
A framework for simulation-based
optimization of business process models

Farzad Kamrani1, Rassul Ayani1 and Farshad Moradi2

Abstract
The Assignment Problem is a classical problem in the field of combinatorial optimization, having a wide range of appli-
cations in a variety of contexts. In general terms, the Assignment Problem consists of determining the best assignment of
tasks to agents according to a predefined objective function. Different variants of the Assignment Problem have been
extensively investigated in the literature in the last 50 years. In this work, we introduce and analyze the problem of
optimizing a business process model with the objective of finding the most beneficial assignment of tasks to agents.
Despite similarities, this problem is distinguished from the traditional Assignment Problem in that we consider tasks to
be part of a business process model, being interconnected according to defined rules and constraints. In other words,
assigning a business process to agents is a more complex form of the Assignment Problem. Two main categories of
business processes, assignment-independent and assignment-dependent, are distinguished. In the first category, different
assignments of tasks to agents do not affect the flow of the business process, while processes in the second category
contain critical tasks that may change the workflow, depending on who performs them. In each category several types of
processes are studied. Algorithms for finding optimal and near-optimal solutions to these categories are presented. For
the first category, depending on the type of process, the Hungarian algorithm is combined with either the analytical
method or simulation to provide an optimal solution. For the second category, we introduce two algorithms. The first
one finds an optimal solution, but is feasible only when the number of critical tasks is small. The second algorithm is
applicable to large number of critical tasks, but provides a near-optimal solution. In the second algorithm a hill-climbing
heuristic method is combined with the Hungarian algorithm and simulation to find an overall near-optimal solution. A
series of tests is conducted which demonstrates that the proposed algorithms efficiently find optimal solutions for
assignment-independent and near-optimal solutions for assignment-dependent processes.

Keywords
Assignment Problem, business process optimization, Hungarian algorithm, simulation-based optimization

1. Introduction

The demanding and complex task of improving the per-
formance of a business process may be viewed from
various perspectives. Different disciplines have pro-
vided a vast range of approaches to the problem,
which have been employed by business and other
types of organizations over the years with varying
degrees of success. Among examples of suggested mea-
sures that may improve a business process, the follow-
ing can be highlighted: (1) increasing the quality and
performance of the workforce by education and train-
ing; (2) improving the structure of an organization and
work process; (3) improving the quality of the manage-
ment of organization; and (4) automation and

introducing technical aids that can enhance the perfor-
mance of the personnel. Common for these solutions is
that they are more or less long-term measures, which
are complex and costly to implement and may require
changes to the organization and the business process.

1School of Information and Communication Technology, KTH Royal

Institute of Technology, Sweden.
2Division of Information Systems, FOI, Swedish Defence Research

Agency, Sweden.

Corresponding author:

Farzad Kamrani, School of Information and Communication Technology,

KTH Royal Institute of Technology, Stockholm, Sweden

Email: kamrani@kth.se

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

88(7) 852–869

� The Author(s) 2011

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0037549711417880

sim.sagepub.com

http://sim.sagepub.com/

Nevertheless, another equally significant approach,
which is the focus of this paper, is to improve the per-
formance of a business process by selecting the most
qualified available personnel for each task, without
refining the structure of the business process or hiring
new employees.

This approach is appropriate for scenarios in which
a given number of personnel within an organization are
dedicated to perform a defined activity. For instance,
consider military personnel who are appointed to posi-
tions in a command center, or a group of software engi-
neers in a company that are assigned the task of
developing a software system. These types of business
processes consist of different tasks, which require vari-
ous categories of expertise. Appointed personnel are
usually in varying degrees qualified for the involved
activities. However, since their performance may vary
for different tasks, the outcome of the process depends
heavily on which tasks are assigned to which
employees.

The problem of optimally assigning tasks to work-
ers, which is known as the Assignment Problem (AP), is
not new and different variants of it have been discussed
for more than 50 years, that is, since the introduction of
the first algorithm that solved it in polynomial time.
Pentico1 provides a valuable survey over variations of
the AP. Despite similarities, these problems have vary-
ing degrees of complexity. While the optimal solution
to some of them, such as the classical AP, has a poly-
nomial time complexity, some others (such as the
Generalized AP) are non-deterministic polynomial-
time (NP)-hard combinatorial optimization problems2

and are usually solved by approximate methods.
Approximate methods do not guarantee an optimal

solution. However, they usually find high-quality solu-
tions in a significantly reduced amount of time. A very
popular group of approximate methods, commonly
called metaheuristics, try to combine basic heuristic
methods in higher level frameworks to efficiently
explore a search space. Metaheuristic algorithms are
non-deterministic strategies that ‘guide’ the search pro-
cess in order to find near-optimal solutions. They usu-
ally incorporate mechanisms to avoid getting trapped
in confined areas of the search space.3 Metaheuristics
include – but are not restricted to – the Genetic
Algorithm (GA), Iterated Local Search (ILS),
Simulated Annealing (SA) and Tabu Search (TS).

The GA4,5 is a metaheuristic based on evolutionary
ideas of natural selection and genetics, which was
invented by John Holland.6 It simulates the ‘survival
of the fittest’ principle that was laid down by Charles
Darwin. The GA has frequently been used for solving
many optimization problems.7–10

The ILS and TS are two different local search meta-
heuristics. In the ILS one generates an initial solution

and finds a local optimum by performing a local search.
Then, the obtained solution is modified randomly and
the search continues until a new solution is reached.
This procedure is repeated iteratively until a termina-
tion criterion is met. The TS is also an iterative local
search. The main feature of the TS is its use of an adap-
tive memory that prevents the algorithm of revisiting
solutions, which have already been explored.

SA is a metaheuristic mainly used in combinatorial
optimization, which is inspired by the basic principles
of statistical thermodynamics and simulates the transi-
tion to the equilibrium and decreasing the temperature
to find smaller and smaller values of the mean energy of
a system. In each step of the SA algorithm the current
solution is replaced by a random solution from its
neighborhood. The probability that a new solution is
accepted depends on the difference between the corre-
sponding objective values and a global parameter T,
called the temperature. Large values of T correspond
to increasing randomness and, as T goes toward zero,
solutions with more differences in objective values are
selected. One should gradually decrease the tempera-
ture during the process.11,12

Despite similarities, our work is distinguished from
the AP in that we consider tasks as part of a business
process, being interconnected to each other according
to given business rules. The process usually includes
decision points at which the path of the workflow is
determined. Depending on different factors, some
tasks may be repeated several times or different courses
of action (COAs) may be chosen resulting in alternative
tasks to be performed (see Figure 1). A business process
often involves uncertainty that must be addressed and
incorporated into the analysis in an adequate manner.
One can say that assigning a business process to per-
sonnel is a more complex form of the AP.

Depending on the type of the business process
model, different solutions are required. Our approach
has been to find the optimal solution employing exact
methods, and avoid using heuristics to the extent that it
is possible. Even in the most general case where no
exact method exists, we do not rely entirely on heuris-
tics and combine them with exact methods used for
different partitions of the problem.

The outline of the rest of this paper is as follows. In
Section 2, the business process modeling and our choice
of modeling tool are discussed. In Section 3, the prob-
lem formulation and the objective function are pre-
sented. In Section 4, we suggest a model for
estimating the performance of personnel based on
their capabilities. In Section 5, several simulation-
based algorithms for finding the optimal and near-opti-
mal solutions are presented. In Section 6, the compu-
tational complexity of the methods is investigated.
Section 7 discusses results from test scenarios. In

Kamrani et al. 853

http://sim.sagepub.com/

Section 8, some restrictions of our approach are
addressed. Section 9 concludes the paper and discusses
future work.

2. Business process modeling

Business process modeling refers to describing business
processes at a high abstraction level, by means of a
formal notation to represent activities and their causal
and temporal relationships, as well as specific business
rules that process executions have to comply with.13

The focus of business process modeling is the represen-
tation of the execution order of activities, which is
described through constructs for sequence, choice, par-
allelism or synchronization.14 Over the years, various
business modeling methodologies, such as the flow
chart, data flow diagram, control flow diagram, Gantt
chart and Unified Modeling Language (UML), have
been employed to model and analyze different aspects
of business processes. In recent years, Business Process
Modeling Notation (BPMN)15 has emerged as the de
facto standard for modeling organizations and business
processes.16–18 In this paper, we choose BPMN as the
modeling tool of business processes, due to its intui-
tional appeal and wide acceptance.

BPMN is a graphical notation that provides organi-
zations with the capability to document, analyze and
communicate their business procedures in a simple and
standard manner. The graphical notation of BPMN is
chosen to resemble the flow-chart format. One of the
objectives in the development of BPMN has been to
create a simple and understandable mechanism for cre-
ating business process models, while at the same time
being able to handle the complexity inherent in business
processes. For this reason, the graphical notation is
organized into a small set of specific notation catego-
ries. While the reader of a BPMN diagram can easily
recognize the basic types of elements and understand
the diagram, additional variations and information are
added within the basic elements to support the require-
ments for complexity without dramatically changing
the basic look and feel of the diagram.15

In BPMN, the association of a particular action or
set of actions with a specific resource is illustrated
through the use of the Pool and Lane constructs, com-
monly called Swimlanes. However, Wohed et al.19 show

that the BPMN’s support for the resource perspective is
not sufficient. To overcome this limitation, an extension
using UML constructs is introduced by Siegeris and
Grasl20 and an example of process modeling for a
large-scale modeling effort using BPMN is provided.

Even though one of the major goals of business pro-
cess modeling and BPMN is to provide a means to
understand and analyze the business structure, it is pos-
sible to extend BPMN to cover other aspects of a pro-
cess model. For example, Magnani and Montesi21

extend BPMN to evaluate the (monetary) cost of a
business process. They suggest two methods: cost inter-
vals, in which the cost of a task is expressed by its lower
and upper limits, and average cost, in which an average
cost is assigned to each task together with the proba-
bility of alternative paths. In both methods costs are
aggregated in an additive manner to the overall cost of
the entire process.

Similar to this approach, we suggest extending the
BPMN constructs, such as Task and Activity, with a
performance metric value added, which describes how
much the final value of the outcome of the business
process will increase as the workflow proceeds through
each BPMN element. The total value added by a process
then is the sum of the value added in each step of the
business process.

Evidently, measuring the value added by each stage
in a business process is very challenging, especially
when human performers are part of the process. The
versatility of individual characteristics and the unpre-
dictable nature of human beings make any estimation
of the value of their work effort rather speculative.
Individual characteristics, such as cognitive ability,
motivation, mental models, expertise, experience, crea-
tivity and mood, all have critical impacts on the perfor-
mance of individuals. Nevertheless, we suggest that the
value added in a business process is the result of the
qualified personnel’s work effort, and a business pro-
cess in which qualified personnel are working with tasks
that require these qualifications produces an output
that is more thoroughly worked out. In other words,
we assume that more qualified work results in higher
value added to the outcome of a business process. With
qualified work, we mean work efforts that are required
for completion of a process. For instance, in a software
development task that requires only C-programming
skills, a higher amount of work efforts by personnel
who lack this capability produces no added value.

The BPMN extension that we propose and use in
this paper is the following. The performers of Tasks
and Activities of a business process are modeled as a
collection of m agents, fa1, . . . , amg: Each agent, ai, has
a set of n attributes ci ¼ fci1, . . . , cing, which are numer-
ical values that quantify its capabilities. This set, that
we from now on call the capability vector, defines all

Figure 1. A process with three tasks. Gateways after tasks 2
and 3 may change the workflow.

854 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

http://sim.sagepub.com/

possible qualifications that may be of interest for the
entire business process. For instance, in a software
development process, various programming skills may
be examples of capabilities of agents, or in a military
planning team, more subjective characteristics, such as
cognitive ability, creativity and communication skills,
may constitute the set of the required capabilities.
Capabilities are graded by a number ranging between
0 and 5, where 0 is lack of the capability and 5 is the
highest possible value. In many cases, these grades may
be based on objective measures; for example, experi-
ence can be measured by number of years in a business,
or technical skills may be graded by performance in a
training course. In other cases the grades may be sub-
jective values assigned by the decision maker; for
instance, the group leader may grade agents according
to their earlier achievements, based on his own
experience.

For each task, tl, a weight is associated to each capa-
bility. These values define the (capability) weight vector,
that is, wl ¼ fw1l, . . . ,wnlg. Each value, wjl, describes
the importance of the capability j for task l. These
values are assigned by domain experts and normalized
so that the sum of weights for each task is equal to 1,
that is,

Pn
j¼1 wjl ¼ 1, 8tl.

3. Problem formulation

In Kamrani et al.,22 we proposed a model for estimat-
ing the value added by human agents in a business pro-
cess. Here, we present a modified version of the same
model, which incorporates some more details. In this
model the value added by an agent to a task (per time
unit) is described as a function of the capabilities of the
agent and the importance of these capabilities for the
task:

vil ¼ f ðci,wl Þ, ð1Þ

where vil is the value added (per time unit) by agent ai in
performing task tl, ci ¼ fci1, . . . , cing is the capability
vector of agent ai and wl ¼ fw1l, . . . ,wnlg is the weight
vector of task tl.

In a business process model, some tasks are per-
formed a number of times. This number may be pre-
determined or modeled as a random variable with a
distribution that is either fixed or depends on the qual-
ity of the performance of the current or other tasks. For
instance, consider the process shown in Figure 1. The
probability that after task 2 the workflow continues to
task 3 is always 0.9. However, the process is completed
only if task 3 is sufficiently well performed, otherwise
the workflow is directed to task 2. Generally, this mea-
sure depends on which agent has performed task 3.

In aggregating values added by agents to a process,
the following factors should be considered.

1. How many times each task is performed – we denote
this number by xl for task l.

2. The assignment of tasks to agents. We denote this
scheme by the assignment matrix Z ¼ ½zil�m3s, where
m and s denote numbers of agents and tasks, respec-
tively, and zil ¼ 1 if task l is assigned to agent i and 0
otherwise.

If the time required to carry out task tl is denoted by
ql and it is performed xl times before the process is
finished, the total value added to the process is

v ¼
Xs
l¼1

Xm
i¼1

xlqlf ðci,wl Þzil: ð2Þ

However, the value v is a gross measure, since it does
not take into account the costs of agents. In order to
obtain the overall measure of performance, we consider
the costs and subtract the total cost of agents from the
added value. We assume that the cost of an
agent (per time unit) is a function of its capabilities
and independent of the task it is performing, that is,
the cost of agent ai (per time unit) is ei ¼ gðciÞ, where
ci ¼ fci1, . . . , cing is the set of the agent’s capabilities.
Then the total cost of all agents performing the business
process will be

e ¼
Xs
l¼1

Xm
i¼1

xlqlgðciÞzil, ð3Þ

where xl, ql and zil are defined as above for Equation (2).
By subtracting Equation (3) from Equation (2), the
objective function of the business process:

u ¼ v� e ¼
Xs
l¼1

Xm
i¼1

xlql ð f ðci,wl Þ � gðciÞÞzil ð4Þ

is obtained. Given functions f and g, Equation (4) yields
a single measure of performance (objective function) for
the business process by reducing the costs of agents from
the sum of values added by them. Thus, it is desirable to
maximize this objective function, subject to any con-
straints on the number of agents and tasks.

We define the value added matrix as

V ¼ ½vil�m3s, ð5Þ

where vil ¼ f ðci,wl Þ, and the agent cost vector as

COST ¼ ½costi�m31, ð6Þ

Kamrani et al. 855

http://sim.sagepub.com/

where costi ¼ gðciÞ. Functions f and g in Equation (4)
can be substituted by vil and costi in order to obtain a
more convenient form of the equation.

Then, the optimization problem can be formulated
as the following. Given the objective function

u ¼
Xs
l¼1

Xm
i¼1

xlql ðvil � costiÞzil ð7Þ

find an assignment matrix Z, that is, all
zil 2 f0, 1g, such that u is maximized, subject to
constraints

Xm
i¼1

zil ¼ 1, for all l 2 f1, . . . sg ð8Þ

Xs
l¼1

zil ¼ 1, for all i 2 f1, . . .mg ð9Þ

Constraints (8) and (9) mean that each task is
assigned to one agent and each agent performs one
task, implying that numbers of tasks and agents are
equal. If the number of tasks and agents are not
equal, one can balance them by introducing ‘dummy’
tasks or agents, which do not add any value to the
process. In the final solution, those tasks that are
assigned to dummy agents (or vice versa) remain
unassigned.

In a more generalized form of the problem, a task
may require several agents, that is constraint (8) is
replaced by

Xm
i¼1

zil ¼ dl, for all l 2 f1, . . . sg ð10Þ

where dl is the number of agents performing task tl
and

Ps
l¼1 dl ¼ m. However, this problem can also be

reformulated as the original one with an equal number
of tasks and agents, by decomposing each task tl to dl
tasks, each of which require one agent. Therefore,
without any loss of generality, we may assume that
the number of tasks and agents are equal and con-
straints (8) and (9) are applied. However, we presup-
pose that each agent is involved in only one task and
agents performing a task do not interact with each
other.

The main difficulty in solving the stated optimiza-
tion problem, despite its similarity with the
classical AP, is that the variable xl generally depends
on the assignment matrix Z, as will be discussed in
Section 5.

4. Approximate models

In this section, two models, which supply the value
added matrix (V) and the agent cost vector (COST),
are presented. We assume that these values are
expressed in appropriate units, which are consistent
with the grading system and capability weights sug-
gested earlier and no scaling factor is required to con-
vert between units.

For each agent ai and task tl, we approximate vil by
the sum of capabilities of the agent weighted by impor-
tance of the capabilities, that is

vil ¼
Xn
j¼1

cijwjl: ð11Þ

The above can be expressed in matrix form in order
to simplify the calculations. Considering m agents each
having n attributes, the capability matrix is defined as
C ¼ ½cij�m3n, where cij is the attribute j of agent i. In a
similar way, given s tasks the weight matrix is defined as
W ¼ ½wjl�n3s, where wjl is the weight of attribute j for
task l. Then, the value added matrix V ¼ ½vil�m3s, where
vil is the value added by agent i to task l (per time unit)
is calculated by

V ¼ CW: ð12Þ

The cost of an agent (costi 2 COST) is approximated
by a step function of the sum of its capabilities. This
model appears to be simple yet realistic. In an organi-
zation usually the salaries of the employees are decided
by their qualifications and are not changed with the
details of the task that they are working with. We
assume the cost of each agent (per time unit) is one of
three constant values, depending on its capabilities:

costi ¼
k1,

Pn
j¼1 cij \ normal

k2, normal �
Pn

j¼1 cij \ expert

k3,
Pn

j¼1 cij � expert:

8<
: ð13Þ

Equations (11) and (13) are incorporated in
Equation (7) in order to completely define the objective
function.

5. Proposed solution

In its most general case, the objective function defined
in Equation (7) incorporates a random element, xl ðZÞ,
which depends on the assignment matrix, and there is
no easy way to find an optimal solution. However,
depending on the type of process, the problem may
be reduced to simpler cases, which require less effort

856 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

http://sim.sagepub.com/

to solve. We distinguish between two main catego-
ries of processes: (1) those for which the workflow is
independent of the assignment of tasks; and (2)
those for which depending on the assignment of
tasks the flow of the process may be changed. In both
assignment-independent and assignment-dependent cate-
gories, the process may be deterministic, Markovian or
non-Markovian.

In the following, we discuss first the assignment-
independent category, which is less complicated, pre-
sent solutions to each case and finally introduce an
algorithm for the more general cases.

5.1. Deterministic processes

When no randomness is involved in the process and the
value of xl for all tl is predetermined and independent
of Z, the problem is reduced to the standard AP. For
each task tl, the value xl can be read directly from the
business process model. Equation (7) can be rewritten
as u ¼

Ps
l¼1
Pm

i¼1 v
9
ilzil, where v9

il ¼ xlql ðvil � costiÞ.
Thus the goal of the optimization problem will be to
maximize u subject to constraints (8) and (9).

The number of feasible solutions to the AP grows
factorially with the number of tasks (agents), which
makes an exhaustive search method practically impos-
sible. However, the well-known Hungarian algorithm
solves the AP in polynomial time of the number of
tasks. The Hungarian algorithm, also known as the
Kuhn–Munkres algorithm, was originally developed
and published by Harold Kuhn23 and had a fundamen-
tal influence on combinatorial optimization.24 Since we
adopt this method in our algorithms presented later, we
outline the key steps of the method here.

The matrix interpretation of the Hungarian algo-
rithm assumes a non-negative matrix C ¼ ½costil�m3m,
where element costil represents the cost of assigning
task l to agent i. The aim of the algorithm is to select
m independent elements of matrix C such that the total
assignment cost is minimized. A set of elements of a
matrix are considered to be independent if no two of
them are in the same row or column.

A problem in which the objective is to maximize the
profit can be easily converted into a minimization prob-
lem. Assume that the profit of assigning tasks to agents
is defined by a profit matrix, P ¼ ½ pil�m3m. By replacing
each pil with pmax � pil, where pmax is the largest element
of P, a ‘cost’ matrix is constructed. An assignment that
minimizes the total ‘cost’ maximizes the profit for the
original problem.

The Hungarian algorithm is based on the property
that the solution of the problem is not changed if we
add a constant to every element of a row (or column)

in the cost matrix. Obviously, the total cost is
increased by the same constant. It also relies on
Ko99nig’s theorem, which states that the maximum
number of independent zero elements in a square
matrix is equal to the minimum number of lines
(through a row or a column) required to cover all
zero elements.25 The algorithm consists of the follow-
ing steps.25,26

1. Subtract the smallest element in each row from every
element of that row.

2. Subtract the smallest element in each column from
every element of that column. After these two steps,
the obtained matrix (C1) contains at least one zero
element in each row and each column and has the
same solution as the original matrix C.

3. Cover all zero elements in matrix C1 by drawing as
few lines as possible through rows and columns.
Let m1 denote the number of these lines.
According to Ko99nig’s theorem, m1 is equal to
the maximum number of independent zero ele-
ments. If m1 is equal to the number of tasks (m),
a set of m independent zero elements in C1 can be
identified. Since elements of C1 are non-negative
and the total cost of assignments in the selected
set is zero, an optimal assignment for cost matrix
C1 is found. This assignment constitutes the opti-
mal solution for C. The total cost is found by
adding the corresponding elements of C in the
same positions.

4. If m1 \m, denote the smallest uncovered element of
C1 by h. Add h to every element of each covered row
or column of C1. This implies that h is added twice to
each twice-covered element. Subtract h from every
element of the matrix. Call the new matrix C2. This
matrix has the same optimal solution as C1 and C.
However, matrix C2 contains at least one new zero
element and the sum of its elements is decreased by
mðm�m1Þh.

5. Repeat steps 3 and 4, using C2 instead of C1.

We refer the interested reader to Munkres,25 Sasieni
et al.26 and Jonker and Volgenant27 for a detailed pro-
cedure for carrying out step 3, without which the algo-
rithm is still not complete. The time complexity of the
Hungarian algorithm is Oðm3Þ, where m is the number
of tasks.

We employ the Hungarian algorithm as a function
that takes a matrix V ¼ ½vil�m3s as input and returns an
optimal assignment matrix Z. This function is denoted
as hungarian in the following algorithms. The steps of
finding the optimal solution to the deterministic
(assignment-independent) process are summarized in
Algorithm 1.

Kamrani et al. 857

http://sim.sagepub.com/

Algorithm 1. Optimal assignment of a deterministic process.

given: agents A, tasks T, business process model BPM
return: optimal assignment Z

1 V CW ðEquation ð12ÞÞ
2 COST ðEquation ð13ÞÞ
3 X BPM

4 for each agent ai 2 A

5 for each task tl 2 T

6 v9
il xlql ðvil � costiÞ

7 end for

8 end for

9 Z hungarian ð½v9
il�m3sÞ

5.2. Markovian processes

In many business processes the workflow is not prede-
termined and may take different paths. Thus, the value
of the objective function u as defined by Equation (7) is
a random variable, and a natural approach is to find an
assignment scheme that maximizes the expected
value E[u].

If the uncertainty in the business process is
modeled by fixed probabilities assigned to alterna-
tive paths, then the business process model can be con-
sidered as a Markov chain. BPMN’s Tasks will
constitute transient states and End Events will be
absorbing states of the Markov chain. Using
Equation (7), the expected value of the objective func-
tion is calculated by

E½u� ¼
Xs
l¼1

Xm
i¼1

E½xl �ql ðvil � costiÞzil: ð14Þ

It can be shown that E½xl � is the first row of the
invertible matrix ðI�QÞ�1. Here, I is the identity
matrix and Q is obtained from the transition matrix
of the Markov chain if we strike off all rows and col-
umns containing absorbing states.22 In other words, the
expected number of times each task is performed can be
calculated by

E½X� ¼ ð1, 0, 0, � � �ÞðI�QÞ�1, ð15Þ

Where X ¼ ½xl �13s ¼ ½x1, x2, . . . , xs� is the number of
times each task is performed.

Using Equations (14) and (15), the optimal assign-
ment is found by the Hungarian algorithm. These steps
are summarized in Algorithm 2.

Algorithm 2. Optimal assignment of a Markovian process.

given: agents A, tasks T, business process model BPM
return: optimal assignment Z

1 V CW ðEquation ð12ÞÞ
2 COST ðEquation ð13ÞÞ
3 derive Markov chain M from BPM

4 E½X� ð1, 0, 0, . . .ÞðI� QÞ�1 ðEquation ð15ÞÞ
5 for each agent ai 2 A

6 for each task tl 2 T

7 v9
il E½xl �ql ðvil � costiÞ

8 end for

9 end for

10 Z hungarian ð½v9
il�m3sÞ

5.3. Non-Markovian processes

Although the presented analytical method in Section
5.2 is appealing, it can only be used for a Markovian
process. In modeling a real-world business process,
the Markovian constraint is usually too restrictive
and not justified. The reason is that the probability
that the workflow takes a path generally depends not
only on the current state of the process, but also on
the history of the workflow. For non-Markovian
processes there is no analytical solution and alterna-
tive approaches, such as simulation, must be
considered.

The simulation method follows the intuitive struc-
ture of the BPMN diagram. Tokens are generated at
Start Events and are propagated along Sequence
Flows, across Tasks, Activities and Gateways, being
duplicated and merged when necessary, until they
are consumed by an End Event. An element holding
a token is considered to be active, which may result in
updating the values of some parameters. The simula-
tion is repeated a sufficient number of times so that
the average values of the desired parameters are cal-
culated. The aim of the simulation is to estimate E½X�,
that is, the expected number of times each task is
performed. Once E½X� is estimated, the objective func-
tion can be calculated as in Equation (14) and the
Hungarian algorithm can be adopted to efficiently
find the optimal solution. The approach is shown in
Algorithm 3.

858 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

http://sim.sagepub.com/

Algorithm 3. Optimal assignment of a non-Markovian process.

given: agents A, tasks T, business process model BPM
return: optimal assignment Z

1 V CW ðEquation ð12ÞÞ
2 COST ðEquation ð13ÞÞ
3 run simulation of the BPM

4 E½X� average token through each task

5 for each agent ai 2 A

6 for each task tl 2 T

7 v9
il E½xl �ql ðvil � costiÞ

8 end for

9 end for

10 Z hungarian ð½v9
il�m3sÞ

The observant reader may have noticed the simi-
larities between Algorithms 1, 2 and 3. Indeed, they
are identical except for lines 3�6 of Algorithm 1,
and lines 3�7 of Algorithms 2 and 3. Using different
methods, this part of the algorithms calculate or
estimate the number of times each task is performed
in order to calculate the profit matrix, V9 ¼ ½v9

il �m3s.
Since the discussed processes are independent of the
assignment matrix, regardless of the assignments this
matrix will be the same and the Hungarian algo-
rithm can be used to efficiently find the optimal
solution.

5.4. Assignment-dependent processes

In all three cases discussed above, that is, deterministic,
Markovian and non-Markovian processes, we assumed
that there is no correlation between the assignment
scheme and the path of the workflow or on the proba-
bilities of branches at decision points. However, in
many situations this is not the case. For instance,
assignment of a task to a less qualified agent may
increase the probability that the task is repeated several
times. In such scenarios some assignment combina-
tions may change the probabilities that govern the
path of the workflow. This means that xl in Equation
(7) is a function of the assignment matrix Z. The algo-
rithms as presented above do not result in a unique
matrix V’ and different assignments may result in dif-
ferent matrices.

We distinguish between tasks whose assignment may
affect the flow of the process and other tasks. From
now on, we call such tasks critical tasks, and denote
the set of these tasks by Tc. If the set of non-critical
tasks is denoted by Tnc, we have Tc [Tnc ¼ T and

Tc \ Tnc ¼ f. For instance, in Figure 1, task 3 is criti-
cal, whereas tasks 1 and 2 are non-critical. Moreover,
we denote the assignment of critical and non-critical
tasks as Zc and Znc, respectively. We use BPMðZcÞ
to denote a business process model BPM, whose criti-
cal tasks are assigned by Zc. Given BPMðZcÞ, it is
possible to calculate or estimate the number of times
each non-critical task is performed and determine the
profit matrix for the specific assignment of critical
tasks.

The function profit_matrix, which is described in
Algorithm 4, shows the details of this algorithm. This
function is also used by algorithms presented later in
this section.

Algorithm 4. Building profit matrix.

given: agents A, tasks T, business process model BPM
critical task Tc, critical assignments Zc

return: matrix V’

1 V CW ðEquation ð12ÞÞ
2 COST ðEquation ð13ÞÞ
3 assign critical tasks to agents according to Zc

4 if BPMðZcÞ deterministic

5 X BPM

6 else if BPMðZcÞ Markovian

7 derive Markov chain M from BPMðZcÞ
8 X ð1, 0, 0, . . .ÞðI� QÞ�1 ðEquation ð15ÞÞ
9 else if BPMðZcÞ non-Markovian

10 run simulation of the BPMðZcÞ
11 X average token through each task

12 end if

13 for each agent ai 2 A

14 for each task tl 2 T

15 v9
il xlql ðvil � costiÞ

16 end for

17 end for

18 return V9 ¼ ½v9
il�m3s

For the optimization of assignment-dependent pro-
cesses, we present two types of solutions. The first one,
which is given in Algorithm 5, yields the optimal assign-
ment but is only feasible for scenarios where the
number of critical tasks is small. The second solution,
shown in Algorithm 6, finds near-optimal solutions in
the general case. The input of both of these algorithms
can be a deterministic, Markovian or non-Markovian
process.

Kamrani et al. 859

http://sim.sagepub.com/

Algorithm 5: Optimal Assignment of a Dependent Process

given: agents A, tasks T, business process model BPM
return: optimal assignment Z

1 Tc BPM

2 tc number of tasks in Tc

3 O all possible permutations of tc agents 2 A

4 max gain �‘

5 for each v 2 O

6 Zc assign tasks in Tc to agents in v

7 V9 profit matrix ðA, T, BPM, Tc, ZcÞ
8 Znc hungarian ðV9Þ
9 gain uðZc [ZncÞ
10 if gain . max gain

11 max gain gain

12 Z Zc [Znc

13 end if

14 end for

In Algorithm 5, first the set of critical tasks is deter-
mined (line 1). Naming the number of critical tasks tc
(line 2), the set (O) of all ordered sequences of tc dis-
tinct agents is created (line 3). For each permutation,
critical tasks are assigned to agents in v (line 6). The
profit matrix V’ for the current assignment is deter-
mined by calling the profit_matrix function (line 7)
and the Hungarian algorithm is applied on
this matrix (line 8). Considering both critical and
non-critical assignments, the total profit of the business
process model is calculated (line 9), and if this value is
higher than earlier obtained results (line 10), the answer
is updated (line 12).

The basic idea of the algorithm is that by partition-
ing the tasks into two parts and by employing the
Hungarian algorithm to find the optimal assignment
for non-critical tasks, the run-time complexity of the
algorithm is kept relatively low. The for-loop (lines
5�14) in the algorithm iterates ðtc þ tncÞ!=tnc! times,
where tnc and tc are the cardinalities of Tnc and Tc,
respectively. In each iteration, the two most time-con-
suming operations are calling the profit_matrix func-
tion (line 7) and the hungarian function (line 8). The
Hungarian algorithm is Oðt3ncÞ and the profit_matrix
function is generally linear in the number of tasks, as
will be discussed in the next section. Thus, the total
complexity of the algorithm is Oððtc þ tncÞ!t3nc=tnc!Þ.
Clearly, this algorithm is computationally feasible
only for small values of tc.

A polynomial algorithm that finds near-optimal
solution for deterministic, Markovian and non-
Markovian (assignment-dependent) processes is pre-
sented in Algorithm 6. This algorithm also relies on

partitioning the tasks into two sets of critical and
non-critical tasks. The optimal solution for non-critical
tasks is found by the Hungarian algorithm, while a
heuristic optimization technique is employed to find a
near-optimal solution for critical tasks. The heuristic
method used in the algorithm is quite similar to hill
climbing. Initially, critical tasks Tc are assigned to a
random feasible set of agents Ab (line 3). This solution
is improved in the main while-loop of the algorithm
(lines 6–26). The loop is stopped if the result does not
improve anymore or if it has iterated a sufficient
number of times and the stop_condition has been set
to true. In each iteration of the outer for-loop (lines
8–25), an assignment of a critical task to an agent is
removed and in the inner for-loop (lines 11–23) this
task is assigned to each of the non-busy agents in due
order. The tasks so far assigned are called Ztmp (line 13)
and matrix V’ for the rest of tasks and remaining agents
is determined by calling the profit_matrix function (line

Algorithm 6: Near-optimal Assignment of a Dependent Process

given: agents A, tasks T, business process model BPM
return: near-optimal assignment Z

1 Tc BPM

2 Tnc T \ Tc

3 Zc assign Tc to a random feasible set of agents
Ab and mark all agents ab 2 Ab as busy

4 max gain �‘

5 progressing true

6 while progressing and not stop_condition do

7 progressing false

8 for each task tc 2 Tc

9 release agent ab performing task tc

10 Zc Zc\ fðtc, abÞg
11 for each agent af 2 A which is free

12 assign tc to af and set af as busy

13 Ztmp Zc [fðtc, af Þg
14 V9 profit matrixðA, T, BPM, Tc, ZtmpÞ
15 Znc hungarian ðV9Þ
16 gain uðZtmp [ZncÞ
17 if gain.max gain

18 max gain gain

19 z ðtc, af Þ
20 Z Ztmp [Znc

21 progressing true

22 end if

23 end for

24 Zc Zc [fzg
25 end for

26 end while

860 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

http://sim.sagepub.com/

14). The Hungarian algorithm is used to find the opti-
mal solution for the non-assigned tasks and so far non-
busy agents (line 15). The total profit of the business
process model is calculated (line 16) and the best assign-
ment for the task is distinguished (lines 17–22), which is
added to the assignments of critical tasks (line 24).

Our tests of the algorithm indicate that, regardless of
the choice of the initial random assignment, the quality
of the near-optimal solutions are generally very high
when Tc � T=4, that is, they deviate from the optimal
solution by less than 0.5% (see Section 7.3). However,
having a smaller number of critical tasks improves the
performance of the algorithm. This is due to the fact
that the Hungarian algorithm always provides the opti-
mal solution for non-critical tasks. Algorithm 6 can
easily be modified to a random restart hill-climbing algo-
rithm in order to improve the result.

6. Run-time of the simulation

Simulation of the business process model is the most
time-consuming part of Algorithms 5 and 6, which is
invoked by calling the profit_matrix function. To

measure the run time of the simulation, a series of
tests is performed and the results are summarized in
Tables 1 and 2 for two different types of business pro-
cess models. In both types the number of tasks is a
multiple of 8, starting with 8 and up to 200 tasks.
The workflow goes through all tasks sequentially; how-
ever, Gateways after tasks 4iþ 2, i ¼ 0, 1, . . . , 49
may change the workflow and send the token upstream.
In the first type of model, which we from now on call
type I, the token goes to task 4iþ 1, as shown in Figure
2. In the second type of model (type II), the workflow is
directed to task 1, that is, the first task of the model (see
Figure 3).

In Table 1, the run times for models of size 8–200
and for 103–108replications are summarized. As
expected, the run time increases linearly with the
number of replications. More interesting is that the
run time is linear in the number of tasks.

Models of type II are designed to demonstrate the
worst-case scenario. Results for these models, which are
summarized in Table 2, indicate that the run time grows
exponentially in the input size. However, a closer look
at the type II models shows that large-size models of

Table 1. Run time of the simulation in seconds – type I

Size 103 104 105 106 107 108

8 0.221 0.224 0.378 1.347 10.878 108.086

16 0.275 0.231 0.430 2.356 21.241 223.532

24 0.221 0.268 0.676 3.420 32.709 314.796

32 0.213 0.283 0.626 4.511 43.396 412.719

40 0.212 0.265 0.773 5.286 51.950 510.922

48 0.253 0.269 0.868 6.510 64.500 634.840

56 0.213 0.354 0.975 7.423 73.669 727.997

64 0.215 0.314 1.075 8.442 83.888 829.740

72 0.218 0.318 1.183 9.762 96.859 954.226

80 0.268 0.322 1.319 10.696 105.981 1044.931

88 0.294 0.396 1.426 11.972 118.044 1172.521

96 0.279 0.373 1.530 12.855 127.445 1267.337

104 0.259 0.361 1.631 14.011 138.151 1372.672

112 0.260 0.414 2.262 14.990 147.910 1481.136

120 0.260 0.414 2.224 16.006 158.211 1575.391

128 0.262 0.415 1.948 17.176 170.614 1700.674

136 0.260 0.464 2.090 18.324 180.230 1811.413

144 0.261 0.465 2.189 19.413 192.332 1920.387

152 0.263 0.463 2.240 20.211 200.070 1994.426

160 0.311 0.464 2.392 21.393 212.724 2122.605

168 0.310 0.514 2.548 23.911 229.362 2273.883

176 0.309 0.516 2.646 23.994 238.196 2386.780

184 0.317 0.515 2.760 24.891 248.126 2477.827

192 0.314 0.517 2.855 26.233 260.229 2597.218

200 0.314 0.519 2.954 27.069 270.979 2687.972

Kamrani et al. 861

http://sim.sagepub.com/

Table 2. Run time of the simulation in seconds – type II

Size 101 102 103 104 105

8 0.248 0.254 0.252 0.244 0.342

16 0.220 0.225 0.227 0.242 0.484

24 0.209 0.209 0.211 0.262 0.714

32 0.209 0.212 0.209 0.315 1.074

40 0.208 0.234 0.209 0.365 1.785

48 0.209 0.208 0.260 0.466 2.929

56 0.209 0.209 0.263 0.618 4.325

64 0.210 0.243 0.311 0.975 7.826

72 0.209 0.213 0.360 1.483 12.807

80 0.209 0.262 0.412 2.093 18.449

88 0.267 0.259 0.564 3.707 35.350

96 0.259 0.310 0.766 5.850 56.024

104 0.260 0.362 1.072 8.541 82.886

112 0.265 0.415 1.892 15.345 155.011

120 0.268 0.519 2.802 25.055 250.600

128 0.317 0.618 4.021 37.866 369.328

136 0.330 0.821 6.916 72.570 683.993

144 1.267 1.329 12.251 111.707 1132.955

152 0.363 1.947 16.972 168.701 1700.733

160 0.570 3.004 30.278 313.394 3122.768

168 0.617 4.781 49.974 518.378 5195.385

176 0.668 8.342 74.871 752.531 7537.265

184 1.330 13.443 136.050 1364.125 13,698.581

192 2.092 20.986 227.810 2264.690 >20,000

200 3.261 30.073 327.820 3355.807 >20,000

Figure 2. A type I process with 200 tasks. Gateways after task
4iþ 2; i¼ 0, 1,. . ., 49 may change the workflow to task 4iþ 1.

Figure 3. A type II process with 200 tasks. Gateways after task
4iþ 2; i¼ 0, 1,. . ., 49 may change the workflow to task 1.

862 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

http://sim.sagepub.com/

this type are not very realistic business process models.
In fact, the run time of the simulation reflects the run
time of the real-world business process. The increasing
simulation time is due to the fact that the number of
times the first tasks are performed increases exponen-
tially. For instance, in the model with the size of 200,
tasks 1 and 2 are performed 252,791.2 times on average
before the process is completed.

In a real-world business process there is always a
practical constraint on the number of times each task
is repeated. In other words, large-size business pro-
cesses of type II, for which simulation time increases
exponentially in the number of tasks, are rare and can
be excluded from consideration.

Moreover, our tests show that 105 simulation repli-
cations are sufficient for producing accurate results that
permit the optimization algorithms to find optimal
solutions.

7. Implementation and experiment
results

In order to test the algorithms suggested above, we
have developed an application program in C#, which
takes advantage of models developed in the simulation
software Arena.28

One of the features of this application is a BPMN
template developed for Arena, which provides a conve-
nient tool for modeling business processes. To run the
optimization problem one should first develop the busi-
ness process model in Arena and then start the appli-
cation. The application reads required data from the
Arena model and runs the Arena simulation when nec-
essary. We omit the details here and refer the interested
reader to Karimson.29

A screen shot of the application searching for the
optimal solution for a business process model consist-
ing of eight tasks is shown in Figure 4. The business
process model developed in Arena is shown in Figure 5.

7.1. Test of Algorithm 3

To test the performance of Algorithm 3, a series of
experiments with different problem sizes on models of
type I is conducted. These models are inspired by
modeling the work process of the military staff. A mil-
itary staff is a group of officers in the headquarters that
assist the commander in planning, coordinating and
supervising operations. One of the main activities of
the staff is to acquire accurate and timely information
and provide the commander with analyzed and pro-
cessed information. The planning process in the mili-
tary staff is a complicated and lengthy process that is
executed in parallel in political-military, strategic, oper-
ational and tactical levels. However, in each level the

Figure 4. The application program running for eight tasks and
agents.

Figure 5. A process with eight tasks. Gateways after tasks 2
and 6 may change the workflow.

Figure 6. The concept development process within the military
operational planning expressed in Business Process Modeling
Notation (BPMN). COA: course of action.

Kamrani et al. 863

http://sim.sagepub.com/

process consists of several sub-processes, which are
performed sequentially. Each sub-process contains
a number of tasks that may be interconnected
directly or through decision points. Figure 6 shows a
model of the Operational Planning Concept
Development sub-process, during which different
COAs are evaluated.

Our test cases are built from ‘blocks’ of sub-pro-
cesses, like the one shown in Figure 5, which has a
structure similar to the aforementioned sub-process. In
all these simulations, the number of tasks is a multiple
of 8, starting with 8 and up to 200 tasks. The workflow
goes through all tasks sequentially; however, Gateways
after tasks 4iþ 2, i¼ 0, 1,. . ., 49 may change the work-
flow and send the token upstream to task 4iþ 1. The
initial probability of this event is chosen randomly from
0.1, 0.2,. . ., 0.6. However, this probability is decreased
by a value pðn� 1Þ=n, where p is the initial probability
and n is the number of times the token has passed tasks
4iþ 1 and 4iþ 2. For instance, if the probability of fail-
ure is initially 0.3, in the following attempts these prob-
abilities will be 0.15, 0.1, 0.075,. . .. This assumption
means that the process is not Markovian and has
some kind of memory, that is, each failure to perform
tasks 4iþ 1 and 4iþ 2 increases the probability of suc-
ceeding in future attempts.

Figures 5 and 2 show the simulation models for 8
and 200 tasks, respectively. All tasks are not shown in
Figure 2, due to the lack of space. The number of
agents is assumed to be equal to the number of tasks.
Two experiments with two different distributions for
agent capabilities are conducted. In both trails agents
have four capabilities, which are graded between 0 and
5. In the first experiment these grades are drawn from a
uniform distribution, while in the second experiment
they are drawn from a truncated normal distribution
with m ¼ 2:5 and s ¼ 1:0. However, agent capabilities
are always rounded to the nearest factor of 0.25.

The weight of four capabilities for tasks in both
trials are drawn randomly from the values 0, 0.25,
0.5,. . ., 4.0 with equal probability, such that the con-
straint for the sum of task attributes is satisfied, that is,
the sum of the attributes is equal to 4.

Agents belong to one of the three cost categories, 5,
10 or 15 (cost units per time unit), depending on
whether the sum of their capabilities is less than 10.0,
between 10.0 and 15.0 or greater than 15.0.

The results of Algorithm 3 for the two experiments
are summarized in Tables 3 and 4. For each problem
size, the gain for the optimal solution and minimum
gain are presented. The number of feasible solutions
for each size is also given. Execution time for the largest
problem size with 200 tasks on a modest computer
(Celeron 1.73GHz processor and 2 GB RAM) is less
than a few seconds.

When comparing results, one interesting observation
is that the maximum gains are almost equal for both
types of agents for each group size, while the minimum
gain for agents chosen from a uniform distribution is
significantly less than the gain for agents from a normal
distribution.

7.2. Test of Algorithm 5

In order to test the performance of Algorithm 5, we use
models of the type shown in Figure 2. However, we
assume that tasks preceding Gateways (Task 4iþ 2,
i¼ 0, 1,. . .) are critical, that is, the probability of alter-
native paths may change depending on the performing
agent. The largest problem that can be solved in a rea-
sonable time by Algorithm 5 is one with 16 tasks. The
algorithm runs 16!/12!¼ 43,680 simulations and the
same number of instances of the Hungarian algorithm,
which can be compared with the number of required
simulations in an exhaustive search, that is, 2:0931013.
An experiment on a modest computer (Celeron

Table 3. Results for Algorithm 3 – uniform agents

Size Min gain Max gain
Number of
combinations

8 �152.44 442.26 4:033104

16 �294.21 1410.52 2:0931013

24 �649.29 2608.03 6:2031023

32 �1034.58 3267.30 2:6331035

40 �1121.24 4095.89 8:1631047

48 �1363.69 5101.85 1:2431061

56 �1495.78 6125.92 7:1131074

64 �1763.97 7160.81 1:2731089

72 �2027.48 7842.16 6:12310103

80 �2331.99 8650.66 7:16310118

88 �2691.48 9710.28 1:85310134

96 �2980.34 10,554.42 9:92310149

104 �3191.85 11,555.82 1:03310166

112 �3549.29 12,481.59 1:97310182

120 �3992.73 13,623.09 6:69310198

128 �4285.26 14,654.69 3:86310215

136 �4524.24 15,648.57 3:66310232

144 �4712.97 16,634.67 5:55310249

152 �4889.44 17,544.22 1:31310267

160 �5156.85 18,417.00 4:71310284

168 �5464.02 19,689.65 2:52310302

176 �5777.10 20,571.76 1:98310320

184 �5887.74 21,548.85 2:23310338

192 �6237.12 22,526.83 3:55310356

200 �6436.01 23,542.57 7:89310374

864 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

http://sim.sagepub.com/

1.73GHz processor and 2 GB RAM), which was not
especially dedicated to this task, was completed in
about 2 hours. In this test each simulation was repli-
cated 105 times and the average value 1141.60 for the
optimal assignment was obtained.

7.3. Test of Algorithm 6

The above result (1141.60), obtained for 4 critical and
12 non-critical tasks, is compared with the results of
Algorithm 6 for the same problem.

As shown in Figure 7, all three initial random solu-
tions after a small (different) number of simulations
reach a local maximum, all near the optimal value
1141.60. The rather high values of the initial random
solutions are due to the fact that they are combined
with the results of the Hungarian algorithm for 12
non-critical tasks. To evaluate the efficiency of
Algorithm 6 on larger models, a series of tests on
models with 32 and 48 tasks is conducted and the

results are compared with the optimal solution.
Obviously, it is not feasible to find the optimal solution
by Algorithm 5 for such large models. Therefore, the
models are deliberately chosen such that it is possible to
find the optimal solution by Algorithm 3, that is, they
have no ‘real’ critical tasks. These two models have the
same configuration as in Figure 2, that is, they have 8
and 12 ‘critical’ tasks, respectively.

As shown in Figures 8 and 9, the three initial
random solutions evolve rather rapidly toward
the value of the optimal solution. Table 5 summarizes
the results of Algorithm 6 for different problem
sizes, starting from one initial random solution.
For each problem size, the gain of the initial ran-
dom solution (start value), the best value obtained,
the optimal value, the relative deviation from the
optimal value and the number of steps until reaching
the best value are given. For all problem sizes, the
relative deviation from the optimal value is less
than 0.5%.

Table 4. Results for Algorithm 3 – normal agents

Size Min gain Max gain
Number of
combinations

8 57.14 599.86 4:033104

16 124.98 1462.34 2:0931013

24 �26.76 2470.28 6:2031023

32 �244.23 3266.29 2:6331035

40 �136.25 4044.08 8:1631047

48 �286.73 5074.53 1:2431061

56 �515.07 5863.95 7:1131074

64 �738.90 6918.70 1:2731089

72 �955.61 7817.08 6:12310103

80 �989.71 8521.75 7:16310118

88 �1265.65 9470.58 1:85310134

96 �1318.27 10,121.51 9:92310149

104 �1327.55 11,262.87 1:03310166

112 �1348.34 12,026.85 1:97310182

120 �1653.27 13,144.37 6:69310198

128 �1814.58 13,889.57 3:86310215

136 �1911.23 14,893.15 3:66310232

144 �2178.44 15,868.76 5:55310249

152 �2467.15 16,716.63 1:31310267

160 �2550.49 17,466.87 4:71310284

168 �2740.33 18,595.24 2:52310302

176 �3023.44 19,480.25 1:98310320

184 �3239.25 20,272.52 2:23310338

192 �3209.59 21,248.58 3:55310356

200 �3328.78 21,831.75 7:89310374

Figure 7. Result of Algorithm 6 on a model having 16 tasks
showing improvement of three initial random solutions toward
the optimal one.

Figure 8. Result of Algorithm 6 on a model having 32 tasks
showing improvement of three initial random solutions toward
the optimal one.

Kamrani et al. 865

http://sim.sagepub.com/

8. Discussion

Increasing the number of critical tasks affects the per-
formance of Algorithm 6 negatively in two ways.
Firstly, a larger number of critical tasks generally
results in a lower initial objective value, since assign-
ment of a smaller portion of tasks are optimized by the
Hungarian algorithm and a larger number of them are
assigned purely randomly. Secondly, the final result
usually has a larger gap to the optimal solution.

Figure 10 compares the results of Algorithm 6 on
three business processes with 18, 36 and 54 critical
tasks. All three processes have 72 tasks and the same
optimal gain. The process with 18 critical tasks starts
with the initial value 6501.29 and after 2468 steps
reaches its best value 7808.72, and stops after 3960
steps. The process with 36 critical tasks starts with the
initial value 5456.85 and after 5942 steps reaches its

best value 7741.09, and stops after 7992 steps.
Finally, the process with 54 critical tasks starts with
the initial value 4441.40 and after 2833 steps reaches
its best value 7503.37, and stops after 4104 steps. By
comparing the best results of these three cases with the
optimal value 7817.08, we notice that the relative devi-
ation has increased from 0.11% to 0.97% and 4.01%,
when the number of critical tasks has doubled and tri-
pled, respectively. However, as Table 6 demonstrates,
Algorithm 6 achieves high-quality solutions for differ-
ent problem sizes, even when half of the tasks are
critical.

It should be clarified that even though the implemen-
tation of algorithms and test results are based on
models described in Equations (11) and (13), the frame-
work and all algorithms defined in this paper are inde-
pendent of these models and they can be replaced

Figure 9. Result of Algorithm 6 on a model having 48 tasks
showing improvement of three initial random solutions toward
the optimal one.

Table 5. Results of Algorithm 6 on different problem sizes. In each model one-quarter of the tasks are critical

Size Start value Best value Optimal Relative deviation Number of steps

8 557.79 599.86 599.86 0% 8

16 1294.88 1462.34 1462.34 0% 51

24 2162.56 2470.28 2470.28 0% 132

32 2789.84 3266.29 3266.29 0% 217

40 3553.01 4042.74 4044.08 0.03% 348

48 4396.11 5060.94 5074.53 0.27% 488

56 4999.28 5838.43 5863.95 0.44% 1062

64 5956.61 6912.29 6918.70 0.09% 2086

72 6501.29 7808.72 7817.08 0.11% 2468

80 7018.20 8515.66 8521.75 0.07% 3314

88 7691.89 9470.58 9470.58 0% 3507

96 8183.63 10,121.51 10,121.51 0% 4892

104 9182.90 11,254.43 11,262.87 0.07% 6086

Figure 10. Comparison of the results of Algorithm 6 on three
different processes with 18, 36 and 54 critical tasks.

866 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

http://sim.sagepub.com/

without difficulty by any other model that is validated
with empirical data.

9. Conclusions and future work

In this paper we employed a model of human agents’
performance in a business process to estimate an overall
measure for performance of a business process model.
This model is based on the agents’ capabilities and the
weight (importance) of these capabilities for each task.
This performance metric is used to find the optimal
assignment of tasks to agents. Two main categories of
processes, assignment-independent and assignment-
dependent, are distinguished. Each of these two catego-
ries is divided into three types, deterministic, Markovian
and non-Markovian processes, leading to a total of
six types of processes.

1. Assignment-independent deterministic processes
with a predetermined workflow. The optimal solu-
tion for this type of process is found by using
the Hungarian algorithm in polynomial time
(Algorithm 1).

2. Assignment-independent Markovian processes. We
presented an analytical method to estimate the
number of times each task is performed and reduced
the problem to type one, which can be solved using
the Hungarian algorithm (Algorithm 2).

3. Assignment-independent non-Markovian processes,
for which we used a simulation method to estimate
the expected number of times each task is performed.
These values are used to find the optimal solution
(Algorithm 3).

4. Assignment-dependent deterministic processes.
5. Assignment-dependent Markovian processes.
6. Assignment-dependent non-Markovian processes.

In the latter three cases, a process may contain crit-
ical tasks. Critical tasks are those tasks that may affect
the workflow. We introduced two algorithms for these
types of processes. The first one (Algorithm 5) finds
the optimal solution, but is computationally feasible
only when the number of critical tasks is small. The
second algorithm that is applicable to a large number
of critical tasks provides a near-optimal solution
(Algorithm 6). In this case, a hill-climbing heuristic
method is combined with the Hungarian algorithm
and simulation to find an overall near-optimal
solution. The Hungarian algorithm always finds the
optimal assignment for non-critical tasks and the
heuristic method efficiently explores the search
space to achieve a near-optimal solution. Both these
methods employ simulation in order to deal with
the uncertainty in the system, when the process is
non-deterministic.

A series of tests that demonstrates the feasibility of
the proposed algorithms is conducted. The results con-
firm that the algorithms perform well for at least
medium-sized business processes.

One of the shortcomings of the method introduced
in this paper is the model of performance of human
agents, which assumes that agents assigned to a task
are independent and thus it does not take into account
different aspects of team working and interaction
between agents. Incorporating various aspects of team
working in the model is our next step in this work,
which we have already initiated.

Table 6. Results of Algorithm 6 on different problem sizes. In each model half of the tasks are critical

Size Start value Best value Optimal Relative deviation Number of steps

8 500.14 599.86 599.86 0% 26

16 1261.7 1439.65 1462.34 1.56% 103

24 2073.18 2439.97 2470.28 1.23% 507

32 2605.95 3200.53 3266.29 2.01% 740

40 3324.80 3990.93 4044.08 1.31% 828

48 3962.94 4966.41 5074.53 2.13% 1934

56 4274.73 5798.11 5863.95 1.12% 2405

64 4928.07 6820.65 6918.70 1.42% 2278

72 5456.85 7741.09 7817.08 0.97% 5942

80 5957.60 8419.85 8521.75 1.20% 4474

88 6536.96 9387.58 9470.58 0.88% 5363

96 6876.37 10,039.73 10,121.51 0.81% 5740

104 7734.39 11,140.93 11,262.87 1.08% 6633

Kamrani et al. 867

http://sim.sagepub.com/

Acknowledgments

The authors would like to thank all members of the project

group, especially Johan Schubert for his comments, sugges-
tions and constructive critiques.

This paper is an extended version of the conference paper30

presented at PADS-2010, Atlanta, GA, which was nominated

for the best paper award.

Funding

This work was supported by the Totalförsvarets
Forskningsinstitut (FOI) research project ‘Real-Time
Simulation Supporting Effects-Based Planning’, which is

funded by the research and development (R&D) program of
the Swedish Armed Forces.

Conflict of interest statement

None declared.

References

1. Pentico DW. Assignment problems: A golden anniver-

sary survey. Eur J Oper Res 2007; 176: 774–793.
2. Fisher ML, Jaikumar R and Wassenhove LNV. A mul-

tiplier adjustment method for the generalized assignment
problem. Manage Sci 1986; 32: 1095–1103.

3. Blum C and Roli A. Metaheuristics in combinatorial
optimization: Overview and conceptual comparison.

ACM Comput Surv 2003; 35: 268–308.
4. Goldberg DE. Genetic algorithms in search, optimization

and machine learning, Reading, MA: Addison Wesley,
1989.

5. Mitchell M. Introduction to genetic algorithms.
Cambridge, MA: MIT Press, 1999.

6. Holland JH. Adaptation in natural and artificial systems.

Cambridge, MA: MIT Press, 1992.
7. Chu PC and Beasley JE. A genetic algorithm for the gen-

eralised assignment problem. Comput Oper Res 1997; 24:

17–23.
8. Baker BM and Ayechew MA. A genetic algorithm for the

vehicle routing problem. Comput Oper Res 2003; 30:

787–800.
9. Gonçalves JF, Mendes JJM and Resende MGC. A

genetic algorithm for the resource constrained multi-pro-

ject scheduling problem. Eur J Oper Res 2008; 189:
1171–1190.

10. Etiler O, Toklu B, Atak M and Wilson J. A genetic algo-

rithm for flow shop scheduling problems. J Oper Res Soc

2004; 55: 830–835.
11. Kirkpatrick S, Gelatt CD and Vecchi MP. Optimization

by simulated annealing. Science 1983; 220: 671–680.

12. Cerny V. Thermodynamical approach to the traveling
salesman problem: An efficient simulation algorithm.

J Optim Theor Appl 1985; 45: 41–51.
13. van der Aalst W, Hofstede AHMT and Weske M.

Business process management: A surveyIn Proceedings
of the 1st International Conference on Business Process

Management (BPM 2003). , ser. LNCS, vol. 2678.

Springer, 2003, pp.1–12.

14. Sarshar K, Theling T, Loos P and Jerrentrup M.
Integrating process and organization models of collabo-
rations through object Petri nets. In Proceedings of

Multikonferenz Wirtschaftsinformatik (MKWI 2006),
Passau, Germany. 2006, p.329–343.

15. Object Management Group (OMG). ‘Business Process
Modeling Notation (BPMN) Version 1.2’http://

www.bpmn.org (2009, accessed 11 January 2010).
16. Takemura T. Formal semantics and verification of

BPMN transaction and compensation. In Proceedings

of the IEEE Asia-Pacific Services Computing Conference
(APSCC 2006), Los Alamitos, CA, IEEE Computer
Society. 2008, p.284–290.

17. Nicolae O, Cosulschi M, Giurca A and Wagner G.
Towards a BPMN semantics using UML models.
In Proceedings of the Business Process Management

Workshops. 2008, p.585–596.
18. Smirnov S. Structural aspects of business process dia-

gram abstraction. In Proceedings of the IEEE
Conference on Commerce and Enterprise Computing

(CEC’09), Washington, DC, IEEE Computer Society.
2009, p.375–382.

19. Wohed P, van der Aalst WMP, Dumas M, ter

Hofstede AHM and Russell N. On the suitability of
BPMN for business process modelling. In: Dustdar S,
Fiadeiro JL and Sheth AP (eds) Business process man-

agement, ser. LNCS, vol. 4102. Springer, Heidelberg,
2006, pp.161–176.

20. Siegeris J and Grasl O. Model driven business transfor-
mation – an experience reportIn Proceedings of the 6th

International Conference on Business Process Management

(BPM’08). , ser. LNCS, vol. 5240, Berlin, Heidelberg:
Springer, 2008, pp.36–50.

21. Magnani M and Montesi D. Computing the cost of
BPMN diagrams, May 2007.

22. Kamrani F, Ayani R, Moradi F and Holm G. Estimating

performance of a business process model. In: Rossetti
MD, Hill RR, Johansson B, Dunkin A and Ingalls RG
(eds) In Proceedings of the Winter Simulation Conference

(WSC’09), December 2009, Austin, TX. .
23. Kuhn HW. The Hungarian method for the assignment

problem. Nav Res Logist Q 1955; 2: 83–97.
24. Frank A. On Kuhn’s Hungarian method – a tribute from

Hungary. Nav Res Logist 2005; 52: 2–5.
25. Munkres J. Algorithms for the assignment and transpor-

tation problems. J Soc Ind Appl Math 1957; 5: 32–38.

26. Sasieni M, Yaspan A and Friedman L.Operations research –
methods and problems. New York: John Wiley, 1959.

27. Jonker R and Volgenant T. Improving the Hungarian

assignment algorithm. Oper Res Lett 1986; 5: 171–175.
28. Kelton WD, Sadowski RP and Swets NB. Simulation with

Arena, 5th ed. New York: McGraw-Hill, 2010.
29. Karimson A. Optimizing business processes with Arena

simulation. Master’s thesis. Stockholm, Sweden: Royal
Institute of Technology (KTH), December 2009.

30. Kamrani F, Ayani R and Karimson A. Optimizing a

business process model by using
simulationIn Proceedings of the IEEE Workshop on
Principles of Advanced and Distributed Simulation

(PADS 2010), May 2010, Atlanta, GA. p.40–47.

868 Simulation: Transactions of the Society for Modeling and Simulation International 88(7)

http://sim.sagepub.com/

Farzad Kamrani is a PhD student in the School of
Information and Communication Technology at the
KTH Royal Institute of Technology. He holds an
MSc in Computer Science from the University of
Gothenburg. His research interests are discrete event
simulation, business process modeling, agent tech-
nology and simulation optimization techniques.

Rassul Ayani is professor of computer science in the
School of Information and Communication Technology
at the KTH Royal Institute of Technology. He received
his first degree from the University of Technology in
Vienna (Austria), his MSc from the University of
Stockholm and his PhD from the KTH Royal Institute
of Technology in Stockholm. He has been conducting
research on distributed systems, distributed simulation
and wireless networks since 1985. He has served as pro-
gram chair and program committee member at numerous
international conferences and has been an editor of the

Association for Computing Machinery (ACM)
Transactions on Modeling and Computer Simulation
(TOMACS) since 1991.

Farshad Moradi is a senior scientist and program
manager in the area of modeling and simulation, and
head of the Modelling and Simulation Centre at the
Swedish Defence Research Agency (FOI). He has
been working on modeling and simulation for more
than 16 years and has led numerous projects in
this field. He holds an MSc in Computer Science
and Engineering from Chalmers University of
Technology, Gothenburg, Sweden, and a PhD in
Distributed Simulations from the KTH Royal
Institute of Technology. His research interests are in
the areas of distributed systems, distributed and web-
based modeling and simulation, component-based
modeling and simulation and embedded simulations
systems.

Kamrani et al. 869

http://sim.sagepub.com/

