evidences belongs, but not both at the same time,

[(EIij.ejE X A (—Eik\/j.eje X
v [(—Eij‘v’k.eje X A (EIij.eje X))l

Each representation has its own characteristics. The first and the second are
consistent with a situation where the domain conflict increases when the number
of subsets increase and decreases when the number of subsets decrease. The third
representation behaves in the opposite way. The three representations above
correspond to these three different situations when the number of subsets is
changed.

The first representation corresponds to the situation when one evidence e,
belongs to a subset x;, |x| >1, and the evidence is moved from ; to X,;. This
increases both the domain conflict and the number of subsets. The second
representation is not in accordance with this situation and the third is not even
consistent with the situation. The second representation corresponds to the
situation when one evidence ¢, belongs to a subsetX; |x| = 1, and the evidence
is moved from j; to one of the other n-1 subsets while we receive a decrease in
domain conflict. Here, the first representation is not in accordance with this
situation and the third is not consistent. The third representation corresponds to
the last situation when one evidence ¢, belongs to a subset );, |x| = 1, and the
evidence is moved from Y, to one of the other n-1 subsets while we receive an
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increase in domain conflict. In this situation the first and second representations
are not consistent.

Thus, the actual representation to be used can be chosen from the
metarepresentation by the current situation. Let us now see what can be derived
about our evidence of interest, ey

1. When e, ey, and || >1
Let us analyze the case where we move e, from J; to X,,;. The domain

conflict before e, is moved to X, is interpreted as

EIij¢n+1.eje Xy

When e € y; and |y |>1 we may move out ¢, from y; without changing the
domain conflict, but we will get an increase in the domain conflict if we move e,
to a subset by itself; x,, .

If ¢, is taken out from %;, without being moved to y,,;, and is temporarily
disregarded from the analysis we will still have n subsets in this new situation
since |x,| was greater than one. The domain conflict, which is unchanged by this
removal and equal to ¢y, may be interpreted in this case as

EIj¢qVk¢n+1.ej€£ Xk

Thus, when e, is taken out from J;, we can refine the bpa regarding the domain
conflict to

mx(3j¢qVk¢n+1.eje xk) =cp»

m(©)=1-c,.

If e, then is moved to X, the increase in domain conflict is an evidence that
e, does not belong to X1,

mAx(eq € Xn+ 1)’
m AX(G) ,

and the new domain conflict that we receive indicate that there must now be at
least one piece of evidence that does not belong to any of the n+1 subsets,

. *
my {Xn+1}(EIJVk'ej ¢ Xk) =cq,

Myt g, (@) = 1=,

We will derive mAx(eq € X,, ) Dy stating that
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Belir {X"H}(Hij.ejeE X = BelAXeax(Elj‘v’k.eje X

After e, is moved to X, |, we may rewrite the proposition

JjVk.e; ¢ X,
as
[3]¢q((‘v’k¢n+].eje XD A (e ex, ))]
v [(Vk¢n+1.eqe X A (e, €%, )]
and as

(3j¢q‘v’k¢n+1.ej6£ X vV (eqé Xn+1)

since we know it is true that e; ¢ ), , for some other evidences than e and it is
true that €, Xy for all other subsets than ¥, since e, is now in ..
Then, on the one hand we have

q

Bel |}(31"V’k.ej(£ XY = m ]}(Elj‘v’k.eje X)) = c;

X+{xn+ X+{X,,+

and on the other hand we can calculate
Bele@x(Elek.ej € X = Be]Ax@x((Bjquk¢n+ leey) v (eq € %X,.1)

= > My @ 3X)
Xc ((Fj#gVk#n+ l.ej(z xk) v (eqe an))

= mAX®X((3j¢qVk¢n+ Legy) (e, €x,,))
mAx@X(EIj;thk;ﬁn+l.eje xk)+mAx@x(qu Xpst)
= mx(3j¢qVk¢n+1.eje Xk)'mAx(eqe Y
+mx(3j¢q‘v’k¢n+1.eje X [l—mAx(eqe Xpi)]
+mAx(eqe Xpst) [l—mx(Hj;&q‘v’k;én+1.ejE X))
= mx(EIjquk¢n+1.eje xk)+mAx(eqe Xpit) [l—mx(3j¢qVk¢n+l.eje X))

= cO+mAx(eqe Xpep) [1=¢ol.
Thus, we get

*
€o~Co

May(€q € Xpit) = - ¢,

an evidence indicating that e, does not belong to ;-
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2. When €, €%y x| = 1and co>c3

Let us now study the situation when e
moved out from ¥,

4 1s in a subset by itself. Before ¢, is

JkVj.e; e x,

represents the domain conflict with the n subsets. Thus, we may refine the bpa
regarding domain conflict in this situation to

mx(Hij. €€ X, = o
mx(O) =1-c,
If we take out e, from y;, without moving it to any already existing subset,
and temporarily disregard it from the analysis we have n-1 remaining subsets and

get a decrease in the domain conflict. This decrease in domain conflict is
interpreted as an evidence that e, does not belong to y;,

mAx(eq 3 Xi)’
m AX(G)'

The remaining domain conflict indicate that there is now at least one other subset
Xk k #i, that does not contain any evidences e;, j#q,

m _ {xi}(ﬂk;éiVj;éq.ej € X = cg,
My (33(©) =1 -cp.
As before, we will derive mAx(eq € X,) by stating that
Belx(Bk‘v’j. ¢ X = Bely g {xi})(ﬂk‘v’j.ej € Xy
Before e, is taken out from ¥; we may rewrite the proposition

3kVj.e & ¥,

as
(ki ((V£q.¢;€ 1) A (e,8 1)1V [(V#q.¢;€ X) A (e, X))

and as

(Elk;tiVj;éq.ejE X v (e, € %) -

since e, € Xy for some k#i and e € X, for all other evidences than ey, since e, is
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still in ;.
Similarly to the previous case we have

Belx(Eij.eje X = mX(EIij.ejE XY = o

and may calculate

Bel @kVj.e; 7,)

Ax® (x - {x;})
= Bele@ (- {xi})((flkii‘v’j;tq.eje X Vv (eqe X))

- > Maye (x- {x,H) X
Xc ((3k¢t‘v’j¢q.ej6£ XY Vv (e, & X))

= Mpy @ (y- {xi})((ak;tiVj;tq.eje X A (e, € %))
iy - ) FKEIVTE €& L)+ Mpy @ (- (1) (€0 € XD
= m, _ {xi}(EIk;ti‘v’j;tq.ejE X0 mAx(equ X))
+m, _ {xi}(3k¢i‘v’j¢q.ejé X - [1—my, (e, & x)]
+mAX(qu x) - (1 —my_ {xi}(akii‘v’j#q.eje X))
=m, _ {xi}(HkiiVj;éq.eje X))+ maye, € %) [1—m, _ {xl_}(EIk;tiVj;tq.ejé X1

= c3+mAx(eqe.f X;) - [l—c;].

*
Thus, when cy> ¢y we have

*
Ch—C
0 0
mAX(qu Xl) = ?
%o

3. When €,€ X ]xi] = 1and cy<c,

A completely different situation occurs when cO<c;. This is the case when
we choose to represent the domain conflict as an exclusive-OR of two
propositions,

[(Elj‘v’k.eje X)) A (—Bk‘v’j‘ejef X ]
v [(=3jVk.e;e x,) A (GkVj.e;e x,)],

one stating that there is at least one piece of evidence that does not belong to any
of the n subsets and the other one stating that there is at least one subset that does
not contain any evidences. Thus, we can refine the bpa regarding domain conflict
to



15

[FVk.e;e x) A (—FkVj.e;e x)1Y
Ml v [(—3jVk.e;& x,) A (GkVj.e;e 3,)] )~ O

mx(G) =1l-c¢,.
If we take out e, from y; as in the previous case, without moving it to any
already existing subset, and temporarily disregard it from the analysis we have n-
1 remaining subsets since |x,| was equal to one and get an increase in the domain

conflict. This increase in domain conflict will be interpreted as an evidence that ey
belongs to y;,

m,(©).

The remaining domain conflict indicate that there is now at least one other subset
Xk k #1, that does not contain any evidences ej, j#4, or that there is at least one
evidence ej, j # ¢, that does not belong to any of the n-1 subsets ¥, k #1,

((3j¢q‘v’k¢i.eje Xk)/\(—wflk;ti‘v’j;tq.ejexk)) s
My~ {x;} V(=3 #qVkieex) A (Fk=iVjzg.eey)) ) O

my _ {X,-}(@) =1-¢,.
We will derive mAX(-) by stating that

[ (FjVk.e ;& x,) A (—=TkVj.e. & x,)]
Bel Tk Sk
x|\ v [(—Elj‘v’k.eje X)) A (EIij.eje Xl

— Bel [(Bj‘v’k.el.e X)) A (—E]ij.ejeE X ] j

AX® (x- (1)) ( v [(-3jVk.e;¢ x,) A (FkVj.e;2 %,))

The domain conflict, represented by

[(Hj‘v’k.eje Xe) A (—Sk‘v’j.ejé X ]
% [(—EIij.ejE X)) A (Elk‘v’j.eje Xl

can be rewritten as

[((Eij#q‘v’k;ti.eje X Vv (eqe X)) A ((Vk¢i3j¢q.eje X A (eqe X)) ]
v [((Vj;&qﬂk:&i.eje X A (e, € x)) A ((Bkii‘v’j;tq.eje X)) v (e,2x)) ],

by using the simplifications of the previous two sections and further simplified as
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((Fj=qVk#ieey) A (Vk#idj#q.e;e x,) A (e, €%))
v ((Vi#qdk#ieex,) A (Gk#iVj#qg.e;e ) v (e,€ X))

and finally restated as

[ ((Elj;tq‘v'k;ti.eje X A (—|3k¢i‘v’j¢q.eje X))
v ((—Ejj;tq‘v’k;ti.eje X A (Elk;ti‘v’j¢q.eje X)) 1A (eqe X,
where the first part is interpreted as the domain conflict before e, is moved from y;

and the second a proposition stating that e, belongs to ;.
Then, on the one hand we have

Bel [(Hij.ejé X A (—Sij.eje X ]
1 v I(—FjVk.e;e x) A (KVj.e;e x)]
B [(Ej‘v’k.eje X A (—-Elk‘v’j.eje X ] B
T v [(—3iVkee € %) A (FKVje e )] ) T €O

and on the other hand we can calculate

Bel [(3j‘v’k.ej € X)) A (—EIij.eje Xk)]]

Ax® (x - {x,}) ( v [(ﬁBij.ejE X)) A (EIij.eje Yl
’ [ ((Fj#qVk#ie e X A (mFk=iVj#qg.e;€ )
= BeleéB(x—{x,-}) v ((—.Hj;&qVk;ti.eje X A (Elk;ei\/j;tq.eje X)) ]

A (eqe X

. My (- (1) X
[ ((Gi#qVk#ieey) A (-k=iVj#g.e€ X))
—( v ((—-Elj;thk;ti.eje xk) A (Elk#iVj#q.ejz xk)) 1A (eqe xi)
[ ((Bj;éq\fkii.eje X)) A (—Bk;&i‘v’j;éq.eje X))
= My o (4 {1,1) v ((=3j#qVk#ieex) A (Gk#iVj#q.e;& %)) |
A (eqe X
[ ((Fi#qVk#ieey) A (-Fk#iVj£qg.e;€ )
=m, _ : J s J ~my, (e, € %)
x— %} v((—Bj;thk;tz.eje X)) A (Gk#iVjzg.e e x,)) ] A
*
=Cq- mAx(eqe X

. *
Thus, if cy<c, then
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o
mple, € %) = —
)
is derived as our evidence.

C. Summary of evidences
In summary we have the following evidences

*

Co=C¢C
0~ .
1—c0’f‘”+1’|xil>1
C,--Cf. .
1—_*7./ =1 ]X,| >1
-
. 1
Vie, e X;-m(e, & X) = o
0 o . . *
— /=L X =1 cy>c
1-c,
T ¢
C. —C.
/ ],otherwise
Y,
and
. o *
Vie, e Xi-me,€ %) = =[x = Lcg<c.
c
0

III. SPECIFYING EVIDENCES

We may now specify any original evidence by combining the evidences from
conflict variations regarding this particular evidence. Then we may calculate the
belief and plausibility for each subset that this particular evidence belongs to the
subset. The belief that this particular evidence belongs to a subset will be zero,
except when €€ Xy |x] =1 and cO<c;, since every proposition regarding this
evidence then states that the evidence does not belong to some subset.

In combining all evidences regarding an original piece of evidence we may
receive support for a proposition stating that this piece of evidence does not
belong to any of the subsets and can not be put into a subset by itself. Since this is
impossible, the statement is false and its support is the conflict in Dempster’s rule.
The statement that the evidence does not belong anywhere implies that the
evidence is false. Thus, we may interpret the conflict as support for the evidence
being false.
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A. Combining evidences about evidences

1. When e € X, and |x,| > 1

Let us assume that an evidence, e, is in ); and || > 1. When we combine all
evidences regarding e, this results in a new basic probability assignment with

‘v’x*.m*(eqe( vy)) = H me, & ) [T [1-mle,ex
LEL xe -2")

where ¥* € 2% and x = {%}, - %, , -
From the new bpa we can calculate the conflict. The only statement that is
false is the statement that e, ¢ ( Vv 1Y), i.e. that Vj.e & ..
. 9 q J
Thus, the conflict becomes

n+1 *—C *_
k=i (e,e ( vi) = [ me,ex) = 2. H{
ji=1 0 j=

When calculating belief and plausibility that e, belongs to some subset other than
Xn+1 We have

Vk#n+1.Bel(e,€ x,) = 1~ Y, mX) =0
Xc (e ex)

and

Vk#n+1.Pls(e, € x,) =1-Bel(e, & x) =1~ Y, mX)

Xc(e,2x)
) n+1
_ l—l_k‘m(eqexk)' 1_Hm(quXj)
j=1
#k
n+1
€ %,)— £X;
m(e, € X,) I:[m(eq % 1—m(e, & Y,
=1- 1= = -
Py n+1
1_Hm(e € %) I‘Hm(eqexj)
ji=1 7=t
Ck"‘ck
~ l1-¢,
cg—c0 noc—c
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while for the subset ,,; we have

Bel(e, € %,,,) = 1- D mX) =0

Xg (qu xn+l)

and

Pls(e,e %, )=1-Belle,e x,,)=1- Y  mX

Xg (e!.lE Xn+ l)

1 n
= 1—1—_—k~m(eq€£ Xpit) [1—Hm(eqe Xj)J
j=1
n+1
mie, & X, , )~ Hm(eqe X)

_ Jj=1 —
1 n+1 - n+1

I—Hm(eqe o) I—Hm(eqe‘ x)

j=1 j=1

l—m(eqé Xns1)

2. Whene ey, |x]| =1and cy>c,

In this situation the domain conflict variation appeared in the i™ evidence
instead of the n+1'"". When we combine the available evidence we get a new basic
probability assignment with

v e e (vt = T me,ex) I [1-mee, e x)]
LeX %e -1")

* 4 —
but her'e X € 2. where y = {Xl’ti{"x”} . ' _ o "
With no evidence from a n+1"™ subset and domain conflict variation in the i
evidence we have a slight change in the calculation of conflict,
* *
* CO - CO C. —C;
k=m(e,e (vy) = Hm(eqe X)) = ;

ji=1

n

-c 1-c.
0 j=1

#i

and in the calculation of plausibility. For subsets except y; we get



20

Vk#i.Bel(e, € 1) =0,

Vk#i.Pls(e, € 7,) = 1-Bel(e, & ) = 1~ Yy mX)

Xc (e 2%
*
_ck—ck

~ l—m(eqzxk) _ 1-c,

- " - co—cn M oci—c
_ 0 "0 J J
-,z ) 1222 TT9°
j=1 I=cy ;25 7

#i

and for ¥;
Bel(eq ex)=0,
Pls(e, € x) =1-Bel(e, & x) =1~ Y mX)

Xc (e, ex)
*

_co——c0

~ l—m(eqesxi) _ I-¢,
- " - t—c ci —c¢
1- me &Y) 1-— o "0, J_J
H ¢ % 1—c, l1-c.
j=1 =1 J

#i

*
3. When e, € Xp |X| = 1 and cy<c,

The increase in domain conflict when e, was moved out from j; introduced a
new type of evidence supporting that e, belongs to ;. This changes the resulting
bpa from the previous situations when we combine all evidences regarding e,. Our
new bpa is

vt m (e e (VX))
= [1-me,ex)] - ] me,ex)  [I [1-mle,ex)
%EX xe =2

and

m (e, e (VYT)) = mle,ex)+ [1-mle,ex)] - [] mie,ex)
xex”

where x* € 2% = {7}, x = x— {x,} and x = {x, .- %,} -
Since we did not have an evidence indicating that e, did not belong to x; we
will never have any support for the impossible statement that e, does not belong
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anywhere in the new bpa. Thus, we will always get a zero conflict when
combining these evidences;

= m*(eqe ( vy) =0.
When calculating belief and plausibility for any subset other than x; we get

Vk#iBel(e, € x,) = 0

and
Vk#i.Pls(e, e y,) =1-Bel(e, & 1,) = 1- Y mX)
Xc (e, €2
=1- [m(eqe x)+ {1 -m(eqe X))} 'm(eqe Xl
= [1-mle, e x)] - [1-mle, & )]
-(-3) (-55)
<o l-c,
and for y;:
Bel(eqe X) = m(eqe x)+ [1 —m(eqe X1 H m(qu Xj)
xeEx”
= C_S+(l——c—g) - % _CJ.
o Co/ j=1 I-¢
#i
and

Pls(e,e x) = 1-Belle,g x) =1- Y mX) = 1.
X;(eqesx,.)

because of the lack of evidence against that e, belongs to the i'h subset.

B. The evidences specified

With plausibilities for all propositions that the evidence is referring to some
particular subset we may now make a partial specification of each piece of
evidence. That is, we will have an “evidential interval” of belief and plausibility
for each possible subset. Since e, belonged to y; as a result of the iterative
partitioning of evidences, there was the least support against this and thus we will
have the highest plausibility in favor of the proposition that e, is referring to
subset i. An evidence nonspecific with regard to which event it is referring to may
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then be specified from

evidence q:
proposition:
action part: Ag A, ..., Ay
event part: E;, Ej, ..., Ey

m(Ay) = py
m(Ag) = p,
m(Ay) = pp,

m(@) =1-pr-pg-...- p
to

evidence q:
proposition:
action part: Ag A, ..., Ay,
event part: [Bel(eq € X)) Pls(eq € xt,)]/E,-, [0, Pls(eqe xj)]/Ej,
[0, Pls(eq € x)1/Ex

m(Ay) = py
m(Ag) = p,
m(Ay) = py,

m(©) =1-ps-pg-..-py

IV. HANDLING THE FALSITY OF EVIDENCES

In Sec. III we received support & for the statement that an evidence e, did not
belong to any of the subsets. Since this is impossible the statement implies to a
degree k that e, is a false evidence. If an evidence is known to be false we would
disregard the evidence completely, and when we have no indication as to the
possible falsity of the evidences we would take no additional action.

We would then like to pay less and less regard to an evidence the higher the
degree is that the evidence is false, pay no attention to the evidence when it is
certainly false, and leave the evidence unchanged when there is no indication as to
its falsity. This can be done by using the discounting operation introduced by
Lowrance et al.} The discounting operation was introduced to handle the case
when the source of an evidence is lacking in credibility. The credibility of the
source, O, became also the credibility of the evidence. The situation was handled
by discounting each supported proposition of the evidence other than © with the
credibility o and by adding the discounted mass to ©;
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o-m(A), A 20
) - { ) Are
1—0c+oc‘m(®),Aj=@

We will use the same discounting operation in this case when there is a direct
indication for each separate piece of evidence regardless of which source
produced it. We will view the support of the false statement that an evidence e
does not belong to any subset and cannot be put in a subset by itself, i.e. the
conflict in Dempster’s rule when combining all evidences regarding e,, as
identical to one minus the credibility of the evidence;

aél—m*(eqe ( vy))=1—-k.

Thus, a piece of evidence is discounted in relation to its degree of falsity.

It is obvious that the credibility used to discount a piece of evidence depends
on the evidence itself. This should be no problem since the credibility originates
from an evidence at a “higher” level that depends on e, but will never be
combined with e, Instead, it is used to discount e, Obviously, any discounting
directed towards individual evidences and not all evidences from a particular
source will depend on the evidence itself.

We should note that we must not repartition the set of all evidences after the
first discounting of all evidences in order to receive new credibilities and perform
a second discounting. The two evidences from which the two credibilities are
originating would not be independent. Thus, making a second discounting of an
evidence would violate the independence assumption of Dempster’s rule since a
double discounting corresponds to combining the two nonindependent evidences
concerning the falsity of e, and discounting e, with the credibility of e, derived
from the combination;

O =1k =1-[1-(1-k) (1-k)] = (1-k) - (1-ky) = o, -,

where o) and o, are the two credibilities of the first and second discounting
and o, is the credibility derived from the combination of both corresponding
evidences, and k; and k;, are the two degrees of falsity of the first and second
partitioning and k;, is the degree of falsity in the combination of the two
evidences.

In fact, we should never repartition evidences after discounting, regardless of
whether we plan to perform a second discounting or not. The discounting
operation not only puts the evidences in order for continuing reasoning processes
regarding the different events, but it also smooths out the conflicting differences
between evidences which is the very basis of the conflict minimizing process
when the set of evidences are partitioned into subsets. Since the discounting
smooths out the differences between evidences that do not belong to the same
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event, a repartitioning would only increase the risk that evidences referring to
different events would be partitioned into the same subset. Thus, we should never
repartition the set of evidences after discounting evidences for falsity.

The evidence we specified in Sec. III may now be discounted to its degree of
credibility:

evidence q:
proposition:
action part: Ag A, ..., Ay
event part: [Bel(eqe X Pls(eq € x)1/E; [0, Pls(eqe Xj)] /Ej, ...,
[0, Pls(eqe X1 7Ey

m(Ayp) = o-pr
m(Ag) =0-p,
m(Ap) = o p,

m©) = 1-o-p,— O pp=...=0L-py
where o is the degree of credibility and 1 - o is the degree of falsity of e,.

V. FINDING USABLE EVIDENCES

Obviously, the next question to put is: Will our now specified and discounted
piece of evidence be of use in a subsequent reasoning process concerning a
particular event? If this piece of evidence can only belong to one subset then it is
also usable in a subsequent reasoning process for that subset. Whether this is the
case or not will be determined by the now specified event part of the evidence. If
the evidence will be useful in the reasoning process as well is another question.
That depends only on the action part of the evidence.

If a piece of evidence can belong to more than one subset it will clearly be
uncertain if it belongs to our subset in question if indeed it is possible at all. We
must find a measure of this uncertainty— a credibility that the evidence belongs to
the subset. Before using the evidence in the reasoning process concerning our
subset, we would like to calculate the credibility that the evidence belongs to the
subset in question and then discount the evidence by its credibility. Obviously, an
evidence that cannot possible belong to a subset y; should be discounted entirely
in the subsequent reasoning process for that subset, while an evidence which
cannot possibly belong to any other subset X; and is without any support
whatsoever against ¥, should not be discounted at all when used in the reasoning
process for y;. Thus, the degree to which an evidence can belong to a subset and
no other subset corresponds to the importance the evidence should be allowed to
play in that subset.

In order to find the credibility of an evidence in the reasoning process for
some subset we must measure the uncertainty in the newly specified event part of
the evidence. Measures of uncertainty in a single piece of evidence are usually
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measures of entropy. An especially useful kind of such measure is the measure of
average total uncertaintyg’lo. This is a measure of entropy that measures both
scattering and nonspecificity of evidence:

H(m) = 3 m(A)-Log,(IAl)~ Y. m(A) - Log,(m(A)).
Ae© Ae ©

However, the average total uncertainty in which event an evidence ey might be
referring to is not exactly our concern. This measure applied to the new basic
probability assignment resulting from the fusion of all derived evidences
regarding to which subset e, can belong (Sec. III.A) would give us an indication
of how usable the evidence is in total towards all subsets. What we want is a high
plausibility for the most likely subset, i.e. little support against that the evidence
belongs to the subset. This is equivalent with preferring a minimal entropy H(m),
but how the remainder of the support is scattered among the other focal elements
is of little concern to us. Actually, if we are to express some preference regarding
the remainder of the support we would choose some uniform scattering among the
other focal elements, i.e preferring as low as possible a plausibility for the second
most likely subset. This is not equivalent with preferring a minimal entropy. When
it comes to the specificity of the support against different subsets, we prefer such
a support to be specific when it concerns other subsets and most preferably gives
these subsets a low plausibility, and to have some nonspecificity when it concerns
the most preferable subset giving it a plausibility as high as possible. Thus, our
overall preference is not consistent with a minimal entropy.

We might be able to find some entropy-like measure of entropy difference
between two parts of an evidence that could be maximized. But rather than going
this route we will make some simple observations (axioms):

e If the plausibility that e, belongs to some subset is zero we should discount
it entirely.

e If the plausibility of a subset is one and the plausibility of all other subsets
are zero we should not discount e, at all when used in this subset.

* If the plausibility of a subset is o, while-the belief is zero, and the
plausibility of all other subsets are zero we should discount e, toa
credibility of a.

* If the plausibility of n different subsets are all one and the plausibility of
all other subsets are zero we should discount e, to a credibility of 1/n.

* The credibility of e, when used in a subset is greater or equal to the belief
of the subset.
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A function that satisfy these observations is the plausibility of the subset
weighted by the portion of the plausibility for all subsets that this subset has
received and by the portion of the still uncommitted belief.

The credibility a; of e, when e, is used in x; can then be calculated as

[Pls(e, € x,-)]2 ”
"‘—,J 1
zk:Pls(eqe %)

[Pls(e, € x)1?

ZPls(eqe x)
k

o= [1~Be1(eqe x)1 -
(xl.=Bel(eqe x)+ {1 —Bel(eqe x)1

Here, Bel(eq € X,) is equal to zero except when €,€ Xp |xi! = 1and ¢5< c;.

The discounting we make of e, should not be confused with the discounting
we made in Sec.IV. That discounting was made “on principle” due to the derived
evidence proposing to some degree that e, was false. The discounting we are
making here however, is merely a technical necessity in order to be able to use the
evidence when we as users force an absolute specificity upon the event part of the
evidence by placing it in one of the subsets.

After discounting each evidence to its new credibility in a particular subset
the subsequent reasoning process could begin. Note that a piece of evidence could
be used in several different subsets with an appropriate discounting, i.e. for a
particular subset every piece of evidence that belongs to the subset with a
plausibility above zero could be used in the reasoning process within that subset.
Also, an evidence whose original event part only indicated one possible event, say
E;, and which now has a plausibility of one for some subsets ); might still have a
credibility below one for %;. This should come as no surprise since our evidence
might not have been completely certain, i.e. leaving some mass on ©. Since the
mass on © supports any event, our evidence is not completely certain regarding
which event it is referring to, giving us a credibility below one for ;. Also, even
if it was completely certain, then y;, whose meaning is determined by all
evidences it contains, might not for certain be representing E;.

VI. FINDING THE EVENT OF A SUBSET

When we begin our subsequent reasoning process in each subset, it will
naturally be of vital importance to know to which event the subset is referring.
This information is obtainable when the evidences in the subset have been
combined. After the combination, each focal element of the final bpa will in
addition to supporting some proposition regarding an action also be referring to
one or more events where the proposed action may have taken place. We could
simply sum up the support in favor of each event, calculate the plausibility of it
and then form our opinion regarding which event the subset is referring to based
on this result. However, this may cause a problem. It would certainly be possible
that more than one subset has one and the same event as its most likely event. This
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situation can be avoided if we bring the problem to the metalevel where we
simultaneously reason about all subsets, i.e. which subsets are referring to which
events. In this analysis we use our domain knowledge stating that no more than
one subset may be referring to an event. From each subset we have an evidence
indicating which events it might be referring to. This evidence is directly
derivable from the final bpa resulting from the combination of all evidences in the
subset. We simply remove the information about action from each focal element in
the final bpa while leaving the information about event unchanged. This may
leave us with two or more focal elements supporting the same event or disjunction
of events. The support for these focal elements are summed up and the focal
elements are represented only once. That is, we receive a new evidence at the
metalevel originating from the subset that is not paying any attention to actions
but paying the same attention to events as the final bpa resulting from the
combination of all evidences within this subset. Thus, we have the following bpa
of the evidence originating from

VE.mx'(( v E) /xi) = 2 mX,.(A)
Event part of A is E

where E € 2 e . Here, of course, v {E.} is ©O.

Combining all bpa’s from all different subsets with the restriction that any
intersection in the combination yielding E VAN E X is false eliminates the
possible problem of having an event 51mu1taneously a551gned to two or more
different subsets. This method has a much higher chance to give a clearly
preferable answer regarding which events is represented by which subsets, than
that of only viewing the evidences within a subset when trying to determine its
event.

VII. AN EXAMPLE

Let us return to the problem of two possible burglaries described in our first
article.> We will now reexamine this problem in view of the results of Secs. II-VL.
Finally we make a comparison between an overconfident approach of only
partitioning the evidences by minimizing the metaconflict function before we
begin the reasoning process separately in each subset, and the refined approach of
discounting for falsity and uncertainty in affiliation proposed in this article.

A. A Refined Analysis of the Bakers’ Shops Burglaries

In this example we had evidence weakly specified in the sense that it is
uncertain to which possible burglary the propositions are referring. We will try to
specify these evidences by studying cluster conflict variations when a piece of
evidence is moved from its subset to another subset or put into a new subset by
itself. The problem we were facing was described as follows:?
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Assume that a baker’s shop at One Baker Street has been
burglarized, event 1. Let there also be some indication that a baker’s
shop across the street, at Two Baker Street, might have been
burglarized, although no burglary has been reported, event 2. An
experienced investigator estimates that a burglary has taken place at
Two Baker Street with a probability of 0.4. We have received the
following evidences. A credible witness reports that “a brown-haired
man who is not an employee at the baker’s shop committed the burglary
at One Baker Street,” evidence 1. An anonymous witness, not being
aware that there might be two burglaries, has reported “a brown-haired
man who works at the baker’s shop committed the burglary at Baker
Street,” evidence 2. Thirdly, a witness reports having seen “a
suspicious-looking red-haired man in the baker’s shop at Two Baker
Street,” evidence 3. Finally, we have a fourth witness, this witness, also
anonymous and not being aware of the possibility of two burglaries,
reporting that the burglar at the Baker Street baker’s shop was a brown-
haired man. That is, for example:

evidence 1:
proposition:
action part: BO
event part: E|:
m(BO) = 0.8
m(®) = 0.2

evidence 3:
proposition:
action part: R
event part: Ey:
m(R) = 0.6
m(©) = 0.4

domain probability distribution:

evidence 2:
proposition:
action part: Bl
event part: E|,E,
m(BI) = 0.7
m(®) =0.3

evidence 4:
proposition:
action part: B
event part: E{,E,
m(B) = 0.5
m(®) = 0.5

0.6,i=1
m(E;) = {0.4, i=2.
0,i=1,2
All evidences where originally put into one subset, ;. By minimizing the
metaconflict function it was found best to partition the evidences into two subsets.
The minimum of the metaconflict function was found when evidences one and
four were moved from Y into %, while evidences two and three remained in ;.

From the event parts of the evidences we were able to conclude that %,
corresponded to event 2 and ), corresponded to event 1.
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Let us now study the cluster conflict variations. The conflict in y; was ¢| =
0.42, in ¥, it was ¢, = 0, with a domain conflict of co = 0.6. If e; now in ¥, is
moved out from y, the conﬂlct will drop to zero, c2 = 0. If ¢; is then moved into
%1 its conflict increases to "1 = 0.788, and if ey is put into a subset by itself, 3,
we will have a domain conflict of one, cO =1.

Thus, by the formulas of Sec. II.C we get

* *
c,—c¢ CHy—Cy
m(elex2)= — =0
- 1—02
and
( ) c*—cO .
mie, & X)) = —— = 1.
S N

From these evidences we will calculate the plausibility for each subset that e;
belongs to the subset:

o _ Lomle e xy) = 1-0.634 = 0366
S(elexl)_ l—m(eli‘?Xl)‘m(61£X2)'m(eléx3)_ o o ’
o B 1 —m(e; & x,) _
€€ XD = T 1) mie € xy) mie £ xy)
1—m(e, & x3)

) S T e e ) e £ 1) e, £ 1)

We do the same for the other three evidences:

042,i=1 042,i=1
mey & x,) = {0.56, i=2, mies & x,) = {0.54, i=2
L,i=3 1,i=3
0.155,i=1
miey & X,) = {0, i=2
1,i=3
and calculate the plausibilities
0.758,i=1 0.750,i =1
Pls(e, € %) = {0.575, i=2, Pls(eze %) = {0.595, i=2
0,i=3 0,i=3
0.845,i=1

Pls(e, € xi)= {1,1':2
0,i=3
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Thus, the four evidences are specified as:

evidence 1: evidence 2:
proposition: proposition:
action part: BO action part: Bl
event part. event part:
[0, 0.366] /%, [0, 1] /%, [0, 0.758] /x,, [0,0.575] /%,
m(BO) = 0.8 m(BI) = 0.7
m(®) = 0.2 m(©) =0.3
evidence 3: evidence 4:
proposition: proposition:
action part: R action part: B
event part: event part:
[0, 0.750] /%, [0, 0.595] /%, [0, 0.845] 7y, [0, 1] /%,
m(R) = 0.6 m(B) = 0.5
m(®) = 0.4 m(®) = 0.5

Thus, it seems pretty certain that e; belongs to X, while the other three
evidences are more uncertain in which subset they belong to, i.e. more nonspecific
in which event they are referring to. Especially e, is not specific. It could almost
belong to either subset.

When we combined the evidences regarding where a particular evidence
might belong, we received a conflict for e, and ez but not for e; and e4. Thus,
there is no indication that e; and e4 might be false. For the second and third
evidence we got a conflict of 0.2352 and 0.2268 respectively. This is their degrees
of falsity. We should then discount e, and e3 to their respective degrees of
credibility, i.e. 0.7648 and 0.7732:

evidence 1: evidence 2:
proposition: proposition:
action part: BO action part: Bl
event part: event part:
[0,0.366] /%, [0, 1] /%, [0,0.758] /%, [0,0.575] /%,
m(BO) = 0.8 m(BI) = 0.5354

m(®) = 0.2 m(©) = 0.4646
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evidence 3: evidence 4:
proposition: proposition:
action part: R action part: B
event part: event part:
[0,0.750]1 /x,, [0, 0.595] /%, [0,0.845] /%, [0, 11 /%,
m(R) = 0.4639 m(B) = 0.5
m(0) = 0.5361 m(©) = 0.5

The discounting of e, and e; due to their fairly high degree of falsity will reduce
the impact of these two evidences in a subsequent reasoning process regarding the
two different events.

Before we finally start the reasoning process in %; and %, we should once
again discount the evidences. This time we make an individual discounting for
each subset and evidence according to how credible it is that the evidence belongs
to the subset. The credibility that e; belongs to y; is

_ (BlsCe e x))? 03662

“ T3 = o366+1 OO
Y Pls(e, € X)
j=1
and that e; belongs to ¥,
(Pls(e; € x,)) 2 1 0731
% = T 0366+1

2
Y Pls(e, € %)

i=1

For the other three evidences we get: e;: o = 0.4310, o, = 0.2480, e3: o) =
0.4182, o = 0.2632, and for e4: o = 0.3870, o, = 0.5420. Discounting the four
evidences to their credibility of belonging to % and ¥, respectively, yields:

evidence 1: evidence 2:
proposition: proposition:
action part: BO action part: Bl
event part: event part:
[0,0.366] /x,, [0, 1] /%, [0,0.758] /¥, [0,0.575] /%,
m(BO) = 0.0784/7%,, 0.5856/, m(BI) = 0.2308/7%,,0.1328/%,

m(©) = 0.9216/y,,,0.4144/ m(©) = 0.7692/%..,0.8672/%
1 X2 1 2
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evidence 3: evidence 4:
proposition: proposition:
action part: R action part: B
event part: event part:
[0,0.750] /x,, [0, 0.595] /%, [0,0.9216] /x,, [0,0.4144] /¥,
m(R) = 0.1940/y, 0.1221/%, m(B) = 0.1935/%,,0.2710/y,
m(©) = 0.8060/y,,0.8779/, m(©) = 0.8065/,,0.7290/7,

Combining these four evidences with Dempster’s rule results in the following
final basic probability assignment:

M gr0304BOAE))

= %{-ml(BOAEI)- [1—=myBIA (E;VE,))] - [1-myRAE,)]

= 0.0539/%,, 0.5298/,,

m?@2@3®4(31’\ (E\VEy))

— - (1=m(BOAE)] -myBI n (Eyv Ey)) - [1=my(RAE)]

=~

= 0.1900/,, 0.0574/7,,,
M gre304BA (E;VE,))
1
= —1 s . [1 —ml(BO/\El)] . [1 —m2(BI/\ (El VEZ))] . [1 _m3(R/\E2)]
-my(B A (E\V E,))=0.1225/%,0.1016/%,,

.
migre304RAE)

1%- [1-m(BOAE)] - [1=myBIA (E;VE,))] - myRAEy)

=~

- [1=myB~A (E,VvE,))] =0.1229/,, 0.0380/,,,

*
migre3040)

l

- [1=m(BOAE)] - [1=myBIA (E;VE))] - [1-myRAE)]

—
|
=~

- [1=myB A (E,VE,))] =05107/%,,0.2732/%,.

where k is the conflict in Dempster’s rule;
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k=myRAE,)-|1-[1-m(BOAE))]

[1=myBIA (E,VE,)] - [1=myB A (E,vE,))]

+ [1=myRAE)] - m(BOAE))- myBI A (E; v E,)) =0.0977/,, 0.1584/,,.

Finally, this gives us the following evidential intervals:

[Bel(BO), Pls(BO)] = [0.0539, 0.6871] /%, [0.5298,0.9046] /¥,
[Bel (BI), PIs(BI)] = [0.1900, 0.8232] /%> [0.0574,0.4322] /y,,
[Bel(B), PIs(B)] = [0.3664, 0.8771] /,, [0.6888,0.9620] /¥,
[Bel(R), PIs(R)] = [0.1229, 0.6336] /%> [0.0380,0.3112] /,,
[Bel (D), PIs()] = [0.1900, 0.9461] /7y, [0.0574,0.4702] /'y,
[Bel(0), PIs(0)] = [0.0539, 0.8100] /%> [0.5298,0.9426] /',
[Bel(E)), PIs(E|)] = [0.0539, 0.8771] /%, [0.5298, 0.9620] /%,
[Bel(E£,), PIs(E,)] = [0.1229, 0.9461] /%, [0.0380, 0.4702] /%,.

From the intervals regarding which event the subsets are referring to it is
somewhat uncertain whether y, is referring to E| or E,. However, , clearly refers
to El'

Let us bring the problem to the metalevel together with our domain

knowledge that the two subsets must be referring to different events. We create
two new but very similar basic probability assignments as follows:

my (E, /%) = 0.0539,
m, (E,/%,) = 01229,
my (©) = 1=m, (E/1,) = my (Ey/x,) = 0.8232

and

my (E,/1,) = 0.5298,
my (E/%,) = 0.0380,
my () = 1~my (E,/x,) = my (Ey/x,) = 0.4322.

Combining these on the metalevel yields
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my @ xz(El/Xl A Ey/%,) =0.0699,
my e3762(E2/)(1 A E | /Y,) = 0.6840,
My @xz(e) = 0.2462
with evidential intervals

[0.0699, 0.3160]

Il

[Bel(E, /%, A Ey/ %), PIS(E, /%, A Ey/%,)]

and

[0.6840, 0.9301]

[Bel(E,/x, A E /%), PIs(Ey/ %, A E /%,)]

This makes it perfectly clear that  refers to E, while X, refers to Ej.

We see in conclusion that at 7, i.e. event 2, there is some support for the
burglar being brown-haired although it is certainly plausible, although less likely,
he was actually red-haired. We have an even slighter indication that this might be
an inside job but it is also possible that the burglar was an outsider. In general the
evidence regarding event 1 is pretty inconclusive. However, the picture is much
clearer at y(,, i.e. event 1. It is quite likely that the burglar at event 1 was a brown-
haired outsider.

B. A Comparison Between an Overconfident and a Refined Analysis of the
Bakers’ Shops Burglaries

When we partitioned the four evidences, e, and e3 ended up in x; while ¢,
and e, ended up in y,. This was the partitioning that minimized the metaconflict
and thus the most probable partition. However, it said nothing about the
probability for some evidence that it belonged to the subset where it was placed,
and nothing about how much more probable this subset was to other subsets. It
only said that this was the most probable subset of all. Thus, an evidence might
end up in some subset that was only marginally better than some other. This
somewhat overconfident approach might then falsely indicate a certainty in the
subsequent reasoning process within each subset that does not really exist. This
false certainty is due to the restriction of not, to any degree, using evidences that
ended up in other subsets by the partitioning. In contrast, the refined approach
uses all evidences that could possibly belong to a subset in the reasoning process
for that subset, although they are discounted to the credibility that they belong to
the subset. This approach eliminates the problem of false certainty imposed by the
partitioning as seen in the following comparison of the two approaches applied to
the bakers’ shops burglary problem.

As a comparison between the two approaches there is not much to say about
the conclusions drawn in %,. Whatever was concluded earlier is also concluded in
the refined approach. That is, our burglar is a brown-haired outsider. The only real
difference seems to be a somewhat higher plausibility for unlikely read-haired and
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insider alternatives together with a lower support for the preferred brown-haired
and outsider alternatives due mainly to the possibility that e, or ez placed in | by
the partitioning might belong to the subset.

As before, the situation is not so clear at ;. In general we find that evidential
intervals have opened up in the refined approach. This is due to the discounting of
evidence. In the refined approach we see an especially large drop in support for
alternatives supported by evidences that belonged to %; in the overconfident
approach, brown-haired insider and red-haired, and also a large increase in
plausibility for alternatives supported by evidences that belonged to X,, brown-
haired and brown-haired outsider. This is due to the possibility that the evidences
that belonged to %, in the overconfident approach actually has a possibility of
belonging instead to %;, and vice versa. If we consider the three alternatives
brown-haired insider, brown-haired and insider in Y; they all had a support of
0.483 and a plausibility of 0.69, 0.69 and 1, respectively, in the overconfident
approach. In the refined approach there is only a small drop in support for brown-
haired to 0.36 but a much larger drop to 0.19 for insider and brown-haired insider.
This is due to the possibility that e; supporting brown-haired outsider belongs to
%1- This might not be very plausible but if it was the case it would have a large
impact since e; is strongly supportive of brown-haired outsider. Thus, in the
overconfident approach we might have falsely concluded that the burglar was a
brown-haired insider while it actually, as shown in the refined approach, is much
more of an open question whether the probably brown-haired burglar was an
insider or not.

VIII. CONCLUSIONS

In this article we have extended the methodology to partition nonspecific
evidence developed in our previous article? to a methodology for specifying
nonspecific evidence. This is in itself clearly an important extension in analysis,
considering that an evidence will now in a subsequent reasoning process be
handled similarly by different subsets if these are approximately equally
plausible, whereas before the most plausible subset would take the evidence as
certainly belonging to the subset while the other subsets would never consider the
evidence in their reasoning processes. In addition, two facts will facilitate the
reasoning process. Firstly, the specification process in the extended methodology
will besides specifying the evidences also give a degree of falsity and a degree of
credibility in affiliation for each piece of evidence. Secondly, the methodology
can iteratively receive its evidences piece by piece. Together, these facts indicates
that it should be possible to develop methods for disregarding immediately upon
receipt false evidence as well as methods for focusing attention upon useful
evidence based on their maximum degree of credibility.

I would like to thank Stefan Arnborg, Ulla Bergsten and Per Svensson for their helpful
comments regarding this article.
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found the plausibility for every subset that the evidence belongs to the subset. In this article we
aim to find a posterior probability distribution regarding the number of subsets. We use the idea
that each evidence in a subset supports the existence of that subset to the degree that the evidence
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Keywords: belief functions, Dempster-Shafer theory, evidential reasoning, evidence correlation,
cluster analysis, posterior distribution.

1. Introduction

In two earlier articles [1, 2] we derived methods, within the framework of
Dempster-Shafer theory [3-6], to handle evidences that are weakly specified in the
sense that it may not be certain to which of several possible events a proposition is
referring. When reasoning with such evidences we must avoid combining
evidences by mistake that refer to different events.

The methodology developed in these two articles was intended for a
multiple-target tracking algorithm in an anti-submarine intelligence analysis
system [1, 7]. In this application a sparse flow of intelligence reports arrives at the
analysis system. These reports may originate from several different unconnected
sensor systems. The reports carry a proposition about the occurrence of a
submarine at a specified time and place, a probability of the truthfulness of the
report and may contain additional information such as velocity, direction and type
of submarine.

When there are several submarines we want to separate the intelligence
reports into subsets according to which submarine they are referring to. We will
then analyze the reports for each submarine separately. However, the intelligence



reports are never labeled as to which submarine they are referring to. Thus, it is
not possible to directly differentiate between two different submarines using two
intelligence reports.

Instead we will use the conflict between the propositions of two intelligence
reports as a probability that the two reports are referring to different submarines.
This probability is the basis for separating intelligence reports into subsets.

The cause of the conflict can be non-firing sensors placed between the
positions of the two reports, the required velocity to travel between the positions
of the two reports at their respective times in relation to the assumed velocity of
the submarines, etc.

In the first of these two articles we partitioned the set of evidences into
subsets, where each subset was representing a separate event. These subsets
should then be handled separately by subsequent reasoning processes. This
methodology was able to find the optimal partitioning of evidence among subsets
as well as the optimal estimate of the number of subsets when our own domain
knowledge regarding the actual number of subsets was uncertain.

In the second article we found support regarding each piece of evidence and
every subset that the evidence does not belong to the subset. This support is used
to specify each piece of evidence, in the sense that we find to which events the
proposition of the evidence might be referring, by calculating the belief and
plausibility for each subset that the evidence belong to the subset. During this
evidence specifying process we receive indications that some evidence might be
false. Also, it became apparent that some evidences might not be so useful since
they could belong to several different subsets. These evidences were discounted
and were not allowed to strongly influence a subsequent reasoning process within
a subset.

In this article we extend the work described in [1, 2] and aim to find a
posterior probability distribution regarding the number of subsets by combining a
given prior distribution with evidence regarding the number of subsets received
from the evidence specifying process. We use the idea that each evidence in a
subset supports the existence of that subset to the degree that that evidence
supports anything at all. The evidences in each subset are combined and the
resulting evidence is the total support for the subset. However, for every original
piece of evidence in the subset we have a second evidence, derived in [2], with a
proposition that supports that this evidence does not belong to the subset. If we
have such support for every single piece of evidence in some subset, then this is
also support that the subset itself is false. Thus, in this case, we will discount the
evidence that supports the existence of the subset. Such discounted evidences that
support the existence of different subsets, one from each subset, are then
combined.

From the resulting basic probability assignment (bpa) of that combination we
can create a new bpa by exchanging each and every proposition. A proposition in
the new bpa is then a statement about the existence of a minimal number of



subsets where this number is the length of a conjunction of terms of the
corresponding proposition in the previous bpa. Thus, where the previous bpa is
concerned with the question of which subsets have support, the new bpa is
concerned with the question of how many subsets are supported. The new bpa
gives us some opinion, based only on the evidence specifying process, about the
probability of different numbers of subsets.

In order to obtain the sought-after posterior domain probability distribution
we combine the bpa from the evidence specifying process with the given prior
distribution from the problem specification.

In Section 2 of this article we give a summary of the two previous articles [1,
2]. We investigate in Section 3 what domain relevant conclusions can be drawn
from the evidence specifying process and then derive the posterior distribution.
Finally, in Section 4, we give a detailed example.

2. Summary of articles [1, 2]

In this summary we will focus on results of the previous two articles that we
need to derive a posterior domain probability distribution regarding the number of
events. It will be derived by a combination of a given prior probability
distribution and a bpa resulting from an evidence specification process [2] where
we study the changes in conflict when we move an evidence from one subset to
another.

However, first we will learn how to separate evidences based on their
conflicts [1]. Since our evidences are weakly specified with respect to which
events they are referring, it is impossible to directly separate evidences based only
on their proposition. The conflict in Dempster’s rule measures the lack of
compatibility between evidences. Since evidences referring to different events
tend to be more incompatible than evidences referring to the same event, it is an
obvious choice as a distance measure between evidences in a cluster algorithm.
The idea of using the conflict in Dempster’s rule as distance measure between
evidences was first suggested by Lowrance and Garvey [8].

2.1. On nonspecific evidence [1]

In [1] we established a criterion function of overall conflict called the
metaconflict function. With this criterion we can partition evidences with weakly
specified propositions into subsets, each subset representing a separate event.
These events should be handled independently.

To make a separation of evidences possible, every proposition’s action part
must be supplemented with an event part describing to which event the
proposition is referring. If the proposition is written as a conjunction of literals or
disjunctions, then one literal or disjunction concerns which event the proposition
is referring to. This is the event part. The remainder of the proposition is called
the action part. An example from our earlier article illustrates the terminology:



Let us consider the burglaries of two bakers’ shops at One and Two
Baker Street, event 1 (E|) and event 2 (E,), i.e., the number of events is
known to be two. One witness hands over an evidence, specific with
respect to event, with the proposition: “The burglar at One Baker
Street,” event part: E|, “was probably brown haired (B),” action part:
B. A second anonymous witness hands over a nonspecific evidence with
the proposition: “The burglar at Baker Street,” event part: E|, Ej,
“might have been red haired (R),” action part: R. That is, for example:

evidence 1: evidence 2:
proposition: proposition:
action part: B action part: R
event part: E|: event part: E|,E,
m(B) = 0.8 m(R) = 0.4
m(®) =0.2 m(®) = 0.6

2.1.1. Separating nonspecific evidence

We will have a conflict between two pieces of evidence in the same subset in
two different situations. First, we have a conflict if the proposition action parts are
conflicting regardless of the proposition event parts since they are presumed to be
referring to the same event. Secondly, if the proposition event parts are conflicting
then, regardless of the proposition action parts, we have a conflict with the
presumption that they are referring to the same event.

The metaconflict used to partition the set of evidences is derived as the
plausibility that the partitioning is correct when the conflict in each subset is
viewed as a metalevel evidence against the partitioning of the set of evidences, ¥,
into the subsets, );. We have a simple frame of discernment on the metalevel © =

{AdP,—AdP}, where AdP is short for “adequate partition”, and a bpa from each
subset y; assigning support to a proposition against the partitioning:

m,, (~AdP) & Conf({e] ¢;€ %,}),
m, (©) 8 1-Conf({e]e € x,})

where e; is the jth evidence and {eje; € X} is the set of evidences belonging to
subset x; and Conf(-) is the conflict, k, in Dempster’s rule. Also, we have a bpa
concerning the domain resulting from a probability distribution about the number
of subsets, E, conflicting with the actual current number of subsets, #X. This bpa
also assigns support to a proposition against the partitioning:



m(—AdP) & Conf({E, #%}).
A
mp(©) 21— Conf({E, #x}).

The combination of these by Dempster’s rule give us the following plausibility of
the partitioning:

PIs(AdP) = (1-mp(-AdP)) - [] (1 —m, (~AdP)).

i=1

The difference, one minus the plausibility of a partitioning, will be called the
metaconflict of the partitioning.

2.1.2. Metaconflict as a criterion function

The metaconflict function can then be defined as:
DEFINITION. Let the metaconflict function,

r
A
Mcfir,eq ey, .e) S 1= (1-co) - [] (1-¢cy),

i=1

be the conflict against a partitioning of n evidences of the set X into r disjoint
subsets y,; where

cog = Y, m(E)

i#r

is the conflict between r subsets and propositions about possible different number
of subsets, E; the proposition that there are i subsets, m(E;) the support for it and

= 2 [Imep
1 el
NI=g

is the conflict in subset i, where NI is the intersection of all elements in I,
I= {e]’.‘l e;€ x;}is a set of one focal element from the support function of each
evidence ej in x; and e]’.‘ is the kth focal element of evidence ej.

Thus, |1 = |X,'| and



1= T Ie

€€y,

where |e]| is the number of focal elements of e;.

Two theorems are derived to be used in the separation of the set of evidences
into subsets by an iterative minimization of the metaconflict function. By using
these theorems we are able to reason about the optimal estimate of the number of
events, when the actual number of events may be uncertain, as well as the optimal
partition of nonspecific evidence for any fixed number of events. These two
theorems will also be useful in a process for specifying evidences by observing
changes in the metaconflict when moving a single piece of evidences between
different subsets.

THEOREM 1. For all j with j < r, if m(Ej) < m(E,) then min Mcf(r.e|,ey,....ep) <
min Mcf(j,ey,ey,....e,).

This theorem states that an optimal partitioning for r subsets is always better
than the other solutions with fewer than r subsets if the basic probability
assignment for r subsets is greater than the basic probability assignment for the
fewer subsets.

THEOREM 2. For all j, if . min Mcfir, e e, ....e,)< Y, m(E) then min
Mcf(r,eq.es,....e,) < min Mcf(j,e,e,,....e,). L#]

Theorem 2 states that an optimal partitioning for some number of subsets is
always better than other solutions for any other number of subsets when the
domain part of the metaconflict function is greater than the total metaconflict of
the present partitioning.

2.2. Specifying nonspecific evidence [2]

2.2.1. Evidences about evidence

A conflict in a subset y; is interpreted as an evidence that there is at least one
piece of evidence that does not belong to the subset;

mxi(Elj.eje X) = ¢

If an evidence e, in Y; is taken out from the subset the conflict ¢; in ¥;
decreases to c* This decrease ¢; ——c was interpreted as an evidence 1ndlcatmg
that e, does not belong to X, mAx(e ¢ ), and the remaining conflict c is an
other cv1dence indicating that there is at least one other evidence ¢;, j#g, that

does not belong to ¥; - {eq},

g G0 € 1 teg) =



The unknown bpa, Mpy (e, X)) » was derived by stating that the belief that
there is at least one piece of cv1dence that does not belong to ¥; should be equal,
no matter whether that belief is based on the original evidence m, (31 e € x)
before ey is taken out from y;, or on a combination of the other two ev1dcnces
mAx,.(qu x,) and my _ {eq}(Eij;tq.eje (= {e,1))s after ey is taken out from ¥, i.e.

L Gej &%) = Bely oy — o)) T 2 1)-
where
BelX'_(EIj,ejE X) = ¢
and
Bel gy oy, (e, ¢ £ %) = c; tmyy (e e x)- (1 -c 1.

Thus, we derived an evidence that e, does not belong to y; from the
variations in cluster conflict when e, was taken out from y;:

~" %

mAx,(qu Xl) =
! l1-c¢

~ %

If e, after it is taken out from ; is brought into another subset y, its conflict
will increase from ¢, to CZ. The increase in conflict when e, is brought into x is
interpreted as if there exists some evidence indicating that e, does not belong to x;
+ {eq}, i.e.

Vk#imy, (e, & (x,+ {e,})) =

When we take out an evidence e, from subset x; and move it to some other
subset we might have a changes in domain conflict. The domain conflict was
interpreted as an evidence that there exists at least one piece of evidence that does
not belong to any of the n first subsets, n = |x|, or if that particular evidence was
in a subset by itself, as an evidence that it belongs to one of the other n-1 subsets.
This indicate that the number of subsets is incorrect.

When |x; >1 we may not only put an evidence e, that we have taken out
from %; into another already existing subset, we may also put e, into a new subset
Xn+1 by itself. There is no change in the domain conflict when we take out e, from
Xisince x| >1, thus we may interpret the domain conflict as



mx(ﬂj:tq‘v’k:tn-kl.eje XY = Co-

However, we will get an increase in domain conflict from ¢ to c; when we
move e, t0 ¥, . This increase is an evidence indicating that e, does not belong to
X+l mAX(eqes X,+p) » and the new domain conflict after e, is moved into ¥4 IS
interpreted as

my, {x"”}(flj\fk.eje X = Co-

We will derive my,(e, € X, , ) by stating that

Bel | @Vk.e; € 1) = Belyy 0,3k €, %,

X+ A%,
where

Bel 1@k x) = ¢

X+ A%,

and

Bely, 0,3k €2 1) = g +my (e, € X, ) [1-¢ol.

Thus, we received

x
mAx(e Ex )= M

q n+1 1- o
as the sought for evidence, indicating that e, does not belong to Y,41-

We will also receive an evidence from domain conflict variations if e, is in a
subset y; by itself and moved from y; to another already existing subset. In this
case we may get either an increase or decrease in domain conflict. First, if the
domain conflict decreases c; <c, when we move e, out from ¥; this is interpreted
as an evidence that e, does not belongs to ¥,

*

o~ %

mAX(qu Xl) = -5
1-¢,

Secondly, if we observe an increase in domain conflict c; >c, we will interpret
this as a new type of evidence, supporting the case that ¢, does belong to ¥;;



o
mp,le,€x) = —.

2.22. Specifying evidences

We may now combine the evidences from conflict variations and calculate
the belief and plausibility for each subset that e, belongs to the subset. The belief
for this will always be zero, except when €€ X X =1 and co<c; , since every
proposition with this one exception states that e, does not belong to some subset.

When all evidences regarding e, are combined we have received support for
a proposition stating that e, does not belong to any of the subsets and can not be
put into a subset by itself. That proposition is false and its support is the conflict
in Dempster’s rule and an implication that the evidence is false.

For the case when e, is in y; and |x]>1 we combined all evidences
regarding e, and receive a new basic probability assignment with

1
VLt e e (VX)) =g T me ey I [1-me,e 7))l
xex e (x=x")

where ¥* € 2%, x = {x-->%,., and
n+1

k = Hm(eqe xj).
j=1

This gave us plausibilities that e, belongs to a subset of

1 —m(eqe X

n+1

Vk¢n+l.Pls(eqe X =

and
l-m(e, &% . .)
q n+1
Pls(eqe Xpe1 = — .
1- H m(eq -2 Xj)
i=1
For the situation when e,€%;» |x] =1 and cO>cS , the only change was that

the domain conflict variation appeared in the i™ evidence instead of the n+1th
This gave us a slight change in the calculation of plausibility. For subsets except
X; we had
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1 —m(eq £ X

n

1- Hm(eqsé Xj)

i=1

Vk#iPls(e, € x,) =

and for ¥;
1 —m(eq ¢ xl.)
Pls(eqe xi) =
1= [ me,¢ )
ji=1
When e €% X =1 and co<c(*) we did not receive any conflict in the

combination of all evidences regarding e, since we had no evidence against the
proposition that e, belonged to y;. Furthermore, when we calculate belief and
plausibility for any subset other than ); we have a zero belief in that e, belongs to
Xk but we receive a plausibility of

Vk;ti.Pls(eqe XY = [1 —m(eqe x) - [1—mle, & ¥ )
and for y; we receive a belief of

Bel(e, € x) = mle, € x)+ [1-mle, € x)] - I me, € X
xEx”

where x 7 = ¢~ {x}, x=A{xp---x,} and a plausibility of one.

2.2.3. Handling the falsity of evidences

In combining the evidences regarding e, in Sec. 2.2.2 we received some
support k for the proposition that e, did not belong to any of the subsets. This is
impossible and implies to a degree k that e, is a false evidence. If we had no
indication as to the possible falsity of ¢, we would take no action, but if there
existed such an indication we would pay ever less regard to the evidence the
higher the degree was that the evidence is false and pay no attention to the
evidence when it is certainly false. This was done by discounting the evidence
with its credibility o,

o-m(A), A.#0
m%(Aj) _ { J J ,
1—a+oc~m(®),Aj=®

where Aj is e, or ©, m(-) the original evidence, and where the credibility o is

q
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defined as one minus the support in the false proposition that e, does not belong to
any subset and cannot be put in a subset by itself, i.e. one minus the conflict in
Dempster’s rule when combining all evidences regarding eqs

al it (e, ( vX)=1-k

2.24. Finding usable evidences

If we plan to use e, in the reasoning process of some event, we must find the
credibility that e, belongs to the subset in question and then discount the evidence
by its credibility.

Here we should note that each original piece of evidence can be used in the
reasoning process of any subset that it belongs to with a plausibility above zero,
given only that it is discounted to its credibility in belonging to the subset.

An evidence that cannot possible belong to a subset y; has a credibility of
zero and should be discounted entirely for that subset, while an evidence which
cannot possibly belong to any other subset X; and is without any support
whatsoever against x; has a credibility of one and should not be discounted at all
when used in the reasoning process for y;. That is, the degree to which an
evidence can belong to a subset and no other subset corresponds to the importance
the evidence should be allowed to play in that subset.

We derived the credibility oy of e, when e, is used in Xj as

2
[Pls(e, € x,)]
;Pls(eq €x)
[Pls(e, € x)1?

ZPls(eqe xk)’
k

aj=[1—Bel(eqe xi)]- J#i,

o, = Bel(eqe xi)+ [1 —Bel(eqe xi)] .

where Bel(e, € x,) is equal to zero except when e, €% |x] =1 and c0<cg . This
gave us a final discounted bpa as

%
{ai-m ), Aj¢@.

1—ai+ai.m%(@),Aj:@
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3. Deriving a posterior domain probability distribution

3.1. Evidences about subsets

We use the idea that each evidence in a subset supports the existence of that
subset to the degree that that evidence supports anything at all. For a subset ),
each single evidence we have is dlscounted for its degree of falsity and its degree
of credibility in belonging to Xs’qm; i. All discounted evidences in 7; are then
combined. The value of all mqg ’i’s were derived in [2] from the mq s by the
specifying process. The degree to which the bpa resulting from this combination
supports anything at all other than the entire frame is the degree to which these
evidences taken together supports the existence of ;, i.e. that y; is a nonempty
subset that belongs to %. Thus, we have

m eV =1-173 k Iq] o),

1 )
my (@) = 1— - H @)
q

. . , - % %,
where k is the conflict in Dempster’s rule when combining all m C

For every evidence we have some support in favor of the evidence not
belonging to the subset. To the degree that this is fulfilled for all evidences in ¥; it
supports the case that none of the evidences that could belong to ; actually did so.
That is, it is support for the case that the subset is false. Thus, we would like to
discount the just derived evidences as

my (€ X) = o my (X € ),

%
mxi(G) =l-o,+o;- mxi(G)

where

1, Ixil =1,¢5<¢y
o. =

1 —fl. 8 h[., otherwise
with

fi= TI me,# ) L) >1 v (1] = Leg>eo)]

qle e,

T me,ex) (x>0 [(x)>D v (x)=1Le>c)D)

ql e e xpi#i

q| €,€ x].,j¢n+l
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and

b= JI [==mle e ) - (1-me,e )], |x] >0 x| = 1cy<c
qle e xpj#i

where f;-g;- h; is the support that y; is empty, i.e. support that y; does not exist.
Here we have, from [2],

*

cp—C
0 0 .
,j=n+l,|)(,l>l
l—c0 !
N
Ci=C%
o =h x| >1
l—ci
Vi, e, € xi.m(eqé Xj) = ~
€%~ %% . . -1 *
I—*’j—l’|xil - ’C0>C0
-¢p
*
c. —c.
lj ],otherwise
J
and
Vi Co _ *
ie, € xl..m(eqe x[.) = C—*,lx’.| = 1,¢5<c
0

where c; and c are conflicts in subset X; before and after ¢, is taken out from the
subset, c] and c; are conﬂlct in a subset y;, j#i, before and after e, was brought
into the subset, and ¢( and ¢, are domain conflicts before and after e, was brought
either from a subset with several evidences into a new subset or, if it is in a subset
by itself, from this subset into one of the other already existing subsets.

3.2. Evidence about the number of subsets

The discounted evidences mZ , one from each subset, are then combined. The
resulting bpa will then have focal elements that supports propositions such as

X, €X) A (Xz€X) A (X EX)-

We have
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miCaxyen= ] mioen- I m©),
il (%€ %) Ayedy

mjf(@) =11 m{ (©).

i=1

From this we can create a new bpa by exchanging all propositions in the
previous bpa that are conjunctions of r terms for one proposition in the new bpa
that is on the form |y| > r. The sum of probability of all conjunctions of length r in
the previous bpa is then awarded the focal element in the new bpa which supports
the proposition that |x| > r;

m x| =) = my(( AX) €,
X X
Il =r
m.(©) = my (©)

where ¥* € 2% and x = {x,, %y .- X,} -

A proposition in the new bpa is then a statement about the existence of some
minimal number of subsets and its bpa taken as a whole gives us an opinion about
the probability of different numbers of subsets.

3.3. Combining the evidence with a prior distribution

This newly created bpa can now be combined with our prior probability
distribution, m(-), from the problem specification, to yield the demanded posterior
probability distribution, m* (-). We get

1 i
m* (E) = T3 ™ED)- (’”x(@” >, myxl Zj))

j=1
where

n—-1 n
k=Y % mE) mxl z))
i=0j=i+l
is the conflict in that final combination.

Thus, by viewing each evidence in a subset as support for the existence of
that subset we were able to derive a bpa, concerned with the question of how
many subsets we have, which we could combine with our prior domain probability
distribution in order to obtain the sought-after posterior domain probability
distribution.
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4. An Example

In our first article [1] we described a problem involving two possible
burglaries. In this example we had evidence weakly specified in the sense that it is
uncertain to which possible burglary the propositions are referring. The problem
we were facing was described as follows:

Assume that a baker’s shop at One Baker Street has been
burglarized, event 1. Let there also be some indication that a baker’s
shop across the street, at Two Baker Street, might have been
burglarized, although no burglary has been reported, event 2. An
experienced investigator estimates that a burglary has taken place at
Two Baker Street with a probability of 0.4. We have received the
following evidences. A credible witness reports that “a brown-haired
man who is not an employee at the baker’s shop committed the burglary
at One Baker Street,” evidence 1. An anonymous witness, not being
aware that there might be two burglaries, has reported “a brown-haired
man who works at the baker’s shop committed the burglary at Baker
Street,” evidence 2. Thirdly, a witness reports having seen “a
suspicious-looking red-haired man in the baker’s shop at Two Baker
Street,” evidence 3. Finally, we have a fourth witness, this witness, also
anonymous and not being aware of the possibility of two burglaries,
reporting that the burglar at the Baker Street baker’s shop was a brown-
haired man. That is, for example:

evidence 1:
proposition:
action part: BO
event part: E;:
m(BO) = 0.8
m(®) = 0.2

evidence 3:
proposition:
action part: R
event part: Ey:
m(R) = 0.6
m(®) = 0.4

domain probability distribution:

0.6,i=1
m(E) = {0.4,1': 2

0, i#1,2

evidence 2:
proposition:
action part: Bl
event part: E{,E,
m(BI) = 0.7
m(®) =0.3

evidence 4:
proposition:
action part: B
event part: E{,E,
m(B) = 0.5
m(©) = 0.5
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All evidences were originally put into one subset, ;. By minimizing the
metaconflict function it was found best to partition the evidences into two subsets.
The minimum of the metaconflict function was found when evidences one and
four were moved from y; into ), while evidences two and three remained in ;.
This gave us a conflict in ; of ¢| = 0.42, in ), of ¢; = 0, and a domain conflict of
co = 0.6.

In our second article [2] we studied variations in the cluster conflict when a
piece of evidence is moved from one subset to another, or put into a new subset by
itself. Starting with e¢; we found that if e; in 7, is moved out from Y, the conflict
remains at zero, ¢, = 0. If e| then is moved into ) its conflict increased to c: =
0.788, but if ¢, is instead put into a subset by itself, X3, we will have a domain
conflict of one, c; = 1. By the formulas of [2] we received three bpa’s regarding
ey

c’;—-cl c —c;
mle € X,) = T 0.634, mie &%) = — = 0
1 l-c,
and
c*—co
me, & Yy) = ——— =1,
¥ 1-¢

with the remainder in each case awarded to the entire frame. We received for the
other three evidences by the same formulas:

042,i=1

042,i=1
m(e, & X)) = {0.56, i=2, m(ez € X,) = {0.54, i=2,
1,i=3 1,i=3
0.155,i=1
m(e, & X,—) = {0, i=2
1,i=3

In each case the remainder was awarded to the entire frame.

When the three bpa’s regarding where a particular evidence might belong
were combined, a conflict was received for e, and e3, but not for e; and e4. Thus,
there is no indication from this combination that e; and e, might be false. For the
second and third evidence a conflict of 0.2352 and 0.2268 was received,
respectively. This is their degrees of falsity. Evidences e, and e3 were then
discounted to their respective degrees of credibility a = 1-k, i.e. 0.7648 and
0.7732:
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. o-m(A), A#0
mﬁ’(Aj) _ { J it
1 —oz+a-m(G)),Aj= (O]
This gave us
m(BO)=08  m¥(BI)=05354 my (R) = 0.4639 my (B) = 0.5
m®(@) =02 my (©) = 0.4646 m (©) = 0.5361 me(©) =0.5.

Since all four evidences can belong to either of the two subsets it will always
be uncertain if it belongs to a particular subset in question. In order to justify the
use of an evidence in some subset we must find the credibility that it belongs to
the subset and discount the evidence to its credibility. That is, an individual
discounting is made for each subset and evidence according to how credible it is
that the evidence belongs to the subset.

The credibility that e; belongs to y; is

_ (Pl ex)? 03662

%= = 036641 - 00981
Z Pls(e, € xj)
j=1
where
1—m(e, & X,)
Pls(e, € 3,) = = 1-0.634 = 0366,
P 1-me, & X)) -miey & X,) - mle; & X5)
- l-me, ¢ Xy) .
ste1 € Xy = 1—m(e, & ) mle; & X,) - mle; & X3) B

and that e, belongs to ¥,

(Pls(e, € )(2))2 1 07301
%= T 0361 T
Y Pls(e, € x)

j=1

For the other three evidences we get: e;: o) = 0.4310, 0y = 0.2480, e3: 0 =
0.4182, oy = 0.2632, and for e4: o = 0.3870, o, = 0.5420.

Discounting the four evidences to their credibility of belonging to y; and 5,
respectively, we found:
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m C(BO)=0078  m; ¥BO)= 05856

my (@) = 0.9216 my (@) = 0.4144,
my NBI)=02308  my ¥BI)=0.1328
lo% o
my P @) =07692  my (©)=08672,
my CNR)=0.1940  my XR)=0.1221

my (@)= 08060  my (©)=08779

and
my " (B) = 0.1935 my CX(B) = 0.2710

my (@) =08065  my

(©) = 0.7290.
These results were derived in [2].

Starting with these results we begin the work to find a posterior probability
distribution for the number of subsets.

By using the idea that each evidence in a subset supports the existence of that
subset to the degree that the evidence supports anything at all, we calculate the
support in our two subsets as
%

m (xlex)—l—H my @) = 1—m; @) my @) my @) m *%10) = 0.4893,

mxl(®)=]‘[m;“"(e)= #F@) my P @) my THO) - my T H(©) = 0.5107
q

and
my (1 € x)—l—H m @) = 1-m, “@) -my TX©)-my A©)-my " (O)= 07268,

m, (©) = qu Ay =m. @) my @) my HO)-my  HO) = 0.2732.
q

If we have support for every single piece of evidence in some subset in favor
of that the evidence does not belong to the subset, then this is also support that the
subset is false. In this case none of the evidences that could belong to the subset
actually did so and the subset was derived by mistake. Thus, we will discount the
just derived evidences that support the existence of the subsets for this possibility.

There is some evidence against the first subset, yielding a credibility for that



19

subset of less than one

o =1- ] me, € x,)- 11 m(e, € x,) = 0.9826,

gl e, € x, qle,ex,jel
o,=1- H m(quXQ)‘ H m(eqexz):l.
gle e x, ql e € xpje2

We then discount the two bpa’s that support the existence of the subsets to their
respective credibility and receive

m;{"l(x] ey =0ao- mx.(xl € %) = 0.4808,

my (@) =1-0-a-m, (©)=05192
1 1
for the first subset and

m;fz()(2 ex)=0- mxl()c2 € x) = 0.7268,

my (@) =1-0-a-m, (©)=02732
2 1
for the second subset. If we then combine these two bpa’s we receive

m(Catxpxen= [ mpoen- 1 my (©)
i (e {xpxH) i oge L x,h

= % % _
= my (0 € X) - my (Xy € %) = 0.3494,

m(CafyDen= JI mixen I mi©
il (x; € {x;}) il (e {1

— % % -
= mxl(x] €X)- mxz(G)) =0.1314,

m(Catphen= JI mioen [I m©
il (x;€ {x,1) il (e {x,})
= m:é(xze X - mZ‘:(G) =0.3774,
2
my (@) = Hm)é(@) =m£(@)~mz(®) =0.1418.

i=1

Given this result we create a new and final bpa by exchanging the focal
elements of this bpa. Where the previous bpa is concerned with the question of
which subsets have support, the new bpa is concerned with the question of how
many subsets are supported. Thus, the new bpa gives us an opinion, based only on
the result of the evidence specifying process, about the probability of different
number of subsets. We have
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m(1 2= Y my(AX) €0 =m(C AL p}) € 0) = 03494,

x|l =2
m(lxl 2 1) = *Hz*l mE(( Ax ) e =my(C A {1 en+m(C A {x}) en
x| Ixl=1

= 0.5087,
— %) =
mx(G) =my (©) =0.1418.

To conclude the analysis we combine this final bpa, from the evidence
specifying process, with the given prior domain probability distribution from the
problem specification,

0.6,i=1
m(E) = {0.4, i=2
0, otherwise

in order to receive the sought-after posterior domain distribution as the bpa of that
combination. When doing this we receive a conflict of

1 2
k=3 % mE)-m(xl 2j)=mEq) - myx| 2 1)+mEq) - m/xl 1)
i=0j=i+1
+m(E)) -m (x| 22) = 0.2097

and obtain

2
1
(B = 7= - m(Ey- [mx«a) + 2 myllxl 21))
i=1

1
1% m(E,) - (mx(G) +mx(|x| 21D+ mx(|x| 22)) =0.5061,

1
1
m' (Ey) = 7= - m(E)) (mx(e) + 3 m(lxl zj))
ji=1

1
= 7= mEY - (my(©)+my(lx] = 1) =0.4939,
m" (E) =0, otherwise
as the posterior domain probability distribution. We find from the posterior

distribution that the alternative with two events is slightly preferable to the one-
event alternative.



21

5. Conclusions

We have shown that it is possible to derive a posterior domain probability
distribution from the reasoning process of specifying nonspecific evidence. This
was done by viewing each evidence in a subset as support for the existence of that
subset. Based on this, we were able to find support for different number of
subsets. Combined with a given prior distribution that yielded the sought-after
posterior distribution.

The methodology described in this article builds on the work to partition the
set of evidences by minimizing a criterion function of overall conflict that was
established within Dempster-Shafer theory [1] and also on the work of specifying
evidences by studying changes in the conflict when a piece of evidence was
moved from one subset to another [2].
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ABSTRACT

For the case of evidence ordered in a complete directed acyclic graph this paper
presents a new algorithm with lower computational complexity for Dempster’s rule than
that of step-by-step application of Dempster’s rule. In this problem, every original pair of
evidences, has a corresponding evidence against the simultaneous belief in both
propositions. In this case, it is uncertain whether the propositions of any two evidences
are in logical conflict. The original evidences are associated with the vertices and the
additional evidences are associated with the edges. The original evidences are ordered,
Le., for every pair of evidences it is determinable which of the two evidences is the
earlier one. We are interested in finding the most probable completely specified path
through the graph, where transitions are possible only from lower- to higher-ranked
vertices. The path is here a representation for a sequence of states, for instance a
sequence of snapshots of a physical object’s track. A completely specified path means
that the path includes no other vertices than those stated in the path representation, as
opposed to an incompletely specified path that may also include other vertices than
those stated. In a hierarchical network of all subsets of the frame, i.e., of all incom-
pletely specified paths, the original and additional evidences support subsets that are not
disjoint, thus it is not possible to prune the network to a tree. Instead of propagating
belief, the new algorithm reasons about the logical conditions of a completely specified
path through the graph. The new algorithm is O(10)| log|®|), compared to O(|0|'°¢'°1)
of the classic brute force algorithm. After a detailed presentation of the reasoning behind

Address correspondence to Johan Schubert, Division of Applied Mathematics and Scientific Data
Processing, Department of Weapon Systems, Effects and Protection, National Defence Research
Establishment, S-172 90 Sundbyberg, Sweden.

Received May, 1991; accepted December 5, 1992

International Journal of Approximate Reasoning 1993; 9:37-73
© 1993 Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York, NY 10010 0888-613X,/93 /$6.00



38 Ulla Bergsten and Johan Schubert

the new algorithm we conclude that it is feasible to reason without approximation about
completely specified paths through a complete directed acyclic graph.

KEYWORDS: belief functions, Dempster—Shafer theory, Dempster’s rule,
evidential reasoning, uncertainty, propagation of evidence, hierarchical
network, partitions, complete directed acyclic graph, computational com-

plexity
1. INTRODUCTION

The development of knowledge-based systems has evoked increasing
attention to the subject of approximate reasoning. The available informa-
tion in a system is often uncertain, incomplete, and even partly incor-
rect—demanding methods able to handle this kind of information. The
Dempster—Shafer theory, which provides an attractive representation of
uncertainty and an intuitive combination of uncertain information, is one
such method (Dempster [1], Shafer [2, 3, 4]). However, one problem with
the Dempster—Shafer theory is its computational complexity. In many
cases even a moderate amount of data leads to huge computational
complexity making it necessary either to aggregate focal elements, i.e., use
summarization (Lowrance et al. [5]), or to derive approximate or special
case algorithms.

In this paper we present an algorithm for the special case of evidences
ordered in a complete directed acyclic graph. In this case, it is uncertain
whether the propositions of any two evidences are in logical conflict. Here,
we can model the uncertainty by an additional evidence against the
simultaneous belief in both propositions and treat the two original proposi-
tions as non-conflicting. This will give rise to a complete directed acyclic
graph with the original evidences on the vertices and the additional ones
on the edges. As an example, we may think of the vertices as positions in
time and space and the edges as transitions between these positions.
Transitions are only possible from a vertex with a lower index to one with a
higher. We are interested in finding the most probable path of an object.
The evidence at a vertex may then be an evidence that the object has been
at that position and the evidence at an edge an evidence against the
possibility of a transition between the two positions. The classic algorithm
calculates the support and plausibility for a given path, i.e., a sequence of
vertices, through the graph by first combining all evidences step-by-step
with Dempster’s rule and then summing up all contributions for the path.
The new algorithm reasons instead about the logical conditions of a
completely specified path through the complete directed acyclic graph,
gaining significantly in time and space complexity.

In this paper, we give a brief summary of Dempster—Shafer theory
(Section 2), discuss the type of problem domains that satisfy our restric-
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tion, and then describe the representation of Dempster—Shafer theory in
this case (Section 3). In Section 4 we review some previous work on belief
propagation and compare these results to ours. We discuss how the classic
algorithm works in this case and give an example (Section 5). We then give
an explanation of the reasoning behind the new algorithm as well as a
presentation of the formal structure of the new algorithm (Section 6).
Finally, we discuss its computational complexity (Section 7).

2. DEMPSTER-SHAFER THEORY

In Dempster—Shafer theory, belief is assigned to a proposition by a basic
probability assignment. The proposition is represented by a subset A of an
exhaustive set of mutually exclusive possibilities, a frame of discernment
0.

The basic probability assignment is a function from the power set of ©
to [0, 1]

m:2° - [0,1]
whenever
m(J) =0
and
2 m(A) =1
AcCO

where m(A) is called a basic probability number, that is the belief
committed exactly to A.

The total belief of a proposition A is obtained from the sum of
probabilities for those propositions that are subsets of the proposition in
question and the probability committed exactly to A4

Bel(A) = ) m(B)
BcA

where Bel(A4) is the total belief in 4 and Bel(-) is called a belief function
Bel: 29 — [0, 1].

A subset A of O is called a focal element of Bel if the basic probability
number for A is non-zero.

In addition to the belief in a proposition A it is also of interest to know
how plausible a proposition might be, i.e., the degree to which we do not
doubt A. The plausibility,

Pls: 29 — [0,1]
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is defined as
Pls(A4) = 1 — Bel( A4°).

We can calculate the plausibility directly from the basic probability assign-
ment

Pils(A) = ), m(B).
BNA+J

Thus, while belief in 4 measures the total probability certainly committed
to A, plausibility measures the total probability that is in or can be moved
into A, i.e., Bel(A4) < Pls(A).

If we receive a second item of information concerning the same issue
from a different source, the two items can be combined to yield a more
informed view. Combining two belief functions is done by calculating the
orthogonal combination with Dempster’s rule. This is most simply illus-
trated through the combination of basic probability assignments. Let A; be
a focal element of Bel, and let B, be a focal element of Bel,. Combining
the corresponding basic probability assignments m; and m, results in a
new basic probability assighment m; & m,

m] [$) mz(A) =K- Z ml(A,‘) 'mz(B])
AiﬂBj=A

where K is a normalizing constant

-1
ANB;=0

This normalization is needed because, by definition, no probability mass
may be committed to J. The new belief function Bel, ® Bel,(-) can be
calculated by the above formula from m; ® m,(-).

When we wish to combine several belief functions this is simply done by
combining the first two and then combine the result with the third and so
forth.

3. DISCUSSION OF PROBLEM DOMAINS

3.1. Problem Domains that Satisfy the Assumptions of the Algorithm

The algorithm presented in this paper is a special case algorithm for
evidences ordered in a complete directed acyclic graph, where the vertices
represent states and the edges transitions between states. We are inter-
ested in finding through which sequence of states a process has developed.
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At every vertex we have evidence supporting the proposition that this
vertex is included in the sequence and at every edge evidence expressing
the degree of doubt about a transition between the corresponding states.

As an example we may consider a graph where a state represents a point
in time and space and the sequence of states represents a path along which
some object may have moved. For some coordinates we have evidences
whose proposition tells us that this geographical point has been passed by
the object at a certain time. The graph consists only of coordinates for
which there is evidence. The propositions of the evidences on the edges
may, for example, tell us that the time difference between the states may
be too small in relation to their distance. Of course, it is impossible
to move from a vertex to a previous one. There may also exist other
domain-specific restrictions on the edges.

Here, we are making the assumption that only one path at a time is
permitted through the graph, i.e., two objects cannot pass through the
graph at the same time. The problem of analyzing paths of multiple objects
can be solved by partitioning the evidences into clusters (Schubert [6]),
each cluster representing a separate object, after which the problem may
be solved separately for each partitioning.

The new algorithm was developed for an anti-submarine intelligence
analysis system (Bergsten et al. [7]). In this application information about
foreign submarine activity derives from visual observations and military
sensor signals. The information is of varying quality with considerable
uncertainty. Visual observations may include anything from a civilian
reporting unusual wave movements on the surface to a group of naval
officers recognizing a submarine tower. In shallow waters sensors may have
difficulty in discerning a target, and there may be several targets present
simultaneously. Thus, a non-firing sensor does not necessarily exclude a
passage. Weather, wind, and water temperature are other important fac-
tors determining the range and detection probability of a sensor. From this
it follows that an unknown number of observations may be false, i.e., not
arising from submarines.

We are interested in finding the path along which the suspected subma-
rine has moved, i.e., which observations are true. The problem we are
treating here is simplified by the assumption that all observations arise
from only one submarine.

This problem may be described by the complete directed acyclic graph
discussed above. Each observation at a vertex, whether visual or originat-
ing from a sensor, is an evidence indicating that a submarine has visited
the point of the observation. The vertices are ordered according to the
time of the observations. Evidences at the edges, against transitions
between the observations, appears as a lack of sensor signals, unrealistic
velocity requirements, etc.



42 Ulla Bergsten and Johan Schubert

In this case we often have less than ten interesting observations during a
certain period. This is because the incoming flow of observations is rather
small, and observations soon become too old to give valuable information
about the current position of the submarine.

Even with this moderate number of observations, the computational
complexity becomes too high for the classic algorithm to be used, but is
acceptable for the new algorithm.

3.2. Evidential Reasoning in a Complete Directed Acyclic Graph

Let a complete directed acyclic graph G be given. We are interested in
transitions between vertices and search for the most probable path through
the graph. Every vertex v; in G is associated with an evidence e; which to
the amount p; supports the proposition that this vertex belongs to the
sought path S. Furthermore, for every pair of vertices v; and v;, there is an
edge between the vertices that is associated with an evidence e,; which to
the amount g;; speaks against a direct transition between these two
vertices. Thus, e;; supports the proposition that there is no transition
between the vertices v; and v; that does not involve any other vertex
between them (Figure 1). All the corresponding belief functions are simple
support functions. Because the directed acyclic graph is complete, the set
of vertices is totally ordered. All evidences are supposed to be indepen-
dent.

Figure 1. Evidences in the complete directed acyclic graph.
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The first step in applying evidential reasoning to a given problem is to
delimit the propositional space of possible situations, i.e., “the frame of
discernment.” In our case the frame of discernment is the set of all
possible paths through the graph, where transitions are possible only from
lower- to higher-ranked vertices. Assuming the graph G consists of n
vertices, any path § of the frame through G can be represented by
<Xy, X,5,..., %, > where the iith element corresponds to vertex v, and
takes the value r; or — r; according to whether or not it is contained in this
particular path. Our frame © will then consist of these 2” different paths.
Consider for example a graph consisting of five vertices v,,...,vs and
directed edges from every vertex to all vertices with a higher index. The
path from v, to v, to vs, not including v, or wvs, is represented by
<ry, mry, 1rs, k15 > . To be able to express subsets of ® in a conve-
nient way, we extend the range of x; with the value 6,, meaning either r,
or -r. Eg., <r,0,,05,r,r; >, an incompletely specified path, will
denote all paths passing through v,, v,, and vs.

4. PREVIOUS WORK

There has been some work on generally applicable improvements of the
time complexity of Dempster’s rule, e.g. [8, 9], reducing the time complex-
ity in the general case from O(3'®) to O(|®]- 2!®). However, most im-
provements have concerned important special cases. Foremost among
these are methods dealing with belief propagation in trees.

4.1. Belief Propagation in Hierarchies

In 1985 Gordon and Shortliffe [10] suggested that when evidence sup-
ports singletons or disjoint subsets of the frame, a hierarchical network of
subsets could be pruned to a hierarchical tree. The assumption is that a
strict hierarchy of hypotheses can be defined from some subsets of 2® and
that a system will only receive information for these subsets. They pro-
posed a method partly based on the work of Barnett [11] for reasoning
about hypotheses with hierarchical relationships.

Barnett showed that simple support functions focused on singletons or
their complements can be combined with a time complexity, for each
considered subset of ©, that is linear in the size of the frame, |®|. In order
to obtain linear time complexity, it is assumed that simple support func-
tions with the same focus have already been combined.

Barnett’s method can be described as first combining all simple support
functions with equal foci and then, for each singleton, combining the
resulting simple support functions for and against the singleton. For each
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singleton, this results in a separable support function with three focal
elements: the singleton, its complement, and ©. Finally, the separable
support functions are combined separately for each considered subset of ©
in such a way that a linear time complexity is obtained. Barnett’s technique
will also work when the simple support functions are focused on subsets or
their complements if all subsets considered are disjoint.

Besides the assumption that the domain allows a hierarchical network to
be pruned to a hierarchical tree and that a system will only receive
information about those subsets of the frame that are in the tree, the
method by Gordon and Shortliffe is approximate in that it does not assign
belief to subsets that are not in the tree. This approximation changes the
time complexity from exponential to linear.

The first step is borrowed from Barnett’s method. All evidences with
equal foci, confirming and disconfirming, are combined, with the only
difference that what Barnett did with simple support functions focused on
singletons is done here for all subsets of the frame that are in the tree, T.
Now there are two bpa’s for each subset of the frame that is in the tree,
one confirming the subset and one disconfirming it; we want to combine all
bpa’s in the entire tree. However, combining bpa’s where some focal
elements are complements of subsets in the tree might produce an
intersection that is not a subset or a complement of a subset that is in the
tree. We begin with the confirming bpa’s. These are easily combined
because the intersection between two focal elements is either empty or the
smaller of the two sets. This is because of the tree structure where the
focal element of a child is a subset of the focal element of the parent and
where focal elements at different branches are disjoint. Finally, the discon-
firming bpa’s are combined one by one with m, where my is the result of
the combination of all confirming bpa’s. When belief is assigned to a
subset, X, that is not in the tree this belief is reassigned to the smallest
subset, A4;, such that X is a proper subset of 4,, X C A4,.

Shafer and Logan [12] improved on the method by Gordon and Short-
liffe. They showed that, although the algorithm by Gordon and Shortliffe
usually produced a good approximation its performance was not as good
when used with highly conflicting evidence. Besides not being approximate,
the algorithm by Shafer and Logan also calculates belief for A{ of every
partition, A,, that is in the tree, thus it calculates the plausibility for all
partitions in the tree. Both algorithms run in linear time. Interestingly,
Shafer and Logan showed that the linear time complexity of their algo-
rithm is linear in the number of the nonterminal nodes due to the local
computations of their algorithm and linear in the tree’s branching factor
due to Barnett’s approach.

The algorithm by Shafer and Logan can handle evidence and calculate
belief in partitions of the form {A4;, AS} for all subsets, 4;, in the tree. It
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can also calculate belief in partitions of the form C, U {A4{}, where C, is
the set of children of A,. However, their algorlthm can not handle
evidence for C, U {A¢}). Because these two types of evidence correspond
to data and domam knowledge respectively, this is a significant restriction.
A generalization of the algorithm by Shafer and Logan that manages to
take domain knowledge into account is the method for belief propagation
in qualitative Markov trees by Shafer, Shenoy, and Mellouli [13]. In a
qualitative Markov tree the children are qualitatively conditionally inde-
pendent [14] given the parent, i.e., in determining which element of a child
is true, there is no additional information in knowing which element of
another child is true once we know which element of the parent is true.
Qualitative Markov trees can arise through constructing what Shafer,
Shenoy, and Mellouli call the tree of families and dichotomies. This is
simply done by substituting each nonterminal node with subset A4, in a
hierarchical tree by a parent-child pair with the dichotomy {4, A} as
subset at the parent and the family C, N {A4¢} as subset at the child and
furthermore substituting terminal nodes with subset A; with the di-
chotomy {A4,, A¢}.

In [15] Shenoy and Shafer list the axioms under which local computa-
tions at the nodes are possible.

Shafer, Shenoy, and Mellouli point out that this computational scheme
reduces the time complexity from being exponential in the size of the
frame to being exponential in the size of the largest partition.

4.2. Comparison with our Method

Barnett [11] showed that it is possible to implement Dempster’s rule
with a time complexity linear in the size of the frame, |®|, when the belief
functions being combined are all simple support functions focused on
singletons or their complements. In our case, however, the simple support
functions are never focused on singletons and, with one exception, not
focused on the complements of singletons. Our frame consists of all
possible single paths in a complete directed acyclic graph, and the simple
support functions are on subsets representing individual vertices in the
complete directed acyclic graph or on subsets representing the direct
transition between two vertices, i.e., on elements of 2® that are not
singletons or, with the exception of the two vertex graph, their comple-
ments.

Gordon and Shortliffe suggest that when evidences support singletons or
disjoint subsets of the frame the hierarchical network of subsets could be
pruned to a tree. Then they suggested methods for the combination of
evidence in trees. Our case can of course also be represented with a
hierarchical network of subsets, as seen by the example in Figure 2 of a
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hierarchical network of subsets of the frame for a two-vertex graph. As
mentioned above, we never have evidence supporting singletons and the
subsets of the frame that are supported are not disjoint. In Figure 2 the
last subset of the second row and the first two subsets of the third row are
supported by one simple support function each. This is support offered
against the belief in both vertices, i.e., support offered for the complement
of the belief in both vertices, <r,,r, >°¢, support offered for the first
vertex and support offered for the second vertex respectively. Because the
supported subsets in the hierarchical network of our problem are not
disjoint, we can not prune our network to a tree and use the scheme
suggested by Gordon and Shortliffe.

The two other papers by Shafer and Logan [12] and Shafer, Shenoy, and
Mellouli [13] concern the case of belief propagation in qualitative Markov
trees only. Thus, the methods presented in these three papers are not
applicable in the case with evidences in a non-prunable network of subsets.

Instead of propagating the belief in a hierarchical structure of subsets
our algorithm reasons, separately for each instance of the frame, about the
logical conditions of the completely specified path through the complete
directed acyclic graph.

5. DEMPSTER’S RULE—THE CLASSIC ALGORITHM

Let us for convenience define the representation of a path as a conjunc-
tion of n propositions,

<X, X5,...,X%, >éx1 NXy N NX,,
and define

(X13Xgyeey X0 2X, VX, Vs Vi,
as a disjunction of n paths. We have
X5 X5e s Xy PALY Y0500, Yy D=< X AV, X5 AYgs oo X, NY, >
and
(X, X e s X)) A Y1 Vasener Vo)

=X AYLX A Yo s Xy A Y Xy AV X AYgyeees Xy AYpseees
Xy AY13 Xy AYosees Xy AYy).

In the problem of transfers between vertices in a graph, where a transfer
might be possible only from a vertex with lower index to a vertex with
higher index, our focus is on paths that may consist of several vertices. The
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frame of discernment is the set of all completely specified paths, © =
{<x,x5,...,x, > Vi. x; €{r, -~ r}}, where r; is the proposition of the
evidence corresponding to vertex i in the graph, x; = r, means that the
vertex vu; is included in the path and x, = —r, means that v; is not
included in the path.

We are interested in the problem where one begins with a basic
probability assignment for those elements that belongs to the following
subset of 2°:

{(<60,,...,0,_,,r,6,1,...,0,>}
U{(< 000,01, =7, 0,0 0,..., 6, >,

<Oy Oy T O 6, >

<Oy O 15 T Ot s 0, > OV jok i < k <},

that is, we begin with positive evidence, e;, for all vertices and negative
evidence, e;;, against all directed edges v, to v; where i < j—evidence that
the path does not include v; or that it does not include v; or that it does
include a vertex v;,i < k < j, between v; and v;, thus excluding any direct
transfer.

Thus, we have the following two types of evidences to consider.

1. The evidence e, for every vertex in the graph. The bpa for the path

with a single evidence e; is

Pi» (x;=r) N (Vklk #i.x, = 6,)
m(<x;,%y,..,%,>)={1-p, Vkx,=0,
0, otherwise

2. The evidence e;; against the edges between every two vertices in the
graph. The corresponding bpa is here

9> ((x;=r) Alx;==r)) V
(i = =r) A (x;=6)) Vv
M ( <Xy, Xgyenn X, >) = 3kli <k <j.x,=r) ’
1 —g;, Vk.x. =6,
0, otherwise

All these evidences are to be combined using Dempster’s rule. The
evidences can be combined in an arbitrary order because Dempster’s rule
is both associative and commutative.
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5.1. Explaining the Classic Algorithm

We will seek the support and plausibility for all elements of ® that are
of the form <x,, x,,...,x, > where x;, €{r, - r}. For the sake of
simplicity we shall first use Dempster’s rule to separately fuse all positive
evidences and all negative evidences,

n

Bel, = @{Bel<<9| ..... 0 (10

>, <0...., RV T 6,>,

S ST T O P 0,,>>|Vi,j,k-i<k<j}7

thus leaving the conflict creating fusion, Bel, ® Bel,,, until last. The first
of these fusions is shown in Figure 3 and Figure 4. The support and
plausibility of all paths will then be calculated from the result of the last
fusion.

In a fusion of two belief functions the representation in every intersec-
tion of focal elements is the conjunction of these focal elements’ represen-
tations. The value of that intersection is the product of the values of the
focal elements. In the upper left quadrant of Figure 4, for example, the
result is derived from:

(< =r,0,,...,0,>,<0,,77y,05,...,0,>)
A< =r,0,,...,60,>,<0,,0,,—r;5,0,,...,0, >,
<0,,ry,605,...,0,>)
=(< —|I’1,92,...,0” >, < —|r,,02,—|r3,04,...,(9,, >,
< arry,05,...,0,>, < ar,ar,05,...,0, >,
< 017_‘r2, —lr3’04""’0n > ,@>
= {since the second, third and fourth

elements are contained in the first}
- < < —|I‘],02,...,9” > 5 < 01, —Irz, ﬁr3,04,...,9n > >

< 61, Iy 93, 9n> < 91, 9n>

123 1-p,

<r, 02, 6n> <1 93. (-)n> <r, 92, 9n>

P PP, Pl(l - P2)

< 91, ey 9n> i< 61. N 93. 9n> < 91, 9n>

1 “P ( ‘Pl)Pz a- Pl)(l 'Pz)

Figure 3. The first use of Dempster’s rule on positive evidence.
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(< -y 92, 9n>,

< el, 02, —ry, 04, en>, < (-)1, 9n>
< 61, Ty 93. 6n>) .
“q13
93
(<=, 6,,...6.>, (<=rp,8,,...0 >, (<185, 6>
< 61, _‘2' 93, weey en>> < el, —1'2. —|r3. 94. ey 9n>) < el, —ll'z, 93‘ very 9n>>
92 92913 921 -9y3)
(< =, 92. e 0n>,
< 91, ey 9n> < el, 62, —r3, 94. 9n>’ <6,,..6>
<8.,r1,,0,,..,08 >)
1'273 " n
1- q;2 a- qlz)‘(l - ‘113)
(- qu)qB

Figure 4. The first use of Dempster’s rule on negative evidence.

and
m({ < ar,0,,...,0,>,<0,7,05,...,6,>))
m({ < ar,0,,...,0,>,<6,,0,,ry,0,,...,6,>,
< 01,7, 05,0.0,60,> ) =q1;° 43

The fusion, Figure 4, will result in a new basic probability assignment with
basic probability numbers for all new representations. The basic probabil-
ity number of {( < =r,0,,...,60,>,<0,,~ry,, rs3,0,...,0,>) for
instance, is the normalized sum of values from all intersections with
exactly this representation. In Figure 4 there are, of course, no other
intersections with this representation and no conflict to cause a normaliza-
tion. A new belief function is given by the new basic probability assignment
and the belief of a proposition, A, is the sum of the basic probability
numbers for that proposition, m(A4), and all propositions that are proper
subsets of A, m(B|B C A). In our case, however, the situation is somewhat
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simpler because we are only seeking the support and plausibility of
propositions that have no proper subsets.

Let us, for simplicity, observe the final fusion Bel, @ Bel, in the case
with three vertices, Figure 5. In each square the representatlon and its
value is derived in the same way as above. The support and plausibility of
all elements can be calculated as:

Vxlx; €{r,, = r}.Spt(<x,xy,...,%, >)
1
= — . m(A;) -m(4)),
-k AiNA;= <xy,x5,..., X, >

Vxilx; € {r;, =r}.Pls(<x;,xy,...,x, >)

n

= > m(A4,;)-m(A))

<X1,Xp,..., x,> €A;NA;
where

ANA;=0

A, A; C 29 are focal elements in the last fusion and
<X, Xgsees X > €Y1, Vasenes Yoo iff Ay,| <x;,x5,...,x, > €y,

X1y Xgseos X, >E€E<2,25,...,2, > iff Vi(z, =x,) v (z; = 6,).

n

Due to the high computational complexity it is only possible to perform
these computations for graphs consisting of very few vertices. This problem
is solved by a new algorithm, where instead of performing all combinations
step-by-step, the final result is derived directly by reasoning about the
completely specified paths from the beginning.

5.2. An Example

Consider the path <r, —r,,r; > . Before we calculate the support
and plausibility of the path we must calculate the conflict, k, in the final
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<), 13> < Gl. fy. 3> <. 02, 3> <rp.ry 93>

P1P2P3 (1-prpyps P(1-pprp3 PyPy(1-p3)

(< =y, 93>
<ﬂt1,92_ —rg>
<9l‘ﬂr2. —\r3>) [ (%] ] 2

912913%3

(< =y, i, 8,>

< el, 92. —\r33> )
"} [} ("] <1y —w3>
(1-9157913923

( <—\rl.6 , >

<Bl.—|rzz, 933>)
[%] [%] <1, Ip> (%]
9121953093

(< . 02, (-)3>
<6‘.—.r2, —.r3>)

] <0 Tp> 7] [

912930 - 923)

(<0, —r). 0>
<6,,8,, r>)
"2 73
%] %] <rp, oy, 13> <) Ty >
(1-q)5)(1-q19)qp3

(< -, 92, 63>
<Gl,62, —ry>
< el, o8 93> ) <y fp,fy> < 91, ). 13> <I)a Ty, 13> <. fy 63>

(1-952)9)5(1 - 953)

( <=ry,8,,0,>
<8 !—«2,93>)

) A )
(] <1 <rp, o, 1> (%]
91271 - 95301 - 933)

< 91. 92, 93>

1- qn)(l - qB)(l - q23) < TTp> < (-)l, 13> <, 92. r3> <I Ty 03>

Figure 5. The last use of Dempster’s rule: fusing positive and negative evidence.

fusion Bel, ® Bel,. The conflict is the sum of all contributions from all
intersections A; N A4; = , Figure S;

k= - =ppyqu+tp-0—p)-ps

(12913 + 915" 923 — Q12" 43 "123)
t Py P3 qo3 —P1 P2 P3 G912 923-



<61,92. >

(1-p)(1-pprpy

< 61 o 93>

(1-pyrpy(1-p3)
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<. 92, 93>

P]'(l - Pz)‘(l - P3)

< el, 92. 93>

(¢ 'Pl)‘(l 'Pz)‘(l - P3)

< —\I‘l, —\l'2. r3>

<=L T, >

< I'l, ’1!2, —I'3>

(< It B B3>
<=r, 92, —ry>
< 0,, —ry, —ry> )

< —d‘l N —.r2, r3>

< 01, Ty, —r3>

<, 62, —rg>

(< I 93>
< 91. 02. —ry> )

(< =, 62, 3>

< 91. =l T3> <=, T, rg> <rp . 93> < 91_ 2 63> )
(< = 92, 83>
<—|r].92. 1> <L, 93> <rp, b, o> <9l,—.r2. —1r3>)

( <1, 93> 4 <91,—12, 03>
<el'_"2'r3> <el,r2_ —ry> <rl.92,—\r3>) <61,92, ﬁ3>)
{ <=r,,6,,1,> (<rl,92_—.r3> ((—11,92,93>
<e‘,l|-2,2r3>3) <91.r2, 93> <.y, 93>) <8,,8,, —r,>
< 91. N 93>)
(<= 0y, 13> . (<arp, 6).8;>
<8y 13>) <y 8y <rp o 85> <6 65>)
< °1- 62‘ > < 61, o 63> < e 62, 93> < 61, 92, 93>
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Figure 5. Continued.

The support is calculated as the normalized sum of all contributions from
the intersection whose representation is identical with the path. Thus the
support of <ry, = ry,r; > is the contributions, in Figure 5, from row 3
column 3, row 5 column 3, and row 7 column 3;

1
Spt(<ry, ~ry,ry >) = m(Pl'(l —P2)P3qr (1= q15) gy

+p, - (1 - Ppy) Py (1 —qp,)- (1 - q13) 923
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+py (L =py)ps-qn- (1 —g) (A - 923))
= ﬁ(m (1 =py)py- (1 —qy3)
(g, + (1 = qpy) " g23)).

When calculating the plausibility we normalize the sum of all contributions
from the intersections in which representations the path is contained.
These are the 16 intersections of rows 3, 5, 7, 8 and columns 3, 5, 7, 8,
Figure 5.

Take for instance the intersection in row 5 column 7:

<1, by, > €<, ary, 0>, <r,b,, ;> )
since
<r,nr,r>€y (=<r,-ar,b; >)

which is true since

zp=x,(=r)

z,=x, (= =ry)

z5 = 05.
Thus <r,, = r,,r; > iscontainedin { <ry, =ry, 03>, <71y, 05, 7r3 > >
and the value of the intersection in row 5 column 7 is contributing to the

plausibility of < r;, = r,,r; > . The plausibility becomes, after some sim-
plification:

1
Pls(<ry, ry,ry>) = =+ = -1_——k(1 —py) - (1 —qp).

6. DEMPSTER’S RULE—THE NEW ALGORITHM

We are now ready to give an intuitive presentation of our algorithm for
calculating the support and plausibility for all elements, A, of 29 that are
of the form < x,,x,,...,x, > where x; € {r,, = r}, ie,, the completely
specified paths of ®. The new algorithm is built on an expression for the
final result of support and plausibility, i.e., we only have to evaluate this
expression instead of all stepwise combinations. The algorithm, when used
symbolically, calculate the symbolic structure of the support and plausibil-
ity for a path derived through summation of intersections in the final
fusion, Bel, ® Bel,, of the classic algorithm. This means that the new
algorithm can comparatively quickly calculate the answers which had to be
calculated through a lot of time-consuming fusions and pattern-matching



Dempster’s Rule in a Complete Directed Acyclic Graph 55

summations in the classic algorithm. We will first explain the mathematical
reasoning behind this algorithm, which calculates support and plausibility
in the following steps: unnormalized plausibility, unnormalized support,
conflict, and finally plausibility and support normalized by the conflict.

6.1. Plausibility

Let us start with the plausibility and see what is sufficient to make a
path plausible. Plausibility for a path means to which degree this path is
possible, i.e., to which degree no known factors speak against this path.
There are only two types of items which speak against a path—the positive
evidence for vertices that are not included in the path and the negative
evidence against edges between vertices that are included in the path. This
means that the degree to which we do not assign support to these
evidences equals the degree to which the path is possible. The algorithm
for plausibility is then

PIs(S) = PIs*(S) /(1 — k)
where k is the conflict and Pls*(-) is the unnormalized plausibility

Ps*($) = T] A -p)-TT ~q,, ),
Vil &S Vi
where g;; is the degree of doubt of the edge between vertices v; and v; and
v, Is the i:th vertex in the path S.

6.2. Support

The algorithm for support is much more complicated than the one for
plausibility. It is not only necessary to find out which evidence speaks
against the path; it is also necessary to insist that the evidence of the
vertices and edges that are included in the path speaks in favor of it.

While each of the evidences supports only one proper subset of 0, i.e.,
corresponding belief functions are simple support functions, we will say for
the sake of simplicity that the evidence e, is false (true) when we mean
that the proposition according to the proper subset is false (true). The
same holds for the evidences e, i

6.2.1. EXPLAINING THE ALGORITHM FOR SUPPORT Assuming the path
includes m vertices, we first realize that the following three statements
have to be true:
1. Every vertex in the path has to be visited.
(a) For the first and the last vertices in the path we only have one
possibility: the evidences e, and e, are true and the support for
this is p, - p, , for m > 1 and ps,m =1
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(b) For every intermediate vertex v, in S there are two different

possibilities: l

(i) The evidence e, is true. The support for this is p, .

(ii) The evidence e, may be false, but the evidence agamst edges
are speaking agamst all other ways from the last vertex
visited before v, to the first vertex visited after v;. The
possibility that e may be false is (1 — p, ).

. The transitions between consecutlve vertices in the path are possible,

i.e., the evidence against those edges has to be false. The possibility
for this is

m—1
l—.[ 1 - qs,,s,+])'

i=1

. No vertex outside the path is permitted to be visited. We first state

that the evidences e, for vertices outside the path have to be false.
The possibility for this is

IT a-po).

Vile; &S

But even if these evidences may be false, we can not be sure that a

vertex outside S is not visited. In order to guarantee this we also

make the following three statements:

(a) No transition is possible from vertices before U, to this vertex,
i.e., all evidences against edges from vertices before v, to v are
true. The support for this is:

I_ICIi,sl'

i<sq

This statement assures that we enter the path at v, .

(b) No transition is possible from v, to vertices after this vertex.
This is to assure that v, is the last vertex in the path. The
support for this is:

I[1q, .

i>8,

(¢) For the vertices not belonging to S that are located between
vertices in S we state that no transition is possible to these
vertices from vertices in S, or if such a transition is possible then
it is not possible to join the next vertex in the path we have stated
to be true.

The support is now received by multiplying the contributions from the

three statements. Let us illustrate this with an example.
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Let the graph G consist of five vertices vy, ..., vs. We shall compute the
support and plausibility for the path < r,, = r,,r;,7,, = rs > . The unnor-
malized plausibility is easily derived in the way described above:

PIs*(<ry,—ry,ry,ry,mrs>) =(1—p,)- (1 —ps)-(1—qy3) - (1 —q5,).

When computing the support we apply the three statements above.
From statement (1a) we get the factor p, - p,. Considering statement (1b)
forces us to break down the calculations into two parts:

(i) We state e, to be true.

(i) We do not state e to be true.

The factor calculated in (3c), in order to prevent visiting a vertex
between the first and last vertices of the path which does not belong to the
path, will differ depending on which vertices we have stated to be true,
therefore we calculate the factors from the other statements separately for
(i) and (ii) and then sum up the two contributions.

We begin with (i).

When e, is true, the factor from this statement is p,. From (2) we get
the factor (1 — g,3) - (1 — g3,). Statement (3) states that the evidences e,
and e; have to be false, giving us the factor (1 — p,) - (1 — ps). Statement
(3a) can be disregarded while the first vertex in the path is the first vertex
in the graph and from (3b) we get the factor g,s.

Let us now regard (3c) which states either that a transition from v, to v,
is not allowed, which gives us the factor g,,, or that if a transition from v,
to v, is allowed, then it must be impossible to reach the next vertex in the
path stated to be true, which according to our assumption (1b) is v5. This
gives us the factor (1 — gy,) - ¢,3, i.e., the total factor from (3¢) is ¢,, + (1
= q12) * g,3. We have now calculated the first term of the support p, - py -
Py (1 =q3) (1 = gq3)- (0= p,) (1 = ps) g5 (qy, + (1 — d12) " qa3)-

Let us calculate the second term, (ii), where we do not state e; to be
true.

The possibility for this is (1 — p,). The factors (1a), (2), and (3a-b) in
this term are the same as in the term above and (3¢) is in this case implied
in (1b), hence it is enough to calculate (1b). We have the following two
possibilities:

(1) transition from v, to v, or v, is impossible, which implies that the

only path from v, to v, is v; — v; — v,. This gives us the factor
912" q14-
(2) transition from v, to v, is impossible but we allow a transition from
v, to v, but not from v, to v, or v,, giving us the factor (1 — g,,) -
914 " 923 " q24-
The second term for the support is then
Props (1 =p3)- (1= q13) - (1 = q5) " qys - (1 = py) - (1 = ps)
(g1 qra + (1 —q12) g1 qy3 “qaq)



58 Ulla Bergsten and Johan Schubert

and we end up with the unnormalized support
Sup* (< ry, =~ Fy, Py Fyy 115 >)
=p1- (1 =py)-py- (1 =ps)-(1—q3)
(1= q3¢) " qus - (p3- (g, + (1 = q12) - q53) + (1 = p3) - qy4
(g + (1 = q12) * Go3 - q24))-
The normalized support becomes
Sup(< ry, =7y, 13,14, o115 >) = Sup*(<ry, =1y, 13,14, 015 >) /(1 = k)
where k is the conflict.
In Section 6.2.2 we present a detailed analysis of the algorithm for
support, followed in Section 6.2.3 by the algorithm itself. The reader may

skip these sections on a first reading and continue with Section 6.3 on
conflict.

6.2.2. A DETAILED ANALYSIS OF THE ALGORITHM FOR SUPPORT First
some useful definitions:

m (w,i) £ min(D|w, =1, l1<i<mn,
m (w,i,j) £ min(i)|w, =r, 1<i,j<n,i>]j
m*(w,i) = max(i)|w, = r,, 1<i<n,
m*(w,i,j) = max(i)|o, = r, 1<i,j<n,i<j.

Thus, m™(x, i) is the first vertex in the path, v, , and m~(x, i, j) is the first
vertex in the path of those with index larger than j.

The algorithm can be broken down into three different parts.

For the first part we have the same argument as with the plausibility, i.e.,
the evidence which speaks against the path must be false, thus the same
terms as in the plausibility.

The second part of the algorithm is to assure that the first and last
vertices of the path actually are the first and last vertices included in the
path, i.e., that there is evidence against edges to the first vertex of the path
from any vertices in the graph before the path’s first vertex, that the path’s
first and last vertices are included in the path, and that there is evidence
against edges from the last vertex of the path to any vertices in the graph
after the path’s last vertex. This gives us the terms:

( ‘Ij,m-(x,i)) “Pm(x,)
Vill <j<m™(x,i)
and
P (x. i) m-(x,i) #m*(x,i)
: Am*(x,i),j "

1, m_(x,i) = m*(x,i) (Vj|m+(x,i)<jsn
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The third part of the algorithm concerns the transfers from the first
vertex of the path until the last one. The positive evidence of every
internal vertex of the path, i.e., the vertices x; =r; where m~(x,i) <j <

m™(x,1), is to some degree commltted in favor of the path and is for the
remainder uncommitted. However, for each combination of statements for
the internal vertices, i.e., internal vertices stated or not stated to be true
for the combination, we have support for the path given the right condi-
tions for the edges. Thus, we have to sum up the contribution from all the
combinations;

V A .y] y/ Jo rj

m(x,))<j<m™*(x,i)

xj = r/.

vj

where

/\ Yj

Im (x,D<j<m*(x,i)
vj

R

is a general description of a combination of statements. As an example,
consider the path <r,,r,, = ry,r,,rs > . We have m~(x,i) = 1, m*(x, i)
= 5and x; = r;, j # 3. The general description of a combination is (y, A
y4) where

Yy, Aydly; =15, =,

yields the set of all combinations, {r, A r,r, A =7, = ry NIy, =1y A
= 7'4}

The contribution from each combination depends on the positive evi-
dence for that combination, the term

n {pk’Yk =
m(x,)<k<m™*(x,i) 1 TP Yk = Iy

Vk Xp=r,

and the negative evidence given by the following necessary conditions for
that combination.

The first condition is that all internal vertices must be visited. Hence, for
each sequence of vertices among the internal vertices, that are not stated
to be true in this combination, Figure 6, we must block all forbidden edges.
These are edges from a vertex v, to a vertex v; where v; is in the sequence
or the last vertex before the sequence, v; is 1n the sequence or the first
vertex after the sequence and where there 1s a vertex v, such that v, is in
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Sequence among the internal vertices

Vl V2 V3 V4 VS

Figure 6. Vertices v, and v, form a sequence because v5 is not in the path.

the sequence, i.e., the sequence of internal vertices not stated to be true in
the present combination, and i < k <. It is accomplished by the term

1_[ I_I qm*(x,i,k),m

m(x,i)<k<m*(x,i) v k<m<min(m ~(y,i,k),m*(x,i)
V|, =r, xp=rn

Y= Tk

where m*(x,i, k) is the last vertex in the path before the vertex v, not
stated to be true and min (m ~(y, i, k), m*(x, 1)) is the first vertex after the
sequence of vertices not stated to be true. As an example of the first
condition, consider again the path <r,r,, ~rs,7,,7s > now for the
combination (y, A y,) = (=r, A —=ry). In Figure 7 the necessary edges
are blocked. These are the edges v, to v,, v; to vs, and v, to vs. Vertices
v, and v, are in or the last vertex before the sequence, v, and vs are in or
the first vertex after the sequence, and there is at least one vertex between
the two vertices of the edge, in these cases v,, v, and v,, and vertex v,
respectively.

The second and final condition will assure that, between the first and
last vertex of the path, no vertices other than those in the path are visited.
The evidence against every edge from a vertex v, to a vertex v; where v is
included in the path, v;, i <j <s,, is not included in the path and where
there are no internal vertices v,, i < k <j, that are stated to be true to
the path in the present combination, Figure 8, is to some degree commit-
ted in favor of the path and is for the remainder uncommitted. However,
for each combination of statements for the internal vertices we will have
support for the path from all combinations of statements for sets of edges
from earlier vertices to an internal vertex, Figure 9, given correct condi-
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X, e I -3 T,
Yi T iy
! .

61

Figure 7. Example of the first condition for the combination (-7, A = r,).

tions for the edges from this internal vertex. The evidence against set of
edges, from vertices v; to a vertex v; where there for each v; are no
internal vertices v, i < k < j, stated to be true, is considered to be true if
all edges in the set are blocked. Hence, for each combination of state-
ments for internal vertices we will sum up the contribution from all

X l T 1 l'2 ' ¥ 3 iy 4 l's
Yi - Iy
Yi i) T4
A\ 1 V2 V3 \) 4 V5
—_—
Yi ) T4
¥ I, Iy
v 1 V2 V3 \J 4 v 5
_—

Figure 8. Possible edges to v, for different combinations.
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x;: n ) —I3 I, Ig
Yir ~h 4
Y A i: r3
v 1 V2 V3 \' 4 \'2 5
% >
Z i: - 3
\' 1 V2 V3 vV 4 A% 5
>
\' 1 V2 V3 \’ 4 \' 5
—_—
[ -
| >
Y1 V2 V3 Vq4 Vs
—_—

=

Figure 9. Two different states, z; (= r3, = r3), with one and three alternatives.

combinations of statements for the set of edges to these vertices. If the
evidence against the set of edges to one of these vertices is not stated to be
true, then we should sum up the contribution from all those alternatives of
the edges to that vertex where at least the evidence of one of the edges is
not stated to be true. An example of when the evidence against the set of
edges to one vertex is not stated to be true, i.e., when all edges in the set
are not blocked, is the three alternatives of the second combination of set
of edges to vertex 3 in Figure 9. We must also take into account the
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necessary conditions on the edges from that vertex. However, because the
conditions are the same for all alternatives when at least one of the edges
to the vertex is not blocked, as with the three alternatives for the second
combination in Figure 9, we are able to view all these alternatives in a set
of edges not stated to be true as one generalized edge to the vertex that is
not stated to be true for the present combination of internal vertices. The
necessary conditions are that the edges from the vertex to all internal
vertices not stated to be true in a subsequent sequence and to the first
vertex after the sequence are blocked (Figure 10). Its contribution is

1- n 9u,i >

max(m*(y,i,t),m (x,i)<u<t

(z,=~r)Vvix,=r,)

where ¢ is the index of the vertex not included in the path, u <t <n,, z,
marks whether or not all edges from vertices v; in the path to vertex v,
J <u <s,, where there are no internal vertices v,, j < k < u, stated to be
true, are blocked. The necessary condition on the edges from vertex v, are:

I1 i

t<v<min(m (y,i,t),m*(x,i).
xX.=r,

Yo

The final alternative that all edges to the vertex are blocked, as in the first
combination of set of edges in Figure 9, involve no conditions. Its contribu-

Xil 1'1 l'2 ' ¢ 3 r 4 l‘S
¥ I 4
z; -l

Vl V2 V3 v 4 VS

Figure 10. Conditions on the edges from vertex 3.
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tion is:

Qu,:-

max(m*(y,i, t),m (x,i))<u<t

“UNay==r)v(x,=rp

As an example of the second condition, consider the path <r,, =),
—ry, 14,15 > for the combination of statements for the internal vertex
y, = —r, and the combination of statements for set of edges (z, A z;) =
(= r, A —ry), Figure 11. That is, nothing speaks in favor of vertex 4.
Furthermore, consider the edges where there are no internal vertices,
between the vertices of the edge, stated to be true in the present combina-
tion. There is nothing that speaks against that there is at least one of these
edges from a vertex in the path to vertices 2 and 3 respectively that is not
blocked. If there is an edge to vertex 2 then it must be coming from vertex
1. The necessary condition is that all edges from vertex 2 to all internal

Y; Ty
z: -, )
\4 1 V2 V3 v 4 \4 5

)

Y

.

Y

y

4 Y

y_LYv
v

.

]
>
|

Figure 11. The second condition for the combination y, = —ry, (z; A z3) = (=7,
A = r3).
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vertices not stated to be true in a subsequent sequence and the first vertex
after the sequence are blocked. Because vertex 4 is not stated to be true in
this combination it is necessary to block the edges v, to v, and v, to vs.
There are two different edges to vertex 3, v, to vy and v, to v;. At least
one of these two should not be blocked. This gives us three different
alternatives, v, to v; and not v, to U3, not v; to v and v, to v; and
finally v, to v; and v, to v;. The corresponding term becomes (1 — g,3) -
93 + q13- (1 = @) + (1 —qy3) - (1 — qd23), rewritten as (1 — g3) + g5 -
(1 = gy3) it is understood as v, to v; or if not v, to v, then v, to v, as
described in Figure 11. Rewriting the term as 1 — q,; - g,; can be inter-
preted as one generalized edge to vertex 3 whose evidence is not stated to
be true. This is the way it is rewritten in the algorithm. The condition for
vertex 3 is of the same type as for vertex 2, here that the edges v; to v,
and v; to vs are blocked.

6.2.3. THE ALGORITHM FOR SUPPORT The algorithm for support can
then be summarized as
Vxlx; € {r,, =r}.Spt(< x;, x,,...,x, >)

n

1 Prmreipm (x,0) # m™(x,1i)

= Pm=(x,i) "
1 -k
" 1,m (x,i) =m*(x,i)

( H (1 —Pi)) : ( 1_[ Qj,m‘(x,i))

Vilx;= =r; Vill<j<m ™ (x,i)

( qm+(x,i),,') : l_[ 1- Dim=(x,i.j)
Vilm*(x,i)<j<n JiFmT(x, i)
x;=r;
v A YilPi=T T
m(x,))<j<m*(x,i)
Vi, =
x;=r;
1—[ {pk’yk =T
Vkm_(x,i)<k<m+(x,i) 1 TP Yk T T
Xp=ry
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I1

m~(x,)<k<m™*(x,i)
Vk|x,=r
Y= Tk
l—_[ Qm"(x,i,k),m
k<m<min(m = (y,i, k),m*(x,i))
Vm
xln=rln
v A Zg||zg = rg, g
m(x,i)<s<m*(x,i)
Vs|
Xg= T
I {g "
v m(x,D)<t<m™(x,i) ”[/’Z’ = n
tx,=—|r,

where
f = 1—1 Qu,:
max(m*(y,i,t),m (x,))<u<t
Yu
(z,==r)Vx,=r,)
and

'7[’ =|1- 1_[ qu,t
max(m *(y,i,t),m (x,i)<u<t
(z,=-r)Vvix,=r,)

Il 4.,

t<v<min(m ~(y,i,t),m*(x,i))
X, =7,

Yu

Yo

and k, is the conflict in the n-vertex graph.
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6.3. Conflict

The conflict indicates the amount of the total mass consisting of contra-
dictory evidences, i.e., evidences whose intersection is the empty set, .
This means that we actually compute the support for &, but as we do not
want. to assign any belief to an impossible event, this is denoted conflict,

Conf = Y m(A).
A=0
6.3.1. EXPLAINING THE ALGORITHM FOR CONFLICT In our case the
conflict arises when combining the evidences e;; with the evidences con-
cerning vertices v;, , U;- The calculations are based on the formula:

Conf(el,ez,...,é,,H) = Conf(é,,¢é,,...,¢,)
+ Conf(é, &, ®...®¢,,¢,,,),

where ¢; are arbitrary evidences and é; ® ¢; the combined evidence from
¢; and ¢, We here in fact mean the basic probability assignment for the
evidences, but for simplicity we use the denotation for evidence. The
formula above means that when we add new evidences to already com-
bined evidences the new conflict is obtained as the sum of the earlier
conflict and a contribution from the new evidences. The conflict can never
decrease when bringing in new evidences. For the sake of clarity we
assume that the combination of evidences take place stepwise in the
following order:
e, ®e, e, 0e;0e,;,0e;0¢,D...0e,De, ,,D...0e,.

The positive evidences e; are brought into the combination in increasing
order of i, but between the e; all negative evidences e;; are regarded in
such a way that e, is followed by all e;, where i <k. This means that the
e; never give rise to any conflict when they are brought into the combina-
tion which on the other hand the e;; do. We denote the contribution from

e;; to the already existing conflict by ki, 1

n j—1
k=Y Tk,
j=2i=1

Let us look at what happens when we bring in the spe01ﬁc evidence ¢;; to
the combination. As mentioned earlier this may give a conflict based on
earlier evidences.

Let §;; = <x;,X;,1,...,x; > where x;, =x; =1and x, = 0,i <k <.
€; speaks against the subpath §;; to the degree g;;- The earlier evidences
speaks in favor of this subpath to the degree

Sup*(S;;)
(1 - q,»,-) ’
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where Sup*(S;;) is calculated as described earlier, but the computation of
Sup*(S;;) was then based on the evidence e;; itself, which is not relevant
here. The influence of e;; on Sup*(S;;) is neglected by division with its
contrlbutlon 1 - gq;). The total conflict caused by e;; is consequently

=q;- Sup(SU)/(l — g;;) but this conflict is not equal to the contribu-
tlon k;; because a part of c;; is already taken into account by the
calculated conflict based on the earher evidences. This means that c;; has
to be reduced in the following way. The total conflict before e;; is

=1 h-1 j—1

Z Zkkh+ Z kkj‘

h=2 k=1 k=i+1
This expression can be written as a sum of the four terms:

i-1 h-1 i-1 =1 h-1

Z Zkkh+zkkz+ Z Zkkh+ Zkk,

h=2 k=1 h=i+1 k=1 k=i+1

Let us consider the first term:
i-1 h-1

X Lk

h=2 k=1
This conflict is only based on the evidences concerning vertices before v;,
therefore we may have a conflict based on these evidences at the same
time as we have a conflict only based on evidences from vertex v; and
forward. The new contribution to the conflict, k,;, must not contain the
earlier conflict. Hence, c;; is reduced by the term

i-1 h-1

Clj ’ Z Z kkh’
h=2 k=1
which is the degree to which we have conflict in both.
For the second term,
i-1

L ks
k=1

the reasoning is almost the same as for the first term with the difference
that in the expression for the simultaneous conflict,

i—1
cz] ’ Z kki’
k=1

the support p; for the evidence e; occurs in both the factor ¢;; and the

factors k,;, which must not be the case when they are regarded simultane-
ously, therefore the expression has to be divided by p;, i.e., the reducing
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term based on:

j—1

Xk,

k=i+1
equals:

c j-1

. Z K-

Pi k=i+1

For the last two terms in the sum above, every k,, is based on at least one
evidence e, concerning a vertex between v, and v;. This means that it is
impossible to have a conflict based on the ev1dence e;; at the same time as
we state a vertex between v; and v; to be true, so the last two terms in the
sum do not contain any part of the conflict ¢;; and do not contribute to the
reduction.

This means that

i-1 h—1 i—1
kij=cij’(1‘” Z Zkkh_ Zkk:)
h=2 k=1 pi
a; (1 :V_‘j hi:lk 1 ii]k )
- kh T 7 ki -
(1 —q;;) h=2 k=1 Pi k=1
This is true for i > 3.
If i =1 the ¢ do not have to be reduced because in this case the

reasoning is the same as for the last two terms.
For i = 2 the reducing factor is:

i—1

Zk

Pz'

and

1 i—1
kij = (1 - Z kk:)

1 —-g; pi

6.3.2. THE ALGORITHM FOR CONFLICT The conflict, k
n vertices can be calculated as

of a graph with

n’

n—1 n

P Y Zkij, n>1

n i=1 j=i+1

0, n=1
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where
(klj—i+10'il-1)0'in> i>1
kij = 1q_—ljéf~Spt*(< il g, o1 >), =1
1j
and o' and o' are the substitutions

o-iI = Vm’n'{pm/pm+i7 qmn/qm+in+i}’

i—2 i—1 i—1
ol = {pi/(pi_pi' Z E Kpn — kai)}’ i>2
i m=1

m=1n=m+1

{p:/(p; — k)b, i=2

and Spt*(< ry, = ry, =1 rs,..., = r;_y, 7; >) is the unnormalized support.

7. COMPLEXITY

The time complexity of the classic algorithm is of course such that using
it in any real-time application is out of the question. But even when one is
using it for symbolic precalculations one runs into problems, as seen in
Figure 12. The space complexity of the classic algorithm, Figure 12, should,
however, not be interpreted as the size of the data to be handled by
an application, but rather the size of the expressions that ought to be
simplified by some algebraic system.

Neither can the new algorithm be used in real-time applications for
anything but the smallest problems, but it is feasible to use it for other
applications as well as for symbolic precalculations. On today’s supercom-
puters the new algorithm can manage graphs of up to 36 vertices in size,
i.e., up to 666 evidences with |®| = 2°°, when calculating support for one

The classic algorithm The new algoritm
Time complexity 0(|e|log lel) O(lsl-loglel)
Space complexity | 0(1el/8'®!.10g2161) 0(lel-loglel)

Figure 12. Complexity of the classic and new algorithms.
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single instance of the frame (1 Gflops for 10 minutes) as compared to only
six vertices for the classic algorithm.

7.1. The Classic Algorithm

Assuming that there are n vertices in the graph, the time complexity of
Bel, is O(2") and the space complexity is O(n - 2"). When there are n
vertices there are 1 -n-(n — 1) edges. Thus, the time complexity of Bel ,
becomes O(2""") with a space complexity of O(n? - 2*)). The time com-
plexity of Bel, @ Bel, will then be O(2"”) and the space com@plexity
O(n?-20™), or when measured in the size of the frame O(|®[¢°") and

O(181°%°"- 10g2|@|) respectively.
7.2. The New Algorithm

The unnormalized plausibility for a single path can be calculated in
linear time. The time complexity of the unnormalized support for a single
path is far worse, being determined by the summation over the three last
factors that are O(n - (5)"), O(n - (3)") and O(n -2") respectively. Thus,
the time complexity of calculating the unnormalized support for a single
instance of the frame becomes O(z - 2"). If we assume that the unnormal-
ized support for one particular path for each graph size is already calcu-
lated, then the time complexity of calculating the conflict will be O(2"),
otherwise we must calculate the unnormalized support for these paths
yielding a time complexity for the conflict of O(n - 2"). Thus, the time
complexity of calculating support and plausibility for each path is O(n - 2"),
or when measured in the size of the frame O(/@|- log|@)). Presumably we
can use domain knowledge to substantially restrict the number of credible
scenarios.

The space complexity, when calculating support and plausibility symboli-
cally, is equal to the time complexity.

8. CONCLUSIONS

We have presented an algorithm that makes it feasible to precalculate
support and plausibility symbolically for completely specified paths through
a complete directed acyclic graph. One problem when reasoning about
completely specified paths, i.e., paths where Vi. x, # 6, is that for larger
graphs there might be a large number of quite similar paths with equally
low support and plausibility. The average characterization of these paths
may then be lost. If there is no completely specified path that stands out
from the analysis, this would make the calculation useless for decision
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support. We might therefore also be interested in reasoning about incom-
pletely specified paths, i.e., subparts of paths.
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ABSTRACT

Thomas M. Strat has developed a decision-theoretic apparatus for Dempster-Shafer
theory (Decision analysis using belief functions, Int. J. Approx. Reasoning 4(5/6), 391-417,
1990). In this apparatus, expected utility intervals are constructed for different choices.
The choice with the highest expected utility is preferable to others. However, to find the
preferred choice when the expected utility interval of one choice is included in that of
another, it is necessary to interpolate a discerning point in the intervals. This is done by the
parameter p, where p is defined as the probability that the ambiguity about the utility of
every non-singleton focal element will turn out as favorable as possible. If there are several
different decision makers we might sometimes be more interested in having the highest
expected utility among the decision makers rather than only trying to maximize our own
expected utility regardless of choices made by other decision makers. The preference of
each choice is then determined by the probability of yielding the highest expected utility.
This probability is equal to the maximal interval length of p under which an alternative is
preferred. We must here take into account not only the choices already done be other
decision makers but also the rational choices we can assume to be made by later decision
makers. In Strats apparatus, an assumption, unwarranted by the evidence at hand, has to
be made about the value of p. In this article we demonstrate that no such assumption is
necessary. It is sufficient to assume a uniform probability distribution for p to be able to
discern the most preferable choice. We will discuss when this approach is justifiable.
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1. INTRODUCTION

To make rational decisions under uncertainty is somewhat complicated in
Dempster-Shafer theory (Dempster [1], Shafer [2]) because of the interval
representation. In [3] Nguyen and Walker discussed different approaches to
decision making with belief functions. They found three different basic models.
The first is based on the Choquet integral that yields the expected utility with
respect to belief functions;

o 0
Eu) = J.F(u>t)dt+ _[ [Fu>t)—1]dt
0 —oo0

where F is a belief function defined on 2° by F(A) = inf{P(A):Pe P} and
P = {P:F<P} is a class of probability measures on ©. This leads to the
pessimistic strategy of ranking alternatives by their minimal expected utility.

In the second basic model the decision maker uses some additional information
or subjective views. Instead of searching for the alternative that maximizes
expected utility the utility function will be supplemented by some new function
dependent on the utility and some other parameter corresponding to the additional
information or subjective views. An article by Strat [4] is an example of the
second basic model.

The third basic model consists of models using the insufficient reason principle
or equivalently the maximum entropy principle.

As an example, Smets and Kennes [5] have developed a two-level model of
credal belief and pignistic probability, called the ‘Transferable belief model’
(TBM), that belongs to the third category of Nguyen and Walker [3].

On the credal level of this model the reasoning process takes place in the usual
manner as within Dempster-Shafer theory. Here beliefs are held by belief
functions and combined by Dempster’s rule.

When a decision must be taken, the belief on the credal level is transformed to a
probability at the pignistic level by a “pignistic transformation” based on
Laplace’s insufficient reasoning principle;

m(A) [x N Al
BetP(x) = —— = A) ——,
PO = X T " A
BetP(B)= Y m(A)- 1B Al
Ae R IAI

where BetP(-) is the pignistic probability we should use to ‘bet’ with in a utility
maximization process. Here R is the set of all propositions. It is called the betting
frame.



The pignistic probability regarding some proposition A depends on the
organization of the betting frame R. But regardless of the organization of the
betting frame we always have BetP(A) > Bel(A) VA e R.

Further discussions on decision making with belief functions can be found in
[6, 7].

This article is concerned with a method that has recently been developed by
Strat [4]. In this method an expected utility interval is constructed for each choice:

[Ex(x), E"(x)]
where Ex(-) and E*(~) are defined as
A .
E.(x) = Z inflA) - mg(A))
A,cO
and
. A
E (x)= Z SuP(A,-) : m@(A,'),
A,cO
© is a frame of discernment, i.e., an exhaustive set of mutually exclusive
possibilities, and mg is a basic probability assignment, a function from the power
set of ® to [0, 1]:
Mmg: 2° 510,11
whenever
mg(d) = 0

and

2 mg(A) = 1.

A,c©

We will call Ex the lower expected utility and E” the upper expected utility.
Our preference among different alternatives will depend upon their expected
utility. Let the expected utility be defined as



EQ2Ew+p (B (0-E.()

where p is defined as the probability that the ambiguity about the utility of every
non-singleton focal element will turn out as favorably as possible, i.e. the
probability that nature will turn out as favorably as possibly towards us as
decision makers. This article will establish an alternative to making an outright,
and often unwarranted, assumption about p. This alternative is to accept a uniform
probability distribution for p.

Adopting a uniform probability distribution for p requires two conditions being
fulfilled. Firstly, there certainly must not be any evidence at hand regarding the
value of the probability p. Such evidence could, for example, be in the form of
domain knowledge, direct evidence regarding the value of p or knowledge that the
decision situation is controlled by either the decision maker or an adversary. It
would seem to be commonplace that there is no direct evidence available
regarding the value of p. The situation we are looking for is then a business like
situation in a field with poor domain knowledge where the outcomes are not
controlled by either the decision maker or an adversary, i.e. a decision situation
without evidence regarding the value of p. Secondly, it must be a decision
situation where the decision maker is not only interested in minimizing the
expected loss regardless of the possible gains or interested in maximizing the
expected gain regardless of the possible losses. In these two situations he would
choose to adopt p = 0 and p = 1, respectively, even if there is no available
evidence regarding the value of p. This would be the situation if the decision
maker is forced to play a game he thinks is unfavorable. Then he would try to
minimize the expected loss, i.e. choosing p = 0. If, on the other hand, the decision
maker is forced to obtain a lot of value by playing a particular game, he may try to
maximize the expected gain, i.e. choosing p = 1. This eliminates the extreme
situations where the decision maker is forced into a game by one reason or
another, i.e. situations where it is not possible to make no choice. What is
remaining are the “normal” business like decision situations where we do not have
a reason to choose one value for p over another when there is not any evidence at
hand regarding the value of p.

As Strat points out in his article, if we make an assumption about the value of p
we should not confuse our assumption about ambiguity with our risk preference.
Our risk preference is handled by adopting utilities.

The methodology in this article was developed as the decision part of a
multiple-target tracking algorithm (Schubert [8], Bergsten and Schubert [9]) for
an anti-submarine intelligence analysis system.

In Section 2 we will discuss points of preference change and in Section 3 the
uniform probability distribution for p. In Section 4 we will study decision making
with a uniform probability distribution for p and the different objectives decision
makers might have. Finally, conclusions are drawn in Section 5.



2. THE PREFERRED CHOICE

Obviously, when we are searching for the most preferable choice we can
immediately disregard those choices where the upper expected utility is less than
the highest lower expected utility among all choices. Furthermore, if both interval
limits of the utility interval are higher for one alternative than for another, i.e.
E. >Ej* and El* >Ej*, then this one, choice i, is always preferable regardless of
the value of p. In fact, if we receive the choices ordered by falling magnitude of
their upper expected utility we can immediately disregard any choice whose lower
expected utility is less than any lower expected utility of the previous choices.
Only if the expected utility interval of one choice is included in the interval of
another choice will our preference depend on the assumed value of p. As a result,
we will end up with a set of expected utility intervals ordered by interval
inclusion, [EI*,ET] c [Ez*,EZ] c...c [En*,E:] c [0,1]. Here we have renumbered
the choices by the order of interval inclusion, i.e. by order of increasing interval
length. In the following we will only consider choices ordered and renumbered by
interval inclusion.

Let us study the choice between x, and x, where [E ..E|]1 c [E,..E;];

Choice 1: [E,..E|],
Choice 2: [E,..E,).
Here choice 1 is preferred when
Ep+p- (E| —Ep.) >Ey +p - (Ey—E,.)
We find that both choices are equally preferable if

Ex—E,
(E, —Ey.) — (E| —E,.)

p

Let us call this value pj,. Since choice 1 has the highest lower expected utility of
the two choices it is preferred when p e [O,pn], and choice 2 is preferred when
pe lp,1l.

When we have several choices they may be preferred in different intervals of p.
If we calculate all Pij’s and order them by increasing magnitude we can calculate
the expected utility of every choice for a point in each interval of the ordered Pij’s-
The choice with the highest expected utility in each interval is then the preferred
choice for that interval. However, we already know that choice 1 is preferred
when p = 0, since this choice has the highest lower expected utility among all
choices, and it will remain the preferred choice while p is less than min; py;, the



smallest of all p;;’s and the first point of preference change. Beyond this point,
choice i will be preferable over choice 1. Since choice 1 will never again be
preferred in any other interval, we may now disregard all other pyj, j #1, even
though they represent points of possible preference change. The reason for this is
obvious, choice 1 can never again be the most preferable choice for any interval
above min; p;; since it is not even preferred to choice i beyond that point. Thus,
these points of possible preference change will never represent an actual change
of the current preference. Continuing, choice i will now be preferred up to the
point where p = min; p;;, and beyond this point choice j will be preferred up until
p = miny pji, etc. Thus, by iteration we find that the choices are each preferable in
the following intervals:

Choice 1: [0, min; py;],
Choice i: [min; py;, min; p;l,

Choice j: [min; py;, ming Pjrl,

Choice n: [Py, 11.

Alternatively, for any choice j that is preferable somewhere, its interval of
preference can be described as

Choice j: [max; Pij miny ij]-

If two or more p;;’s are equal in a minimization, min; p;;, the next preferred
choice would be ambiguous. In this case we take the choice with the highest
number. If not, we would end up with one or more choices preferred under a zero
interval length of p before we would get this choice anyway.

3. A UNIFORM PROBABILITY DISTRIBUTION FOR p

All we know about the value of p is that it is a parameter the belongs to the set
of real numbers between 0 and 1, p € [0, 1], i.e. we know that our frame is that
same set of numbers, ® = [0, 1]. Thus, apart from knowing the frame for p we do
not know anything at all. We have a vacuous bpa where m(®) = 1. In order not to
reduce the overall nonspecificity of this initial state when making an assumption
about the probability distribution about p we might ask that any such assumption
about p should yield the same nonspecificity as what we have now. We define the
nonspecificity as



I(m) = Y m(A) - Log,l|Al
AeF

which is a generalization of Hartley’s information [10].
Calculating the nonspecificity I(m) of this initial state where F = {©} and
m(©®) = 1 we have

I(m) = Y m(A)- Log,Al
AeF

= m(©) - Log,|0] =1 Log,|0],

and since © is the infinite set of real numbers between 0 and 1 we receive an
infinite nonspecificity.

If we make a single-point assumption about p where F = {{p}} and
m({p}) = 1 we receive a nonspecificity of

I(m) = Y m(A)- Log,Al
Ae F

= m({p})-Log,|{p}| =1-Log,1 =0,
and for any point-wise distribution for p where F = { {p,}, {p,}, ...} we get

H(m) = Y m(A)- Log,|Al
AeF

= z m(A) - Log,1 = 0.
AeF

Obviously, our distribution needs a continuous part to reach the infinite
nonspecificity of the initial state. Any such distribution with just one continuous
part, B, will reach infinite nonspecificity. We have

I(m) = z m(A) - Log,|Al
AeF

= m(B) - Log,|B|

where F = {B, {p;}, {pP,}, ...} and B is an interval of real numbers included in
[0, 1]. If B is of infinite size we have an infinite nonspecificity.

Furthermore, we might also demand that the nonspecificity of our new
distribution should be equal to the original assignment for any size of the frame.
Let F = {B,B,, ..., {p;}, {P,}, ...} where B;’s are intervals included in [0, 1].
We must then have



Log,|®| = z m(A) - Log,lAl.
Ae F

Here A € © and thus we may write |A] = o, - |©| where

LSOLAS1

19

and

|

{r,} —

@

We have

Log,|0| = z m(A) - Log, (o, - |©]) = z m(A) - Log,0., + z m(A) - Log,|©|
AeF AeF Ae F

= Y m(A) - Log,o, + Log,|0| - Y, m(A).
AcF ACF

From this it immediately follows that

Y. m(A) - Log,o., = 0.
AeF

Since m(A) >0 for every A and Log,o, <0 for every o, we must have that
o, =1 for every A. But since |Al = o, - |®|, and O is the entire frame it follows
that A = O, i.e. that we have only one focal element F = {O}.

This means that we have only one continuous part of the probability distribution
for p, and that it covers the entire interval from O to 1, i.e. a uniform probability

distribution.

4. DECISION MAKING

4.1. Decision making with a uniform probability distribution for p

If we refrain from making an unwarranted assumption about the value of p we
might instead accept a uniform probability distribution for p, i.e. the assumption
that all values of p are equally probable. Any of the above choices that are
preferable somewhere might now be preferred. However, the probability for the
choices to be preferred are not equal. This probability varies with the length of the
interval under which it is preferred.



If we are only interested in simple maximizing of utility then adopting a
uniform probability distribution for p yields the same result as setting p = 0.5.
Then, for simplicity, we might as well set p = 0.5 and choose the alternative that
yields the highest expected utility as our decision.

However, in a situation with several different decision makers we might
sometimes be more interested in having the highest expected utility among the
decision makers rather than only trying to maximize our own expected utility.

Thus, rather than actually making a random assumption about p in order to find
a preferable choice it makes sense to prefer the choice that is most likely preferred
if the value of p was determined at random. Assuming the uniform probability
distribution for p, this is obviously the choice that is preferred under the maximum
interval length of p. This might be according to the principle “it is better to choose
what is most likely the best alternative rather than to gamble for it.” The interval
length under which a choice is preferred, Pref(-), is here defined as

Pref (x)) 4 max(0, min, Pj — max; pl.j)

where miny p_ 4 1 and max; p,, 4 0.

If the number of alternatives is equal to the number of decision makers then all
we have to do is to choose the alternative that is preferred under the maximal
interval length. That will be the choice with the highest probability of giving us
the highest expected utility.

The situation becomes more complex when the number of decision makers are
less than the number of choices.

4.2. An example

Let us consider an example with four choices whose expected utility intervals
are ordered by interval inclusion:

Choice 1: [0.5, 0.6],
Choice 2: [0.4, 0.7],
Choice 3: [0.3, 0.9],
Choice 4: [0.2, 1.0].
Calculating the points of preference change gives us

E\x—E). 0.5-04

= = = 0.5
(E; -Ey) - (ET -E..) (0.7-0.4) — (0.6 -0.5)

P12
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and by the same formula py3 = 0.4, p14 = 0.43, pp3 = 0.33, pps = 0.4, p34 = 0.5. We
find by iteration that the choices are preferable in the following intervals of p:

Choice 1: [0, min; py;] = [0, p13] = [0, 0.4],
Choice 3: [0.4, min; p3;] = [0.4, p34] = [0.4, 0.5],
Choice 4: [0.5, 1],
and being preferred under the following interval lengths:
Pref(x;) = 0.4,
Pref(x,) =0,
Pref(x3) = 0.1,
Pref(xy) = 0.5.

In this case choice 2 will never be preferred regardless of the value of p. If an
unwarranted assumption is made about p any of the other three choices could be
preferred. If we, on the other hand, only assume a uniform probability distribution
for p, choice 4 will be considered preferable since it is preferred under the
maximum interval length of p.

4.3. An algorithm for finding the preferred choice

We may now find the preferred choice given a uniform probability distribution
by the following algorithm.
Algorithm. Let S be the empty set.
1.0rder and renumber all choices by falling magnitude of upper expected
utility.

2.Fori=1tondo
2.1.Add all choices whose expected utility interval belongs to set of
intervals ordered by interval inclusion; If E;« > E; 1« then S := S

+ {[Ei*’ E*l] }

3.Renumber all choices in S by order of increasing interval length
magnitude.

4.For all combinations of pairs in S calculate
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E.—-E.,

L J

p," = * * *
' (E; -E,) - (E; -E.)

S5.pc =0, i:=1, maximum_preference := 0.

6.Calculate the intervals of preference for each choice and find the most
preferable choice;
While i #n do

6.1.p°.:= min; p;;, where miny p, 4 1.

6.2.Pref(x;) = p’. - P

6.3.1f Pref(x;) > maximum_preference then
6.3.1.maximum_preference := Pref(x;), preferred_choice := i.

6.4.i:=j.

6.5.p.- P’

7.Answer preferred_choice.

4.4. Possible refinements

Instead of changing from the strongest possible assumption of a point-value for
p to the weakest possible assumption of a uniform probability distribution, we
may occasionally have a reason to assume some other probability distribution for
p (Figure 1).

f(p) f(p) f(p)

Fig. 1. A point-valued, arbitrary and uniform probability distribution for p.
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We might for instance have some knowledge regarding a lower and upper bound
for p. Let us call these bounds lower ambiguity probability, px, and upper
ambiguity probability, p*, respectively. These bounds force a simple change in the
definition of preference, Pref(-);

Pref(xj) é max(0, min(p*, min, pjk) —max(p., max; pl.j))

. A A
where miny p = 1 and max; p;; = 1.
To incorporate the new definition of preference into the algorithm we make the
following change in step 6.2.,

6.2. Pref(x;) = max(0, min(p", p’c) - max(Px Pc)),

giving all choices preferred in intervals outside the bounds of lower and upper
ambiguity probability a preference of zero.

Obviously, we must be able to assume any probability distribution for p, f(p).
We can make a general definition of preference as

min, p;

Pref(xj)émax(O, J. fp)dp)

max; p;;

. A A
where ming p , = 1 and max; p; = 1.
Finally, we change the computation of preference in step 6.2. of the algorithm to

6.2. Prefx) a F(p)-F(p,)

where

Fp) = [fip)dp.

4.5. Two decision makers searching for the most preferable choice

When two decision makers compete for the highest utility the preference of
each alternative is determined by the chance of having the alternative that is
preferred under the maximal interval length of p after our opponent has also made
his choice. If we assume we have the first choice then our opponent will make his
choice taking into account the choice we made. Since our goal is to have the
highest possible probability of having the best alternative we must also take into
account the best choice our opponent can make. It is found by choosing the
alternative with the highest preference when preference is defined as
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Pref(xj) 4 min(min, Pii 1 —max; pij).

Here min, p. ik is the preference for choice j when our opponent chooses his best
alternative k where k> jand 1-max, p;; 1s the preference for choice j when our
opponent chooses his best alternative i where i<j.

If we, on the other hand, is the second of the two decision makers the situation
is even simpler. We just have to find the choice with maximal preference where
preference is defined as

ij,j<k

Pref(x, k) =
@0 {pwj>k

and k is the alternative already chosen by our opponent.

4.6. Several decision makers

When the number of decision makers are less than the number of choices the
situation becomes much more complex. We must here take into account not only
the choices already done be other decision makers but also the rational choices we
can assume to be made by later decision makers. This is the case since the length
of the preference interval for any alternative depends on the other choices that are
made. If I" is the set of all choice done by previous decision makers the preference
of a choice x;may be calculated as

Pref(x;, I = max(0,  min, P — max; p, )

ke I' +1.(0",j) iel +I1.(",))

where 1.(I", J) is the set of rational choices later decision maker will make given
our choice j. For any decision maker we want to find the alternative that
maximizes his preference, i.e.

max;  Pref (1)

jel-T

where [ is the set of all possible choices.

This problem is solved starting with the final choice done by the last of the n
decision makers, and for all possible sets of earlier choices I*. Here Il =n-1
and I, = &. We find the earlier choices by stepping backwards through all
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possible sequences of choices done by different decision makers until we reach
the first choice done by the first decision maker.

This can be seen as going up a tree with one decision maker at each level until
we reach the first decision maker at the root of the tree. Each branch at a certain
level of the tree corresponds to a different sequence of choices made by the earlier
decision makers. The edges going down from each node at this level corresponds
to the possible choices that can be made by the decision maker at this level.

5. CONCLUSION

We have demonstrated that it is not necessary to make a point-value assumption
about p in Strat’s decision-theoretic apparatus of Dempster-Shafer theory. In fact,
it is sufficient to assume a uniform probability distribution for p to be able to
discern the most preferable choice. We give an algorithm for finding the most
preferable choice based on an iterative search of points of preference change
among choices ordered by interval inclusion. We discuss the ability to assume any
probability distribution for p.

We also discuss the more complex problem of several decision makers
competing for the highest expected utility. The preference of each alternative to
some decision makers is shown to be the probability that the alternative has the
highest expected utility after all decision makers have made their choices, where
we take into account both the choices already done be other decision makers and
the rational choices we can assume to be made by later decision makers.
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