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1. Background

A currently hot topic in Information Fusion research is fusion performance, including relevance,
reliability, robustness, and trustworthiness, in particular for higher level fusion methods such as
situation and impact refinement. Unless methodologies are found and generally applied which
enable us to achieve and demonstrate trustworthiness, chances are slim that future commanders
would be willing to trust high-level fusion systems. 

On the other hand, quite extensive work has been performed in other fields during the last two
decades, in particular in risk analysis and robust Bayesian analysis, which indicates that robust
and trustworthy behaviour may in principle be achieved from probabilistic simulations and
therefore from information fusion methods in decision support systems. It is likely, however,
that complex systems which were not designed from the outset to satisfy specified
trustworthiness and robustness criteria will be hard or impossible to validate later using this
methodology. 

Thus we believe that this partly formal research needs to be evaluated and, if found appropriate,
adapted for use in information fusion systems design. Since it is not yet known for certain if or
how these new approaches can be applied to information fusion algorithms and systems, we
perceive an urgent need to start serious research and education in this area. We know that the
answer to questions of reliability and trustworthiness will not be simple; instead, they will to a
large degree have to evolve over time through scientific debate. We also know many situations
where computer-supported military decision making works well, but we do not know how to
deal with problems near the fluid boundary between those situations we know how to automate
and those we believe must be reserved for human decision-making.

Feynman’s minority report 

“Uncertainties appear everywhere! When using a mathematical model, careful attention must
be given to uncertainties in the model.”

--- Richard Feynman, 1989, Space Shuttle Challenger Inquiry “Macroscopic approach to risk
estimation”.

2. Introduction 

The C4I system development methodology proposed by the Swedish Armed Forces has been
evolutionary development in integrated product teams. Today, however, we see little application
of that philosophy, and instead the responsibility for technology development has mainly been
transferred to the industrial consortium in charge of developing the first prototypes, and the
3



user/purchaser is represented only indirectly by the so-called LedsystT project, run by the
Defence Materiel Administration. By pursuing in parallel a so-called methodology project
(LedsystM), the Armed Forces hope to catch up with the LedsystT technology development and
be able to specify in time what the user requirements are. The new methods which are to be
studied in LedsystM are of course tactical and operative network-based processes, not technical
ones. 

Still one clings to the notion that technology development in LedsystT is to take place in flexibly
specified phases followed by technology demonstrations after each phase. The posture
originally advocated by the Swedish Armed Forces that technology demonstrators need to be
forward-looking and therefore will have to involve considerable risk-taking is falling into the
background, however. Of course, we who work with IF research in Sweden see a potential
problem here. We claim that without adequate information fusion, investments in a dynamic and
mobile digital communication network with high security, reliability, and capacity will be
largely wasted, since users will then be able to absorb and act on only a small fraction of the
information flowing in the network.

The only things we can analyze in depth are (more or less formal) models. Many people
probably believe that they are able to analyze and discuss reality itself, but what we are able to
analyze and discuss is in fact more or less well-specified, more or less common abstract models
of situations which are “similar” to real events and phenomena. It is fundamentally important
to understand that a model has to be created in order to make it possible to describe and analyze
any phenomenon (abstracted from reality, let us assume) with sufficient “fidelity” and precision
to reach a certain goal which may or may not be well specified in advance. A “model of the
model” can often be implemented in software and/or hardware to get products for various
purposes. Again, to evaluate the finished product there exists a number of different, more or less
standardized problem formulations, technologies, and modelling methods. These evaluation
technologies usually need to possess a higher degree of sophistication (higher fidelity, precision,
etc.) than the final product in order to make the evaluation process credible. A number of other
criteria also need to be satisfied, in particular, the availability of expertise in various related
areas.

2.1. Reliability dimensions 

Reliability and trustworthiness of a complex information fusion product presupposes reliability
of (almost) all its component subsystems and is an issue with many dimensions: 
• degree of robustness is needed as a measure of sensitivity to changes in input data and, 

when possible, validity conditions (B Meyer: “robustness is the ability of a [software] sys-
tem to react appropriately to abnormal conditions”) 

• information fusion should be based on proven methods for management of uncertainty, to a 
large degree Bayesian statistical inference, but sometimes other techniques such as possibil-
ity theory or evidence theory; these theories then need to be interpreted in terms of a com-
mon reliability language and methodology 

• Bayesian models are based on a prior distribution, a likelihood function, and when used in 
decision making, also a utility function; these will need to have known degree of robust-
ness; most discussions, however, have focused on robustness to perturbance of priors. One 
speaks about aleatory vs. epistemic uncertainty, and about local and global robustness 
approaches 
4



• information fusion reliability is a special case of modelling software reliability methodol-
ogy where trust must be based on guaranteed performance; this guarantee should include 
precise and preferably complete (all-encompassing) conditions for validity, and be based on 
verification of these conditions 

• performance should include character, value, precision and degree of robustness of the esti-
mated set of parameters 

• correctness is the ability of [software] products to perform their exact tasks, as defined by 
their specification; theoretically, guaranteed correctness is a necessary condition for both 
performance and robustness; however, in practice, 100% correctness can rarely be guaran-
teed. Can one speak of robustness anyway? Only if there is built-in surveillance to detect 
and redundancy to exit from emergency events 

• to discuss the reliability of a particular IF system we need to assume that all those involved 
subsystems that do not form a part of the IF software proper are perfect, or preferably, have 
a known and sufficient reliability, enabling us to focus on the IF subsystem itself and its 
contribution to the credibility and robustness of the total system. In addition, if, for exam-
ple, in a certain situation sensors or databases are unable to deliver the quality of informa-
tion needed by the IF system to draw proper conclusions, maintaining trustworthiness 
would require that the IF system itself discovers the insufficient quality of its input 

• depending on application, high robustness may seem more or less important than known 
robustness; but, of course, you can not know that robustness is high if it is not known. Cf. 
the 2003 space shuttle disaster, where it was claimed (at least in the press) that the shuttle’s 
mechanical robustness against plastic foam spallation was believed by management to be 
adequate, both before and a long time after the disaster.

Many of these aspects seem obvious to engineers and scientists but are nonetheless not always
respected in practice. It is simply very hard and therefore costly to solve all reliability and result
quality issues before a new kind of system is fielded. But of course, it should not be up to the
IF designers themselves to decide which degree of reliability is built into the systems. Instead,
these requirements will have to be elicited from the customer, who in turn must be expected to
represent the end user in an effective manner. Since the supply chain from scientists and system
designers to end users is a long and indirect one, there is considerable risk that user needs are
distorted in the process. When scientists and engineers are going to build the first information
fusion systems for a network-enabled defence, based on new sensor, communication, and
modelling technology, this dilemma will become acute, since the systems will eventually play
survival-critical roles but might become fielded before extensive user experience has been
accumulated. Thus, trustworthiness needs to be recognized as a system feature of primary
importance, and ways to plausibly demonstrate system robustness will have to be developed.

We note that there is an entire scientific field of reliability engineering, with its own methods
and literature, some of which will be referred to in the sequel. 

The approaches we have surveyed are: 
• sensitivity analysis (Frey, Kleijnen, Helton, Saltelli,...) 
• robust bayesianism (Jaynes, Berger, Rios Insua, Moreno, ...) 
• imprecise probabilities (Walley, de Cooman,...) 
• interval probabilities (Weichselberger, Cozman, Ferson, Kreinovich, Berleant, Williamson, 

...)
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3. Sensitivity analysis

Sensitivity analysis of simulation models [47][48][50][51][52] can be used to identify the most
significant exposure or risk factors in a model, as an aid in identifying the important
uncertainties for the purpose of prioritizing additional data collection or research, and it can play
an important role in model verification and validation throughout the course of model
development and refinement. Sensitivity analysis also can be used to provide insight into the
robustness of model results when making decisions. In [52], a number of sensitivity analysis
methods are surveyed. 

Kleijnen [47] gives a survey on the use of statistical designs for what-if analysis in simulation,
including sensitivity analysis, optimization, and validation/verification. According to this paper,
sensitivity analysis is divided into two phases. The first phase is a pilot stage, which consists of
screening or searching for important factors among possibly hundreds of potentially important
factors. The second phase uses regression analysis to approximate the input/output
transformation that is implied by the simulation model; the resulting regression model is also
known as a metamodel or response surface. Regression analysis gives better results when the
simulation experiment is well-designed, using either classical statistical designs (such as
fractional factorials) or optimal designs. To optimize the simulated system, the analysts may
apply Response Surface Methodology (RSM); RSM combines regression analysis, statistical
designs, and steepest-ascent hill climbing. To validate a simulation model, again regression
analysis and statistical designs may be applied. 

In military applications of modelling and simulation, there is a specified process of verification,
validation, and accreditation (VV&A) [44][45][46]; and, in a sense, information fusion may be
seen as a special case of M&S, since information fusion is partly based on situation modelling
using theories of uncertainty, and frequently employs Monte Carlo simulation techniques in
model evaluation and decision-making. 

4. Robust Bayesian analysis

There is a common perception that foundational arguments lead to subjective Bayesian analysis
as the only coherent method of behavior. According to Berger [6], non-Bayesians often
recognize this, but feel that the subjective Bayesian approach is too difficult to implement, and
hence they ignore the foundational arguments. Subjective Bayesian analysis is, indeed, the only
coherent mode of behavior, but only if it is assumed that one can make arbitrarily fine
discriminations in judgment about unknowns and utilities. In reality, it is very difficult to
discriminate between, say, 0.10 and 0.15 as the subjective probability, P(E), to assign to an event
E, much less to discriminate between 0.10 and 0.100001. Yet standard Bayesian axiomatics
assumes that the latter can (and will) be done. Non-Bayesians intuitively reject this, and hence
reject subjective Bayesian theory. 

It is perhaps less well known that realistic foundational systems exist (see, e.g., [11], and further
references in [6]), based on axiomatics of behavior which acknowledge that arbitrarily fine
discrimination is impossible. For instance, such systems allow the possibility that P(E) can only
be assigned the range of values from 0.08 to 0.13; reasons for such restrictions range from
possible psychological limitations to constraints on time for elicitation. The conclusion of these
foundational systems is that a type of robust Bayesian analysis is the coherent mode of behavior.
Roughly, coherent behavior corresponds to having classes of models, priors, and utilities, which
6



yield a range of possible Bayesian answers. If this range of answers is too large, the question
may not be settled: if the inputs are too uncertain, one cannot expect certain outputs! Indeed, if
one were to perform ordinary Bayesian analysis without checking for robustness, one could be
seriously misled about the accuracy of the conclusion.

Thus, robust Bayesian analysis is concerned with the sensitivity of the results of a Bayesian
analysis to the inputs for the analysis. Excellent texts describing the basics of Bayesian statistics
and robust Bayesian analysis are [34][35]. More recent texts are [1][2][4]. According to Berger
et al. [5], the early 90’s was the golden age of robust Bayesian analysis. In the last half of the
90s, robust Bayesian analysis shifted from being a hot topic to being a mature field within
Bayesian analysis, with continued gradual development, but with less of a sense of urgency.
During this period, the need to consider Bayesian robustness has increased dramatically, in that
the modeling that is now routinely utilized in Bayesian analysis is of such complexity that inputs
(such as priors) can be elicited only in a very casual fashion. Thus, in the opinion of the authors
of [5], it is now time to focus again on Bayesian robustness and to attempt to bring its ideas into
the Bayesian mainstream. New opportunities are offered by the developments in algorithms
[7][8][9], the possibility of using MCMC methods and the need for sensitivity analysis in other
fields. Bayesian robustness is playing a role in SAMO (Sensitivity Analysis of Model Output),
a group interested in investigating the relative importance of model input parameters on model
predictions [51] in many applied areas.

David Rios Insua recently wrote the note [3], where he explains the Bayesian approach to
inference and decision analysis as follows: 
• Modelling beliefs about a parameter of interest through a prior which, in presence of further 

information, is updated to the posterior 
• Modelling preferences and risk attitudes about (multicriteria) consequences, with a multiat-

tribute utility function 
• Associate with each alternative its (multiattribute) posterior expected utility 
• Propose the alternative which maximises the posterior expected utility 

As in any quantitative approach, there are many reasons to check the sensitivity of the output
(the optimal alternative) with respect to the inputs (model, beliefs and preferences). In addition,
since in this framework inputs to the analysis encode the decision makers’ judgements, she
should wish to explore their implications and possible inconsistencies. The need for sensitivity
analysis is further emphasized by the fact that the assessment of beliefs and preferences is a
difficult task. This is an important point, since her judgements will evolve through the analysis
until they are adequate. Robust Bayesian analysis guides this process. 

The usual practical motivation underlying robust Bayesian analysis is the difficulty in assessing
the prior distribution. Consider the simplest case in which it is desired to elicit a prior over a
finite set of states si, i=1,...,I. A common technique to assess a precise prior Pr(si) = pi with the
aid of a reference experiment proceeds as follows: one progressively bounds Pr(si) above and
below until no further discrimination is possible and then takes the midpoint of the resulting
interval as the value of pi. Instead, however, one could directly operate with the obtained
constraints , acknowledging the cognitive limitations. 

The same situation holds when modelling preferences. One might assess the utility of some
consequences through, say, the certainty equivalent method [77], and then fit a utility function.
However, in reality we only end up with upper and lower constraints on such utilities, possibly
with qualitative features such as monotonicity and concavity, if preferences are increasing and

ai Pr si( ) bi≤ ≤
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risk averse. These constraints can often be approximated by an upper and a lower utility
function, leading to the consideration of all utility functions that lie between these bounds. If a
parameterized utility function is assessed, the constraints are typically placed on the parameters
of the utility, say the risk aversion coefficient. Of course, in developing the model for the data
itself there is a typically great imprecision, and a need for careful study of the model robustness. 

When there are several decision makers and/or experts involved in the elicitation, it is not
necessarily theoretically possible to obtain a single model, prior, or utility; one might be left
with only classes of each, corresponding to differing expert opinions. 

Robust Bayesian analysis provides tools to check the impact of the utility function, the prior and
the model on the optimal alternative, and its posterior expected utility. We distinguish three
main approaches to Bayesian robustness. We illustrate it considering robustness with respect to
changes in the prior, but similar issues are raised when considering likelihoods and utilities. A
“guided tour” through these approaches is presented in Berger et al. [5] and the references
therein. 

4.1. Informal approach 

The first approach is the informal one, which considers several priors and compares the quantity
of interest (e.g., the posterior mean) under each of them. The approach is very popular because
of its simplicity. Its rationale is that since we shall be dealing with messy computational
problems, why not analyze sensitivity by trying only some alternative pairs of utilities and
priors? While this is a healthy practice and a good way to start a sensitivity analysis, in general
this will not be enough and we should undertake more formal analyses: the limited number of
priors chosen might not include some which are compatible with the prior knowledge and could
lead to very different values of the quantity. 

It is worth mentioning that the consideration of a finite number of utilities links clearly with
multi-objective decision making problems. 

4.2. Global robustness 

The most popular approach in Bayesian robustness is called global sensitivity. All probability
measures compatible with the prior knowledge available are considered and robustness
measures are computed as the prior varies in a class. Computations are not always easy since
they require the evaluation of good upper and lower bounds of quantities of interest. The
robustness measures provide, in general, a number that in principle should be interpreted in the
following way: 

1. if the measure is “small”, then robustness is achieved and any prior in the class (possibly 
one computationally simple) can be chosen without relevant effects on the quantity of inter-
est, 

2. if the measure is “large”, then new data should be acquired and/or further elicitation nar-
rows the class, recomputing the robustness measure and stopping as in the previous item, 

3. if the measure is “large” and the class can not be modified, then a prior can be chosen in the 
class but we should be wary of the relevant influence of our choice on the quantity of inter-
est. Alternatively, we may use an ad hoc method such as G-minimax [3] to select an alterna-
tive.
8



4.3. Local robustness 

The last approach looks for local sensitivity and studies the rate of change in inferences and
decisions, using functional analysis differential techniques such as Fréchet derivatives of
posterior expected utilities and their norms, total derivatives, or Gâteaux differentials.

4.4. Decision and utility robustness 

An important and occasionally controversial issue is the distinction between decision
robustness and expected utility robustness. A variety of situations may occur. For instance,
when performing sensitivity analysis, it may happen that expected utility changes considerably
with virtually no change in the optimal Bayes action, even if the utility is fixed.

4.5. Discussion

A number of results show that we may model imprecision in beliefs and preferences through a
class of probability distributions and a class of utility functions. These results have two basic
implications. First, they provide a qualitative framework for sensitivity analysis, describing
under what conditions we may undertake the standard and natural sensitivity analysis approach
of perturbing the initial probability-utility assessments, within some reasonable constraints.
Second, they point to the basic solution concept of robust approaches, thus indicating the basic
computational objective in sensitivity analysis, as long as we are interested in decision analytic
problems: that of non-dominated alternatives. This corresponds to a Pareto ordering of decision
rules, based on inequalities on the posterior expected utility. 

As a consequence of this model, the solution concept is the set of non-dominated alternatives.
In some cases, non-dominance is a very powerful concept leading to a unique non-dominated
alternative. However, in most cases the non-dominated set will be too large to imply a final
decision. It may happen that there are several non-dominated alternatives and differences in
expected utilities are non-negligible. If such is the case, we should look for additional
information that would help us to reduce the classes, and, perhaps, reduce the non-dominated
set. 

Stability theory provides another unifying general sensitivity framework, formalizing the idea
that imprecisions in elicitation of beliefs and preferences should not affect the optimal decision
greatly. When strong stability holds, careful enough elicitation leads to decisions with expected
utility close to the smallest achievable; when weak stability holds, at least one stabilized
decision will have this property. However, when neither concept of stability applies, even small
elicitation errors may lead to disastrous results in terms of large losses in expected utility.

4.6. Conclusion 

The approach proposed by Berger et al. in [5] may be summarized as follows: at a given stage
of analysis, one elicits information on the decision maker’s beliefs and preferences, and
consider the class of all priors and utilities compatible with such information. One approximates
the set of non-dominated solutions; if these alternatives do not differ too much in expected
utility, one may stop the analysis; otherwise, one needs to gather additional information,
possibly with the tools outlined above. This would further constrain the class: in this case the
set of non-dominated alternatives will be smaller and one could hope that this iterative process
would converge until the non-dominated set is small enough to reach a final decision.
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It is conceivable in this context that at some stage one might not be able to gather additional
information, yet there remain several non-dominated alternatives with very different expected
utilities. In these situations, L x G - maximin solutions may be useful as a way of selecting a
single robust solution. One associates with each alternative its worst expected utility; then
suggests the alternative with the maximum worst expected utility.

From an engineering perspective of trustworthy information fusion, robust Bayesian concepts
are certainly likely to be of fundamental importance. It is less clear at this point how these
concepts can be applied in practical robust fusion algorithms. Few papers address these issues
(but see [16] and Section 9 below), and much more research is needed. However, application of
analytical robust Bayesian analysis to complex engineering systems, such as information fusion
systems, is likely to be very difficult. Perhaps numerical approaches to robustness such as
probability bounds analysis, briefly described in Section 10 below, will be more tractable. On
the other hand, experience with closely related methods in numerical analysis [30][31] indicates
that they are likely to provide very pessimistic estimates unless great care is taken in algorithm
design.

5. Imprecise probabilities 

Recently, there has been a flurry of interest in theories of imprecise probabilities. In particular,
the biannual conference series ISIPTA (International Symposia on Interval Probabilities and
Their Applications) started in 1999. A selection of 10 papers from the first ISIPTA conference
was published in 2000 as a special issue [18] of the International Journal of Approximate
Reasoning. The fourth ISIPTA conference will take place in Pittsburgh in July 2005. Another
recent effort, of particular relevance for engineering applications, is the Sandia Workshop on
Alternative Representations of Epistemic Uncertainty, held in August 2002. This workshop has
been documented in a special issue of the journal Reliability Engineering & System Safety [19].
Both these journal issues are highly relevant to this study, as are the proceedings of the ISIPTA
conferences.

Imprecise probability is a generic term used to describe mathematical models that measure
uncertainty without precise probabilities. This is certainly the case with robust Bayesian
analysis, but there are many other imprecise probability theories, including upper and lower
probabilities, belief functions, Choquet capacities, fuzzy logic, and upper and lower previsions,
see [11][12][13]. A pioneering researcher in theories of imprecise probabilities is Peter Walley,
who in 1991 published a book (now out of print) with nearly 800 pages entitled Statistical
reasoning with Imprecise Probabilities, [11]. Since then, Walley has made additional
contributions, and in particular, explanations of the theory [12][13], and some of them will be
briefly surveyed below. 

Some of these theories, such as fuzzy logic and belief functions, are only tangentially related to
robust Bayesian analysis (but see [16] and section 9 below, where results of some of these
methods are compared within a robust Bayesian framework, using a difficult but perhaps
somewhat artificial example), while others are closely related; for example, some classes of
probability distributions that are considered in robust Bayesian analysis, such as distribution
band classes, can also be interpreted in terms of upper and lower probabilities. Classes of
probability distributions used in robust Bayesian analysis will typically generate upper and
lower previsions as their upper and lower envelopes. Walley [11] describes the connection
between robust Bayesian analysis (in terms of sensitivity to the prior) and the theory of coherent
lower previsions. 
10



Seen from the robust Bayesian perspective of [5], in a crude sense, the major difference between
robust Bayesian analysis and these alternative theories is that robust Bayesian analysis stays
with ordinary Bayesian intuition, considering classes (of priors, say) that consist only of those
priors that are individually compatible with prior beliefs. In contrast, the alternative theories
view the classes themselves (not the individual priors) as the basic elements of the theory. 

Walley’s view, on the other hand [13], is that a general theory of imprecise probability can
accommodate all the kinds of uncertainty and partial ignorance that are currently being studied,
including vague or qualitative judgements of uncertainty, models for complete ignorance or
near ignorance, random sets and multivalued mappings, and partial information about an
unknown probability measure. But it is not yet clear what level of mathematical generality will
be needed in a unified theory of imprecise probability. Walley argues in [13] that none of the
four mathematical models that are most popular at present (see below) is sufficiently general,
and proposes other models that do seem to be sufficiently general but have received less
attention.

5.1. Importance of a common mathematical model 

Each problem in a set of basic “challenge problems” (see [27] and Sec. 10.2. below) analyzed
at the Sandia workshop provides expert assessments for the value of two parameters, a and b. It
is important to note that each of the expert assessments deals with a single parameter. Moreover,
it is either of the 

• vacuous type, such as the interval information “a belongs to A = [0.1, 0.9]” 
• Bayesian type, such as “b has the log-normal distribution with parameters m = 0.5 and s = 

0.5” 
• Bayesian type with vacuous parameters, such as “b has a log-normal distribution with 

parameters m belonging to the interval M = [0.0, 1.0], and s belonging to the interval S = 
[0.1, 0.5]”

Assessments of the last type are hierarchical: an assessment of the variable b is made through
an assessment about variables m and s and an assessment about the variable b conditional on the
variables m and s. A first step toward combining these assessments is to express them using
mathematical models of the same type. This allows one to deal with all sources of information
in a uniform way. In fact, all the given expert assessments can be modelled by specific imprecise
probability models, called coherent lower previsions. 

Coherent upper and lower probabilities, Choquet capacities of order 2, belief functions and
possibility measures are amongst the most popular mathematical models for uncertainty and
partial ignorance. However, according to Walley [13], these models are not sufficiently general
to represent some common types of uncertainty. In particular, they are not sufficiently
informative about expectations and conditional probabilities. Coherent lower previsions and
sets of probability measures are considerably more general, but they may not be sufficiently
informative for some purposes. Two other models for uncertainty, which involve partial
preference orderings and sets of desirable gambles, are discussed in [13]. These are more
informative and more general than the previous models, and they may provide a suitable
mathematical foundation for a unified theory of imprecise probability.

The mathematical models of uncertainty considered by Walley in the article [13] are, in order
of increasing generality: 
11



1. possibility measures and necessity measures 

2. belief functions and plausibility functions 

3. Choquet capacities of order 2 

4. coherent upper and lower probabilities, also known as interval-valued, or interval, or non-
additive probabilities 

5. coherent upper and lower previsions 

6. sets of probability measures 

7. sets of desirable gambles 

8. partial preference orderings, with an interesting special case, called partial comparative
probability orderings

Again according to Walley [13], the models listed are all appropriate and useful in particular
types of application. Some well-known examples are: (1) vague judgements of uncertainty in
natural language; (2) multivalued mappings and non-specific information; (3) some types of
statistical neighborhood in robustness studies, and various economic applications; (4) personal
betting rates, and upper and lower bounds for expectations, and envelopes of expert opinions,
(6) partial information about an unknown probability measure, and robust statistical models;
(7,8) preference judgements in decision making; and (9) qualitative judgements of uncertainty.

Walley argues that the most promising candidates for a single sufficiently general model to
accommodate all the listed models would be (7) or (8). Of course, this does not mean that it is
always desirable in practice to switch to these methods, unless they are also at least as easy to
use as their less general alternatives. But it is not at all uncommon that, e.g., belief functions and
possibility measures are unsuitable models, since they are useful (more specifically, provide
coherent expectations) only in cases where lower probabilities are 2-monotone, a rather strong
condition. However, there are important applications in which belief functions or possibility
measures are good models. Some of these applications (see [14][15]) are especially important
because they are clear instances where probability measures are inadequate models and
imprecise probabilities are needed. 

5.2. Choquet capacities of order 2 

Let O denote the set of possible outcomes under consideration. Suppose that lower probabilities
P(A) are defined for all elements A in K, where K is a collection of subsets of O. Here, K is
assumed to be an algebra. For models 1-4 in the list above, lower probabilities determine
conjugate upper probabilities through P(A) = 1 - P(Ac), so it suffices to consider lower
probabilities (upper and lower probabilities are also known as interval-valued or interval or non-
additive probabilities). Let  denote the empty set. Assume that  for all A in K,
P( ) = 0 and P(O) = 1. The lower probability P is said to be 2-monotone, or a Choquet capacity
of order 2 or a convex capacity, when it also satisfies, whenever A and B are in K, 

∅ ∅ P A( ) 1≤ ≤
∅

P A B∨( ) P A B∧( )+ P A( ) P B( )+≥
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It is well known that probability measures, belief functions and necessity measures (the
conjugates of possibility measures) are 2-monotone lower probabilities. 

A simple method of constructing 2-monotone lower probabilities is to apply a convex
transformation to the probability interval: if P0 is a probability measure on K, f is a convex
function from [0, 1] into [0, 1] with f(0) = 0, and P is defined by P(O) = 1 and P(A) = f(P0(A))
when A is a member of K and , then P is a 2-monotone lower probability. 

Walley shows by a simple example that there are coherent lower probabilities which are not 2-
monotone. Therefore, he concludes that order-2 capacities are not sufficiently general to provide
a basis for a general theory of imprecise probability. 

5.3. Coherent lower and upper previsions 

Let us now consider an agent who is uncertain about something, say, the value of the variable a
that takes values in the set A [21]. A gamble is a bounded mapping from A to the set of real
numbers R, and it is interpreted as an uncertain reward: if some â in A would turn out to be the
true value of the variable a then the agent would receive the amount X(â), expressed in units of
some (predetermined) linear utility. Gambles play a similar part in the theory of imprecise
probabilities as events do in the classical, or Bayesian, theory of probability. In fact, any event
can be interpreted as a very simple game that only allows the modeler to distinguish between
two situations: the event either occurs, or it does not, and the reward depends only on whether
or not it does. So, an event, modelled as a subset A of the space A of possible parameter values
corresponds to a gamble IA (its indicator) that yields one unit of utility if it occurs, i.e., if a
belongs to A, and zero units if it does not, i.e., if a belongs to the complement of A. In other
words, there is a natural correspondence between events and zero-one-valued gambles. The
concept of a gamble can therefore be seen as a generalization of the concept of an event. The
set of all gambles associated with the variable a is denoted by L(A). It is a real linear space under
the point-wise addition of gambles and the scalar point-wise multiplication of gambles with real
numbers. 

The information the agent has about the value of the parameter a will lead him to accept or reject
transactions whose reward depends on this value, and we can formulate a model for his
uncertainty by looking at a specific type of transaction: buying gambles. The agent’s lower
prevision (or supremum acceptable buying price, or lower expectation) P(X) for a gamble X is
the greatest real number s such that he is disposed to buy the gamble X for any price strictly
lower than s. If the agent assesses a supremum acceptable buying price for every gamble X in
some subset K of L(O), the resulting mapping P:  is called the agent’s lower prevision.
P will denote the conjugate upper prevision for X. P(X) represents the agent’s infimum
acceptable price for selling the gamble X. 

Lower and upper previsions for gambles are a natural generalization of probabilities for events.
Indeed, any assessment of a probability of an event can be translated into an assessment of a
supremum buying price and an infimum selling price for a zero-one-valued gamble. Suppose
that the probability of the event A is known to be p. The reward we expect from IA is then equal
to 0*(1-p) + 1*p = p. Therefore, we are willing to buy IA for any price less than p, and we are
willing to sell IA for any price greater than p. We infer that P(IA) = P(IA) = p. The power of lower
and upper previsions, compared to classical probability theory, is that lower and upper
previsions allow for far more generality. In particular, the theory does not require that an agent’s
supremum buying price should be equal to his infimum selling price. 

A O≠

K R→
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A particular benefit from this way of modelling available information (or uncertainty) is that it
leads naturally to a theory of decision making under uncertainty. For example, making a
particular decision d from a set D of alternatives is behaviorally equivalent to accepting a
gamble Xd, which represents the (possibly negative) utility received as a function of the value
of the (unknown) parameter a of the decision problem. The agent should strictly prefer one
action d1 over an alternative d2 if P(Xd1 - Xd2) > 0: this means that he is willing to pay some
strictly positive amount of utility for exchanging the rewards of making decision d2 with those
of making d1. 

Since a lower prevision P represents an agent’s commitments to act in certain ways -- to buy
gambles X in its domain K up to certain prices P(X) -- it should satisfy a number of requirements
that ensure that his behaviour is rational. The strongest such rationality criterion is that of
coherence. It is easiest to understand and define if the domain K is the set of all gambles L(A).
A lower prevision P on L(A) is called coherent if it satisfies the following three requirements:

1. Accepting sure gains: The agent should always be willing to buy a gamble X for a price equal
to the lowest possible reward he may expect from X, that is inf[X]. Hence, it should hold that

 for all gambles X. 

2. Positive homogeneity: Next, since we are working with a linear utility, buying prices should
be independent of the choice of scale of the utility. Mathematically, this means that Q(cX) = c
Q(X) for each gamble X and c > 0. 

3. Superadditivity: Finally, since we are working with a linear utility, if the agent is willing to
buy X for price Q(X) and Y for price Q(Y), he should be willing to buy X + Y for at least

 for all gambles X and Y. 

A lower prevision P on an arbitrary domain K in L(A) is called coherent if it is the restriction of
-- can be extended to -- some coherent lower prevision on L(A).

5.4. Walley’s updating principle

Walley’s updating principle states that “Any gamble Z is B-desirable if and only if BZ is
desirable” [11]. A gamble being desirable here means that You are disposed to accept it. B-
desirable mean that You intend to accept Z provided You observe only the event B (that happens
or fails), and the payoff BZ is Z if B happens, otherwise 0.

A justification of Walley’s updating principle is given by Shafer, Gillet and Scherl in [20]. They
differentiate between a House and a Gambler in a betting situation. In traditional terms a
person’s beliefs are revealed by the bets he is willing to accept. The odds of the bet that he is
willing to accept then defines his probabilities. Shafer et al. associate You with the House but
take the view of the Gambler, asking the Gambler if he believes the process can make him very
rich in the long run. By taking the position of a Gambler and asserting that certain numbers do
not offer the Gambler any opportunity to get very rich, then these numbers are objective
probabilities. When we advance these same numbers as subjective probabilities we assert that
they do not offer us (the Gambler), with the knowledge we have, any opportunity to get very
rich. The issue is what we (the Gambler) then can do with the number, not how we got them.
This way we bring the concept of subjective probability closer to the concept of objective
probability.

Q X( ) inf X[ ]≥

Q X Y+( ) Q X( ) Q Y( )+≥
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5.5. Sharing epistemic probabilities

When sharing intelligence and epistemic probabilities between systems in a system-of-systems
it will be crucial to investigate the underlying model of the different systems and the
possibilities to adjust probabilities when passing information from one system to another. As
Shafer points out “a proposition attains its full meaning only as part of its frame, and its degree
of support or epistemic probability is always assessed relative to that frame. When two
incompatible frames are compared it may be possible (...) to find a close resemblance between
a proposition in one of the frames and a proposition in the other, but no matter how close this
resemblance is, the two propositions will be formally different - and their degrees of support
may be very different indeed” [14], p. 284.

5.6. Conclusion 

While advocating more general models, Walley [13] recognizes the need and usefulness of
research in upper and lower probabilities, Choquet capacities, belief functions, possibility
measures and other special kinds of model. Each of these models is useful in some kinds of
application, but there is a need to spend more effort to study more general models which are
needed in many applications. 

Coherent lower and upper previsions are needed in a general theory because they are direct
generalizations of the most commonly used models (coherent lower and upper probabilities,
order-2 capacities, belief functions, possibility measures, linear previsions and probability
measures), so that a theory of imprecise probability can be applied directly to these special
models. Lower previsions are much more general and informative than lower probabilities, and
they seem to be adequate models in the great majority of applications that are concerned with
uncertainty but not with utility, and those applications in which utilities are precisely known.
They also have the advantage of being relatively close to well-established concepts of
probability and expectation, and especially to de Finetti’s concept of expectation. 

Sets of probability measures are also needed in a general theory because, at present, most
examples of coherent models are presented in this form. Since upper and lower envelopes of a
set of probability measures are always coherent upper and lower previsions, specifying a set of
probability measures is a simple way of constructing a coherent model. For example, after
receiving new information, a set can be updated by using Bayes’ rule to update each probability
measure in the set. This is the approach in the robust Bayesian theory, which uses a set of
probability measures as the canonical model for uncertainty.

According to Walley [13], the robust Bayesian approach has some serious defects, and sets of
probability measures are not an adequate foundation for a general theory of imprecise
probability. There are many applications in which it is mistaken and misleading to regard a set
of probability measures as a set of hypotheses about the “correct” probabilities, because it is
meaningless to talk of “correct” probabilities. That is the case in many applications of belief
functions and possibility measures. Another disadvantage of sets of probability measures is that
they are not as closely related as the other models to decision making and observable behaviour.
To understand the practical implications of a set of probability measures, it is often necessary to
calculate upper and lower probabilities, previsions or preferences.

Sets of desirable gambles and partial preference orderings are the most informative of the
mathematical models discussed by Walley in [13], and he claims that they seem to be able to
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model all the common types of uncertainty. They uniquely determine upper and lower
previsions, and they contain all the information about preferences that is relevant in making
decisions. In many ways they are the simplest and most natural mathematical models. The
coherence axioms and rules of inference (natural extension) for sets of desirable gambles are
especially simple. Partial preference orderings are direct generalizations of partial comparative
probability orderings, and they are essential in a general theory of decision. The main difficulty
with these models is that, because they can be more informative than coherent lower previsions
and sets of probability measures, they can also be more complex and difficult to specify. Further
research is needed to develop special types of sets of desirable gambles that can be easily
specified, such as the finitely generated models.

Coherent lower previsions, sets of probability measures and sets of desirable gambles are each
useful for different purposes. Walley concludes that a unified theory of imprecise probability
will need to make use of all three models and to exploit the duality relationships between them.
In a general theory, it may be appropriate to adopt the most general of these models, sets of
desirable gambles or partial preference orderings, as the fundamental model.

6. Weichselberger’s axiomatic approach to interval probabilities 

As mentioned above, the concept of interval probabilities is usually used synonymously with
that of upper and lower probabilities. In [17], Weichselberger discusses an axiomatic approach
to interval-probability, as he calls it, and it seems that in the way he develops this concept, it
may be more generally applicable than upper and lower probabilities. The goals of this theory
are specified as follows: 

1. Different kinds of uncertainty should be treated by the same concept. This applies to: 
• imprecise probability and uncertain knowledge 
• imprecise data 
• the use of Choquet capacities 
• the concept of ambiguity and its employment in decision theory 
• belief functions and related concepts 
• interpretation of interval-estimates in classical theory 
• the study of experiments with possibly diverging relative frequencies 
• non-additive measures (fuzzy measures) 

2. As a special case, classical probability must fit into the theory 

3. A simple system of axioms must describe the fundamentals of the theory 

4. All statements of the theory must be derivable from the given axioms and appropriate
definitions 

5. The domain of application must neither be limited to purely formal aspects nor be bound by
a certain interpretation of probability.

The axiom system developed by Weichselberger is directly related to Kolmogorov’s classical
probability axioms.

There is an obvious limitation for any theory of interval-probability: only those assessments
which assign intervals to random events qualify as genuine subjects of the theory. The benefits
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and the power of the theory are due to the duality between a set of interval-limits and the
corresponding set of classical probabilities. These qualities distinguish the approach from those
admitting more general types of probability assignments, such as Walley’s.

According to [17], a general approach to decision problems with respect to behavioral
viewpoints is made possible by the theory. Behaviour under ambiguity can be analyzed and
classified. An interesting issue in this context is discussed by Augustin in [72].

7. Information-gap Decision Theory

Information-gap theory developed by Ben-Haim [58] is radically different from the
probabilistic approaches discussed above. He models uncertainty as an information gap rather
than a probability. The info-gap is the disparity between what is known and what needs to be
known in order to make a well-founded decision. The need for information gap modelling and
management of uncertainty arises in dealing with severe lack of information and highly
unstructured uncertainty. This theory can be used to measure the robustness of a classifier. Let
a classification algorithm be denoted as a function C(u) where u is a measurement vector and
C(u) = n represents the decision that u arose from class n. However, if u actually arose from class
m then ||C(u) - m|| represent a quantitative assessment of the error.

The robustness function for C is the greatest value of the uncertainty parameter for which the
normed error in the classification is no greater than a classification error rc:

When the robustness  is large, then the classification error is  for any class,
regardless of uncertainty. As usual, by reducing the classification error the robustness is also
reduced.

8. Robustness and contradictory propositions

An important issue in robustness concerns partially contradictory propositions. Zadeh has
pointed out that in general, a probability-bound interpretation of belief functions is inconsistent
with normalization in Dempster’s rule [53]. In a comment Shafer points out that belief functions
can be made to define consistent probability bounds with an appropriate discounting before
combination [54]. Zadeh also criticizes Dempster’s rule for leading to paradoxes, such as in the
case with two belief functions with a low supported intersection, e.g., m1(A)=0.95, m1(B)=0.05,
m1(C)=0, m2(A)=0, m2(B)=0.05, m2(C)=0.95 with an {A,B,C} frame, to yield m12(B)=1 and
m12(A)=m12(C)=0 after combination, regardless of the assigned basic belief to A and B by m1
and to B and C by m2. 

We believe, however, that the critique is somewhat misguided. If you accept Dempster’s rule as
it is, and a static frame of discernment, you have also accepted the idea of a closed world and
normalization. The result yielding m12(B)=1 is after all completely consistent with logic as the
first belief function states in logical terms  and the second , with

, or to quote Sir Arthur Conan Doyle “When you have
eliminated the impossible, whatever remains, however improbable, must be the truth.”

α̂ C rc,( ) max α: C u( ) n– n u un α ũn,( )∈,( )∀,{ }=

α̂ C rc,( )  rc≤

C¬ A¬
A B C∧ ∧( ) A¬ C¬∧ ∧ B⇒
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However, in many real world applications a closed world assumption is not a realistic modelling
assumption. We can often not claim with certainty that our representation (frame of
discernment) is exhaustive and mutually exclusive. Thus, the problem seems to lie not with the
rule but with our model, i.e., representation. 

To accept the modelling problem we might adopt an open world assumption and the TBM idea
of not making any normalization in Dempster’s rule as a way to indirectly deal with the
modelling problem. As long as the conflicts are small it does not matter whether we normalize
or not. However, more important is to use the conflict as a warning signal of a robustness
problem. 

As an alternative to the TBM approach we may instead consider the model perfect and view the
robustness problem of a high conflict as a problem regarding the sources. Instead of going from
normalization to no normalization we might choose to make systematic discounts of highly
conflicting sources in such a way as to bring the conflict down to whatever seem reasonable. 

A third more general option would be to trust neither the sources nor the frame and discount
sources whenever the conflict is too large within TBM. 

Whichever approach is taken, problem solving should be viewed as two simultaneous problems,
that of fusing information and a parallel conflict management problem.

When constructing a frame “we can pick out two considerations that influence it: 

(1) we want our evidence to interact in an interesting way, and 

(2) we do not want it to exhibit too much internal conflict. Two items of evidence can always
be said to interact, but they interact in an interesting way only if they jointly support a
proposition more interesting than the propositions supported by either alone.”

“[S]ince interesting interactions can always be destroyed by loosening relevant assumptions and
thus enlarging our frame, it is clear that our desire for interesting interaction will incline us
towards abridging or tightening our frame. Our desire to avoid excessive internal conflict in our
evidence will have precisely the opposite effect: it will incline us towards enlarging or loosening
our frame. For internal conflict is itself a form of interaction − the most extreme form of it. And
it too tends to increase as the frame is tightened, decrease as it is loosened.”

“Notice, too, that we will tend to enlarge our frame as more evidence becomes available. For as
we accumulate evidence we are likely to find more and more interactions that persist even in a
looser frame and more and more conflicts that force us to looser frames” [14], p. 280−281.

In a presentation at Fusion 2004, Haenni [55] discussed Zadeh’s critique and proposed two
ways to achieve robustness by viewing the high conflict as a modelling problem. In the example
the frame consists of three diseases: meningitis, concussion, or tumor: Θ1 = {M,C,T}. In the
first instantiation of the example an underlying modelling assumption is that a patient can only
have one illness at a time, since a frame of discernment consists of mutually exclusive
alternatives, i.e., exactly one alternative is the true disease. In a second more realistic model no
such assumption is made. We assume that the patient can have any number of illnesses or none,
Θ2 = { , M, C, T, MC, MT, CT, MCT}, i.e., exactly one alternative is the true combination of
diseases.

∅
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If you have two highly conflicting pieces of evidence (as in Zadeh’s example) you will get a
high conflict. Let the first doctor state that the patient has meningitis (M) with 99% but a small
1% chance of concussion (C). The second doctor states a 99% chance of tumor (T) but with a
small 1% chance of concussion (C).

After combination and normalization our conclusion is 100% for concussion (C) and 0% for the
other alternatives:

This is a perfectly valid conclusion given that you accept that a patient can only have one illness
(not zero, two or three) and that both doctors are completely reliable. If you don’t accept this,
then you have a modelling problem that should be addressed up front and possibly online and
not be swept under the carpet. We notice that here we also have an obvious robustness problem.
Moving just 1% of the support for M in the first evidence to T will change the conclusion to
almost surely tumor (T):

.

In the second instantiation of the problem with Θ2 = { , M, C, T, MC, MT, CT, MCT} the two
pieces of evidence from the two doctors are simply represented as

.

After combination we have (with no conflict)

and may conclude

m1 A( )
0.99, A M{ }=
0.01, A C{ }=
0 for all other A Θ⊆






=                m2 A( )
0.99, A T{ }=
0.01, A C{ }=
0 for all other A Θ⊆






=

m1 2⊕ A( )
1 A, C{ }=
0 A Θ⊆,




=

m1 2⊕ A( )
0.99, A T{ }=
0.01, A C{ }=
0, for all other A Θ⊆






=

∅

m1 A( )
0.99, A M MC MT MCT, , ,{ }=
0.01, A C MC CT MCT, , ,{ }=
0, for all other A Θ⊆






=  m2 A( )
0.99, A T MT CT MCT, , ,{ }=
0.01, A C MC CT MCT, , ,{ }=
0, for all other A Θ⊆






=

m1 2⊕ A( )

0.9801, A MT MCT,{ }=
0.0099, A MC MCT,{ }=
0.0099, A CT MCT,{ }=
0.0001, A C MC CT MCT, , ,{ }=
0, for all other A Θ⊆










=
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i.e., that the patient has both meningitis and tumor. Thus, a model refinement completely
changes the conclusion and eliminates the robustness problem (a change of 1% from M to T in

evidence m1 will hardly change the belief at all):

.

9. On the relationship between Bayesian inference and evidence theory

Although many papers discuss the abstract relationship between different approaches to reliable
uncertainty management, papers which compare different approaches in concrete examples are
less abundant. Notable exceptions are some of the papers from the Sandia workshop, presented
in [19], as well as the paper [16] where Arnborg discusses the relationship between robust
Bayesian inference and evidence theory, using Zadeh’s example in its original form to
graphically illustrate the effects of different rules of combination. 

Arnborg notes that to obtain bodies of evidence, likelihoods and priors are needed, and therefore
an analysis of a hypothetical Bayesian obtainment of bodies of evidence might shed light on
problems in evidence and aggregation theory. The natural approach to impreciseness used in
this paper is that impreciseness in conclusions is caused by impreciseness in sampling functions
and priors. An assessment that the sampling function is imprecise gives the same effect on the
body of evidence, regardless of what the reason is. Particularly, a body of evidence represented
by a DS-structure (bpa) has an interpretation as a set of possible probability distributions, and
combining or aggregating two such structures can be done in robust Bayesian analysis.

The Dempster-Shafer (DS) combination rule is computationally equivalent to allowing the
operands as well as the result to be non-empty, not necessarily singleton, random sets. The
combination of evidence - likelihood functions normalized so they can be seen as probability
distributions - and a prior over a finite space is done in this paper by component-wise
multiplication followed by normalization. The resulting combination operation agrees with the
DS and the MDS rules, the latter proposed by Fixsen and Mahler [10] and involving a re-
weighting of the operands, for precise beliefs. The robust Bayesian version of this would replace
the probability distributions by sets of probability distributions, for example represented as DS
beliefs.

A set of distributions which is not a Choquet capacity can be approximated by rounding it to a
minimal Choquet capacity that contains it, and this rounded set can be represented by a DS-
structure. Thus, imprecise distributions can, if constrained by rounding to Choquet capacities,
be viewed as random sets. The random sets can be combined by taking the intersection of the
participating random sets on condition that the result is non-empty (i.e., component-wise
multiplication followed by normalization) and the resulting random set can be regarded as a
Choquet capacity.

Bel1 2⊕ ´´M´´( ) Bel1 2⊕ M MC MT MCT, , ,{ }( ) 0.99= =

Bel1 2⊕ ´´T´´( ) Bel1 2⊕ T MT CT MCT, , ,{ }( ) 0.99= =

Bel1 2⊕ ´´C´´( ) Bel1 2⊕ C MC CT MCT, , ,{ }( ) 0.0199= =

Bel1 2⊕ ´´M´´( ) Bel1 2⊕ M MC MT MCT, , ,{ }( ) 0.98= =

Bel1 2⊕ ´´T´´( ) Bel1 2⊕ T MT CT MCT, , ,{ }( ) 0.9901= =

Bel1 2⊕ ´´C´´( ) Bel1 2⊕ C MC CT MCT, , ,{ }( ) 0.0199= =
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Arnborg introduces the concepts of robust Bayesian combination operator and rounded robust
Bayesian combination operator and notes that they are both monotone with respect to
imprecision:

Let F1 and F2 be two probability distributions over a common space . The robust Bayesian
combination operator  is defined by:

The rounded robust operation is defined as applying the robust operator to the rounded
operands, then rounding the result. 

If Fi and F’i are (rounded) robust operators, and if , then . This
property is called monotonicity with respect to imprecision.

Arnborg shows that for any combination operator  that is monotone wrt imprecision and is
equal to the Bayesian (Dempster’s) rule for precise arguments, , where
is the robust rule.

When interpreting DS-structures as Choquet capacities, it is highly desirable that the
combination gives a capacity that is contained in the robust rule result. It can be shown that the
MDS rule, viewed as a capacity, is contained in the robust Bayesian fusion result. This is not
true in general for Dempster’s rule, however. 

Arnborg finally notes that, unlike the robust and rounded robust Bayesian combination
operators he proposes, the DS and MDS operators are not monotone with respect to imprecision.
Therefore, they either underestimate imprecision or eliminate imprecision in a way that can not
easily be defended, whereas the maximum entropy principle can be given a rational game
interpretation, and gives a quite different result in many cases. Thus, evidence theory and robust
Bayesianism are very different in their conclusions. Further work is needed for understanding
the basis for assessing uncertainty objectively, so that a given problem will not have
incompatible solutions in the two frameworks.

Λ
×

F1 F2× cf1f2 f1 F1∈ ,f2 F2∈ ,c 1= f1 λ( )f2 λ( )
λ Λ∈
∑⁄

 
 
 

=

F´i Fi⊆ F′1 F′2× F1 F2×⊆

 ′×
F1 F2× F1 ′F2×⊆   ×
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10. Application of imprecise probabilities in systems modelling 

In [21], de Cooman and Troffaes discuss why coherent lower previsions provide a good
uncertainty model for solving generic uncertainty problems involving possibly conflicting
expert information. They review the definition and meaning of important concepts in imprecise
probability models, adding up to a concise and readable introduction to the subject. Finally, they
apply their proposed approach to the set of “challenge problems” around which the Sandia
workshop was organized [27], arguing that the theory of coherent lower previsions is eminently
suited for solving the first set of problems posed in [27].

10.1. Computations and algorithms 

Computing posterior upper expectations. In an article by Cozman [25], this problem is
discussed and a number of algorithms are compared. The paper focuses on specifying an
underlying theory more suitable for computations than the original theory of lower and upper
previsions, emphasizing an interpretation of imprecise probabilities that relies on convex sets of
probability measures, similar to the quasi-Bayesian theory of Giron and Rios [26]. 

Coherent assessment by iterated natural extension of imprecise probabilities or previsions. In
[22], Dickey presents an interactive open-source computer program which implements coherent
assessment by iterated natural extension (see below), of imprecise probabilities or previsions,
conditional and unconditional. The method is based on a generalization of de Finetti’s
Fundamental Theorem of Probability, developed by Lad, Dickey, and Rahman [22][23][24]. He
considers previsions of random quantities, loosely, expectations of random variables, a
probability being the prevision of an event, or 0-1 random quantity. 

Prevision assessments can either be intended as estimates of frequencies, more generally
averages, or they can be intended as mere quantitative expressions of human uncertainty. In
either case, they should be coherent, that is, extendible to at least one full probability
distribution. Thus, estimates of frequencies or averages must not be impossible when
interpreted together as limiting frequencies or limiting averages in an experiment. For
previsions intended as expressions of uncertainty, coherence is a kind of rationality, a direct
generalization of non-contradiction for statements of fact, a self-consistency in the sense that, if
taken as a person’s betting prices, the person could not be made a sure-loser by combining a
finite number of bets at such prices. For a sequence of mathematically related random
quantities, if coherent prevision values are given for an initial segment of the sequence, the
available cohering values for the prevision of the next quantity comprise an interval whose
endpoints can be computed by linear programming. Walley [11] calls this interval the natural
extension of the given coherent previsions.

The linear-programming variables are interpretable as the probabilities of the “constituent”
events, the events of the joint-range points of the random quantities. Coherence restricts the
prevision vector of the quantities to the convex hull of the joint-range set, that is, the prevision
point must be some weighted average of the joint-range points. The assessed previsions impose
additional linear constraints. Coherent previsions are always capable of being extended
coherently with the value for any further random quantity assignable in an extend-assess cycle.
If supplementary calculations are made of the extension interval for a random quantity of
special interest, the interval will be seen to shrink to a subinterval whenever a further coherent
prevision is assessed. 
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The method generalizes to include conditional previsions, as inputs and/or outputs. In addition,
since prevision is a linear operator, a linear combination of previsions can be assessed directly
as the prevision of a linear combination of random quantities.

The interactive program proceeds in a number of steps, each in the form of an extend-assess
cycle: 

1. Based on all the prevision bounds assessed so far, the program computes natural extensions,
the implied extension interval(s), for the previsions of one or more user-selected quantities. 

2. The user assesses a lower and/or upper bound (or a point value) for a prevision, cohering with
its computed extension interval. To calculate the extension interval for the unspecified prevision
of a quantity, the program must determine the convex hull of the joint range set of the considered
quantities, and then impose the linear constraints on the assessed prevision values and bounds.

Arithmetic with uncertain numbers. Ferson and Hajagos [28] solve the Sandia challenge
problems [27] using probability bounds analysis, a combination of the methods of standard
interval analysis [30][31] and classical probability theory [32][33]. Probability bounds analysis
is closely allied in spirit with robust Bayes techniques, in particular Bayesian sensitivity
analysis. In this approach, an analyst’s uncertainty about which prior distribution should be used
is expressed by replacing a single prior distribution by an entire class of prior distributions. The
analysis proceeds by studying the variety of outcomes as each possible distribution is
considered. The inputs are first expressed as interval bounds on cumulative distribution
functions. Each uncertain input variable is then decomposed into a list of pairs (interval,
probability). A Cartesian product of these lists, reflecting both the independence among inputs
and the mathematical expression that binds them together, creates another list, which is
recomposed to form the resulting uncertain number as upper and lower bounds on a cumulative
distribution function. Ancillary techniques are also employed, such as condensation, which is
necessary to keep the length of the list from growing inordinately in sequential operations, and
subinterval reconstitution, which is needed to solve interval arithmetic problems involving
repeated parameters. Moment propagation formulas are simultaneously used to bound mean
and variance estimates accompanying the bounds on the cumulative distribution function.
Generalizations of this approach are also described that allow for dependencies other than
independence, completely unknown dependence, and model uncertainty more generally.

Based on work by Williamson and Downs [36], who developed an approach that computes
rigorous bounds on the cumulative distribution functions of convolutions without having to
assume independence between the operands, the methods of probability bounds analysis used
by Ferson et al. have been implemented in software packages [37][38]. Williamson and Downs
used their method to estimate rigorous bounds on the distributions of sums, products,
differences and quotients of random variables specified only by their marginal distributions,
without any information about the dependence among the variables. They also described a
method to compute bounds on distributions under independence assumptions. Because their
approach uses interval bounds to represent discretization and dependency errors, it can also
account for uncertainty about the shape of input distributions themselves. In the software
packages [37][38], these methods have been extended to transformations such as logarithms and
square roots, other convolutions such as minimum, maximum and powers, and other
dependence assumptions. 
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Using techniques of mathematical programming, Berleant et al. [39][40][41][42] independently
derived and implemented algorithms to compute convolutions of bounded probability
distributions, both with and without independence assumptions. The application of these
methods to the Sandia challenge problems is reported in [29]. Results are of comparable quality
to those reported in [28].

A third, interesting and recent, but less mature arithmetic approach is that of Lodwick and
Jamison [43], who present a method for estimating and validating the cumulative distribution
of a function of random variables (independent or dependent). The method creates a sequence
of bounds that will converge to the distribution function in the limit for functions of independent
random variables or of random variables of known dependencies. The bounds are possibility
and necessity distributions, consistent with the underlying probability distribution. An
approximation is constructed from, and contained in, these bounds. Preliminary numerical
experiments indicate that this approximation converges quickly to the actual distribution when
the number of variables is moderate. 

The Sandia challenge problems embody several issues that beset all technologies for uncertainty
propagation, whether probabilistic or not, distributional or not, approximative or rigorous.
These issues are: 
• aggregation information from different sources (such as expert judgements) 
• combination of probabilistic and non-probabilistic uncertainty 
• repetition of uncertain parameters 

According to [28], although probability bounds analysis does not prescribe a general slution for
the question of how to aggregate information from disparate sources, it does offer what may be
the definitive solution for a problem requiring the combination of probabilistic and non-
probabilistic uncertainty. It also provides a workable, albeit computationally intensive, strategy
for handling repretitions of uncertain parameters in expressions. When subinterval
reconstitution is used to remedy the computational problem introduced by repeated uncertain
variables, the results are only asymptotically best possible when the number of subintervals
become very large. A comprehensive and flexible methodology to obtain best possible bounds
on moments awaits development. 

10.2. Summary of approaches to the Sandia “challenge problems”

The Sandia challenge problems are presented in [27] as directly addressing issues in the
representation and aggregation of information concerning model parameters. The information
can be of different types and from a number of sources, including measurements and expert
opinion. Given a representation and aggregation of the information into the vector x, the vector
is propagated through the simulator f. f is assumed to be deterministic; that is, for one realization
of x, there is only one realization of y = f(x), which could be a function of space and/or time.
The authors of [27] state: “Given a representation and aggregation of uncertainty through f, we
also wish to address the issue of how to interpret the resultant uncertainty representation in y. ...
We believe that a synthesis is needed of the strategies that have been developed separately
within various communities... . It is our opinion that if some coherence concerning these simple
problem sets can be achieved, then there is some hope that these methods could be extended to
realistic target systems.”
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The two problem sets are given by:
1. A simple algebraic system of the form y = (a + b)a

2. A simple dynamic system in the form of an initial value problem given by an ordinary dif-
ferential equation.

Most of the results and discussion turned out to focus around the results for the several variants
of the algebraic problem set, which is the only one we will present here. Within this problem
set, six main variants and some subvariants were proposed, as follows:

Problem 1. a and b are contained in the closed real interval A and B, respectively.

Problem 2. a is contained in the closed interval A, and the information concerning b is given by
n independent and equally credible sources. Each source specifies a closed interval Bi of
possible values for b. Three subvariants are defined by allowing this set of intervals to be either
consonant (nested), consistent (the intersection of all the intervals is non-empty), or arbitrary.

Problem 3. The information concerning both a and b is given by independent and equally
credible sources of information, m sources for a and n sources for b. Here, too, consonant,
consistent, and arbitrary collections of intervals are considered.

Problem 4. a is contained in the closed interval A, and b is given by a log-normal distribution,
. The value of the mean, , and the standard deviation, , are given by the closed

intervals M and S, respectively.

Problem 5. The information concerning a is given by m independent and equally credible
sources of information. Each source specifies a closed interval Ai that contains the value of a.
The information concerning b is given by n independent and equally credible sources of
information Each source agrees that b is given by a log-normal probability distribution,
however, each source specifies closed intervals, Mj and Sj, of possible values of the mean and
the standard deviation, respectively. Consonant, consistent, and arbitrary collections of intervals
are considered.

Problem 6. a is contained in the closed interval A and b is given by a log-normal distribution.
The values of both the mean and the standard deviation are precisely known.

bln N µ σ,( )∼ µ σ
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For each of these cases numerical values of the stated free parameters were also specified, to
allow easy comparison between results arising from different approaches.

Although these problems were extremely simple (and were for that reason heavily criticized by
some of the workshop participants), the table shows rather limited quantitative agreement
between the different approaches. However, the different result intervals for the same problems
presented in the table are indeed consistent, using the terminology of the problem statements.

10.3. Advantages and disadvantages of different approaches

In [38], Ferson gives the following summary of the pros and cons of the various methods being
used for environmental risk assessments. Most of these aspects are independent of application,
or easily translatable to other application areas.

Deterministic (best estimate) calculation 

Why not? 
• doesn’t express reliability of results

What-if studies and sensitivity analysis 

Why? 
• very general and flexible approach 
• can work for all kinds of uncertainty

Table 1: Comparison of bounds on expected values

Problem Kozine and 
Utkin [79]

De Cooman and 
Troffaes [21]

Ferson and 
Hajagos [28]

Helton et al. 
[80]

1 [0.69, 2.0] [0.692201, 2.0] [0.692, 2] ---

2a [0.93, 1.84] [0.956196, 1.8] [0.84, 1.89] ---

2b [0.93, 1.76] [0.956196, 1.7] [0.82, 1.85] ---

2c [0.93, 1.52] [0.692201, 2.0] [0.83, 1.73] ---

3a [0.944, 1.473] [1.04881, 1.2016] [0.83, 1.56] ---

3b [0.964, 1.418] [1.04881, 1.1156] [0.82, 1.44] ---

3c [1.187, 1.242] [0.692201, 2.0] [0.946, 1.25] ---

4 [0.859, 1.108] [1.00966, 4.08022] [0.9944, 4.416] [1, 3.7]

5a [1.45, 2.824] [1.54027, 2.19107] [1.05, 3.79] (graph)

5b [1.373, 2.607] [1.54027, 1.81496] [1.03, 3.48] (graph)

5c [1.802, 2.298] [1.00966, 4.08022] [1.12, 2.94] (graph)

6 [1.019, 2.776] [1.05939, 2.86825] [1.052, 2.89] [1.05, 3]
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Why not? 
• cumbersome to design and implement 
• computationally expensive (sometimes impossible) 
• hard to explain when elaborated

Worst-case analysis 

Why? 
• accounts for uncertainty by being conservative 
• protective of human health and ecosystem integrity 
• under ignorance, shifts burden of proof to industry 
• especially useful in a screening assessment 

Why not? 
• level of conservatism not consistent from analysis to analysis 
• impossible to compare risks from different analyses 
• possibly hyperconservative 
• unfair and wasteful regulation that is burdensome to industry 
• estimates biased

Interval analysis 

Why? 
• natural for scientists 
• very simple and easy to explain 
• generalizes and refines worst-case analysis 
• works no matter where uncertainty comes from 
• especially useful in a screening assessment 

Why not? 
• ranges can grow very quickly 
• often too conservative 
• paradoxical (no exact value, but exact bounds)

Monte-Carlo analysis (classical probability theory) 

Why? 
• simple to implement 
• fairly simple to explain 
• characterizes impacts of all possible magnitudes 
• can use information about correlations among variables 

Why not? 
• requires a lot of empirical information (or assumptions) 
• analysts usually need to guess some things 
• routine assumptions lead to non-protective conclusions 
• confounds ignorance with variability 
• may be inappropriate for non-statistical uncertainty 
• requires careful attention about which population uncertainty refers to 
• may not be okay to merge subjective estimates from different sources
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Fuzzy arithmetic (possibility theory) 

Why? 
• computations are simple and easy to explain 
• acceptable to assign distributions subjectively 
• doesn’t require detailed empirical information 
• doesn’t require knowledge of dependencies or correlations among variables 
• maintains conservatism under uncertainty about dependencies among variables 
• intermediate in conservatism between analogous Monte Carlo and worst case/interval 

approaches 
• fuzzy numbers are robust representations when empirical information is very sparse 
• characterizes impacts of all possible magnitudes 
• generalizes and refines interval analysis 
• works with non-statistical uncertainty 

Why not? 
• not yet widely known 
• may be overly conservative 
• repeated parameters can be a computational problem 
• not clear it’s okay to merge numbers whose conservatisms are different 
• not clear how to merge with Monte Carlo analysis

Probability bounds analysis 

Why? 
• handles uncertainty about parameter values, distribution shapes, dependencies, and model 

form 
• faithful to frequentist interpretation of probability 
• bounds get narrower with better empirical information 
• provides quality assurance for Monte Carlo results 
• bounds are rigorous 

Why not? 
• displays must be cumulative 
• must truncate infinite tails 
• optimal bounds expensive to compute when parameters are repeated 
• cannot handle two-dimensional probabilities

Two-dimensional Monte Carlo simulation 

Why? 
• allows for a comprehensive expression of parametric uncertainty 
• can handle model uncertainty in a limited way 
• only requires (nested) Monte Carlo methods 

Why not? 
• cannot handle uncertainty about distribution shape 
• can be daunting to parameterize 
• calculations can be cumbersome 
• confounds frequentist and subjectivist interpretations of probability
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Hybrid arithmetic 

Why? 
• does not confound different kinds of uncertainty 
• faithful to both probability and possibility interpretations 

Why not? 
• optimal results expensive when parameters are repeated 
• displays can be complex and difficult to explain to the public 
• information about correlations (other than independence) cannot be used to tighten results

11. Some approaches to fusion performance evaluation

Theil, Kester, and Bossé [63] describe several objective measures to characterize the
effectiveness of detection, tracking and classification. They propose three categories of measure
of performance (MOP) to measure the performance of detection, tracking and classification,
respectively. Each category may consist of several different measures of performance. Which
measure that is most applicable in each category depends on the task of the fusion algorithms.

A performance evaluation method based on a leave-one-out method is developed by Cremer, de
Jong and Schutte [61]. In this method a classifier is trained on all but one sample and tested on
the remaining sample. They repeat this process until every sample has been part of the
evaluation set. However, the leave-one-out method does not have a way to generate ROC curves
by itself. An extension of the method that uses a range of cost functions solves this problem [62].

Goebel [70] used a two phase development method. In a first conceptual phase of tool
development, he used the sum of squared error as a simple metric for a Design-of-Experiment
phase. In order to confirm that the fusion tool led to actual performance improvement in a
second phase, he devised a benchmark algorithm that performed a maximum-win strategy. He
developed an overall performance index by weighing false positives (FP), false negatives (FN),
and false classified (FC) where the weights were set by the application as

. An increase in performance was measured as the
fraction of improvement from that baseline to perfect performance, expressed in percent.

Chang, Song and Liggins [59] present a fusion performance model for a general multisensor
fusion system. Their model includes kinematic and classification measures with a focus on
positional and classification error. The performance model is based on Bayesian theory and uses
a combination of simulation and analytical approaches. In a second paper [60] the same authors
focus on distributed tracking and classification. The model provides high level performance
bounds given the sensor distribution as well as information on sensor quality for system control.
These issues have broad implications for fusion system architecture design, and evaluation of
different system alternatives.

The scenario dependence of the performance of a hybrid estimation algorithm is elaborated by
Li and Bar-Shalom [57]. They develop a performance predictor approach. This is a computer-
aided approach, in which the performance prediction of a stochastic algorithm is made by using
a specifically developed deterministic algorithm. Thus, no simulation is used. The accuracy of
this method can be much better than a performance analysis approach where relations between
a small number of key parameters and the performance of the algorithm is established. Since
these relations can not be complicated many assumptions and approximations need to be done.

0.6 1 FP–( ) 0.3 1 FN–( ) 0.1 1 FC–( )+ +
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The cumulative effect of all these assumptions and approximations make it extremely difficult
to obtain an analytic model of good accuracy. Performance prediction seems to be the only
reasonable alternative to Monte Carlo simulation. In the performance predictor approach very
complex relationships may be modeled. A technique for performance prediction of hybrid
algorithms is called the HYbrid Conditional Averaging (HYCA). This hybrid technique is
obtained by conditional expectation operation through which the randomness of the algorithm
performance due to uncertainties in the continuos-valued state space is averaged out, whereas
the dependence of the performance on the scenario is retained. HYCA can be used to predict the
performance of multiple models such as IMMs, but also PDA and Nearest Neighbor filters, etc.

While simulation is one of the most powerful tools for evaluating the performance of complex
systems, it is computationally slow. Panayiotou et al. [65] develop a metamodel to overcome
this limitation. They generate a model of the system that accurately captures the relationships
between input and output. Using this model is much more efficient than simulation. Neural
networks (NN) are good function approximators and thus make good metamodels. In a training
phase, the NN is presented with several input/output examples, and learn the relationship
between inputs and outputs of the simulation model. Thus, the NN has the ability to generalize
when presented with novel input and predict the output. As the ability to generalize requires
many training examples that are obtained through simulation developing a metamodel is slow.
Often it is possible to use perturbation analysis to obtain sensitivity information for the input
parameters. Using sensitivity information Panayiotou et al. [65] investigate how to reduce the
simulation effort required for training a feed-forward neural network. Using sensitivity
information can significantly reduce the number of input/output training examples needed.

Several other authors have also addressed simulation metamodeling. A metamodel for a
Tactical Electronic Reconnaissance Simulation Model was developed by Zeimer and Tew [66].
It estimates the number of ground-based radar sites detected by a reconnaissance aircraft. Other
authors have used statistical analysis. Santos and Nova [67], for instance, used least squares
estimation for estimation of non-linear metamodels and Cheng [68] applied regression using
Bayesian methods. As NN are generally good function approximators they make good
candidates for surrogate functions. Jablunovsky et al. [69] used a back-propagation neural net
to capture the behaviour of a Command and Control (C2) network.

Hoffman et al. [71] develop an approach based on Finite Set STatistics (FISST) for performance
evaluation of multisensor-multitarget threat assessment algorithms. Performance is here
evaluated by measuring the Kullback-Leibler distance between ground truth and a contour map
from the threat prediction output.

McGirr [64] discusses resources available for the design of interoperable systems. He
differentiates between lower level Measures of Performance (MOPs) and higher level Measures
of Evaluation (MOEs). An MOE can be the timeliness of information to support a decision. The
performance evaluation process typically incorporates a combination of MOPs and MOEs such
as detailed analysis, Monte Carlo simulation, laboratory based testing, and operational
evaluation.

12. Examples

Set-valued estimation offers a way to account for imprecise knowledge of the prior distribution
of a Bayesian statistical inference problem. The set-valued Kalman filter [73], which propagates
a set of conditional means corresponding to a convex set of conditional probability distributions
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of the state of a linear dynamic system, is a general solution for linear Gaussian dynamic
systems. In [74], the set-valued Kalman filter is extended to the non-linear case by
approximating the non-linear model with a linear model that is chosen to minimize the error
between the non-linear dynamics and observation models and the linear approximation. The
conventional extended Kalman filter is a well-accepted and practical solution for point-valued
estimates, but it does not apply to the set-valued case. The extended set-valued Kalman filter
provides an approximate solution to the non-linear set-valued dynamic state estimation problem
that is computationally feasible. An application is presented to illustrate and interpret the
estimator results. However, the paper does not provide arguments in support of this approach as
a means to achieve fusion robustness, nor are bounds on the approximate solution presented.

Another approach to generalizing the Kalman filter to fit an imprecise probability framework,
in this case TBM, is presented in [75].

None of these papers discuss the use of set-valued filters to achieve robustness or probabilistic
error bounds. Perhaps the TBM-based algorithm could be combined with probability bounds
analysis to achieve this [28, 76].

In a manuscript submitted to the Fusion 2005 conference [78], our colleagues Ronnie Johansson
and Robert Suzic study information acquisition for robust plan recognition. Tactical
commanders want to obtain predictive situation awareness. To do this effectively, they need
real-time decision support tools which can both recognize basic tactical plans of the opponent,
such as an imminent attack, and proactively control limited sensor resources by prioritizing
dangerous plan alternatives in a sensible way. Johansson and Suzic introduce a particle filter that
maintains a state estimate even when observations are lacking. The particle filter produces a
multi-model state representation with each particle as a mode.
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They compare two approaches experimentally, one (cg) which is based on finding the mean
value (center of gravity) of the probability for each plan alternative given all plan distributions,
the other (me) by choosing the estimate that has the maximum entropy compared to other
distributions. As a baseline, they also compute the best possible (bp) estimates of the attack
probability by assuming continuous and accurate observations by all agents. Initially, the
suspected attacker (cs) is observed by both UAVs and observers on the ground. Estimated
attack probability is close to bp and the uncertainty is small. As estimated attack probability
increases, this attracts the interest of the sensor control, which manages to keep the uncertainty
relatively small by prioritizing this objective. Near the end of the scenario, attack probability
has decreased (because cs is moving away from the own targets) and the interest of the sensor
control has been lowered. Together with a built-in “gravity” bias of the model which pulls
particles towards own targets, this explains why the uncertainty interval fails to cover the bp
estimate during the last time steps. In this experiment, the cg approach appears to approximate
bp better than does me.

13. Conclusion 

Although imprecise probabilities is still an area of active research, it seems that its methods have
reached a level of maturity that is sufficient for development of robust test applications in our
own field of application, information fusion. 
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