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This article proposes an agent negotiation model for target distribution across a set of geograph-
ically dispersed sensors. The key idea is to consider sensors as autonomous agents that negotiate
over the division of tasks among them for obtaining better payoffs. The negotiation strategies
for agents are established based upon the concept of subgame perfect equilibrium from game
theory. Using such negotiation leads to not only superior measuring performance from a global
perspective but also possibly balanced allocations of tasks to sensors, benefiting system robust-
ness and survivability. A simulation test and results are given to demonstrate the ability of our
approach in improving system security while keeping overall measuring performance near
optimal. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

Sensor management has great significance for modern tracking systems.!-?
The sophistication of multisensor and multitarget scenarios entails controlling sens-
ing resources against the entire target complex. Sensor management fits into this
purpose in efficiently directing the usage of available sensors to increase the over-
all system performance.> Among typical factors of concern within a practical sen-
sor management design for performance improvement are probability of target
detection, track/identification accuracy, probability of loss-of-track, probability
of survival, probability of target kill, and so forth.*

To date, a profusion of information theoretic methods has been proposed
to deal with sensor management in multitarget environments; see Refs. 5-10 as
examples. The main idea therein is to evaluate the potential contribution of a sensing
plan in terms of uncertainty reduction using entropy-based information metrics.
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This is advantageous in shifting the emphasis of the problem from manipulating
sensing devices to optimizing information gain. On the other side, these approaches
are typically based on a global optimization method, which challenges the need
for robustness and graceful degradation in the presence of communication noise
and breakdown of individual sensors.

Indeed, optimization of immediate information achievement might not be the
unique criterion in sensor management. As stated by Musick and Malhotra,'! a
sensor manager has to value long-term goals of survival and success rather than
just accuracy and identity. This tenet merits particular attention in defense appli-
cations, where active sensors betray their existence by emitting signals. It is cru-
cial in such cases to have a sensor utilized at a low frequency to reduce its exposure
to adversaries as well as the risks of its being attacked. Unfortunately, the sensors’
need to remain covert often conflicts with the need for optimal measuring effec-
tiveness. Resolving conflicting demands on sensor suites presents a serious dilemma
in sensor management.

This article investigates task distribution across geographically dispersed sen-
sors (e.g., radars) in a network to track multiple targets at the same time. As the
number of targets assigned to a sensor affects its exposure and the probability of
being detected, excessive usage of certain competent sensors in tracking is undesir-
able because it makes them vulnerable to enemy threat. Biased distribution of tasks
to particular sensors has thus to be curtailed whenever possible to benefit system
survivability. However, this request should be considered as a soft goal with impre-
cise, variable valuations during situation development, making adaptive handling
of it hardly possible within an optimization framework. We try to solve this prob-
lem by resorting to an agent-based negotiation paradigm. We consider sensors
in this context as autonomous agents that negotiate with each other about task
distribution. A negotiation model for target distribution is established based on the
concept of subgame perfect equilibrium (SPE)'? in game theory. A significant
advantage of doing this is that every agent is competing for a portion of targets for
its own measuring performance such that possibly balanced sensor—target assign-
ments can be achieved for mission completion. On the other hand, because each
local agent attempts to be better off in the negotiation, we can still ensure (at least)
near optimal measuring performance from a global perspective.

The work presented herein describes part of our project to investigate the
potential utility of game theory to overcome certain drawbacks of traditional sen-
sor management methods (usually centralized upon global optimization) employed
in multisensor and multitarget tracking. This article indicates how a distributed
assignment strategy based on game theory helps to enhance the robustness of a
sensor network. Another recently published paper'® deals with target-specific
requests for reactive resource allocation using game theoretic negotiation.

This article is organized as follows. Section 2 gives a general description of
the underlying problem. Section 3 constructs sensor performance against assigned
targets as a basis for (sensor) agent negotiation. The detailed negotiation model on
target division is presented in Section 4, followed by simulation results and analy-
sis in Section 5. Finally, we conclude the article and suggest further investigation
issues in Section 6.
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2. THE UNDERLYING PROBLEM

We consider a sensor network consisting of remotely located sensing resources
that are expected to work together to monitor an underlying territory, that is, to
keep track of all targets within that region. Measurements have to be made on all
these targets in every time step to update their state estimates. We require coordi-
nated sensing actions among sensors to cover the whole target complex without
any redundant observation. Solving this problem implies dividing the whole set of
targets into disjoint subsets to be assigned to different sensors, as exemplified in
Figure | in which the numerous targets, indicated as solid squares, need to be
covered by the three available sensors. The whole target complex is thus divided
into nonoverlapping groups Dy, D,, and D3, as allocated tasks for sensors 1, 2,
and 3, respectively.

At a first glance, one would intuitively propose a solution commanding sen-
sors to take charge of targets in their local areas, and then target handing off could
be arranged when a target is moving from the area of one sensor’s jurisdiction to
that of another. However, serious questions will arise in doing this as to where the
switching boundaries should be and how such boundaries vary with environment
changes when, say, new targets are entering into the area. This problem is further
complicated by many other practical factors, such as limited sensor capability,
sensor accuracy in measurement, terrain conditions, effects of sensor—target rela-
tive positions, sensor emission and security, and so forth. Perplexing diversity in
multitarget scenarios makes empirical ad hoc procedures'* for sensor cueing unreal-
istic or hardly feasible. We desire dynamic target distribution schemes amenable
to a sound, theoretically well-founded framework.

Figure 1. Distribution of targets among three sensors.
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From the viewpoint of global measuring effectiveness, target distribution can
be formulated as a constrained optimization problem. Let the sensors be indexed
from 1 to n and the targets from 1 to m. By c;; we denote the value or effectiveness
of applying sensor i to measure target j. Target division among sensors would be
to choose decision variables x; € {0,1} for a sampling period to maximize the
objective function

G= 21 21 cij'xij (1)
i=1j=

subject to a maximum track capacity constraint (a; representing the maximum
number of targets that can be sensed by sensor i in a sampling period)

EX,jSai i=1...n (2)

Jj=1

and a minimum target coverage requirement

dx;=1 j=l..m (3)
i=1

Obviously, we have a lot of optimization tools like linear programming and its
variations at hand to find such a constrained solution achieving the maximum
of (1).

However, an optimal solution to the above problem is not always what we
desire. In some cases, we may prefer a target division that is not strictly optimal in
the sense of global estimation effectiveness but is superior in terms of meeting the
robustness requirement in target monitoring. Unduly stressing the role of optimi-
zation may occasionally cause overloading of a small portion of sensors in the
network with merely trivial benefit but imposing higher risks on them in face of
opponent countermeasures (i.e., detection and attacks) and resulting in greater loss
of tracks if failure really happens to these sensors. We believe that a possibly bal-
anced distribution of targets among sensors is valuable for yielding robust perfor-
mance of the network, as is explained in the Appendix according to the overall
probability of being detected and the expected number of losses of tracks. A com-
prehensive sensor manager has to consider long-term interest and contrive to find
a good balance between measuring performance and system survivability. This is
the point of departure of this article.

3. SENSOR PERFORMANCE AGAINST ASSIGNED TARGETS

Given a target distribution profile, an invoked sensor is requested to perform
measurements on all targets assigned to it within a sampling period. The contribu-
tion of this sensor to information gathering is determined by its associated subset
of targets. As a preparation for the following discussion of sensor negotiation, this
section is dedicated to establishing an assessment of performance of sensors in
accomplishing their appointed tasks. We elicit the so-called sensor performance
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index based upon the assumption of utilizing the Kalman filter as the principal
tracking algorithm.

We start from considering state estimation of one target, say target j, which
has the following system equation:

x;(k) = Fx;(k—1) + wi(k—1) 4)

This target is supposed to be tracked by sensor i, with the corresponding measure-
ment equation being written as

yij(k) = H,j/xj(k) + U,j/(k) (5)

Notice that y;; refers to the measurement variables of the target by sensor i. As
applying different sensors to the same target might produce different properties of
observation models, it is beneficial here to emphasize the sensor—target pair in the
subscripts of some variables like y, H, and v in Equation (5).

The tracking algorithm is composed of two stages: prediction and update.
The prediction stage uses the system model to forecast target states at the next
time step, and later the predicted state estimates are modified in the update stage
in light of new measurements. We will not reiterate here the details of how such
estimates evolve but focus on the error covariance of the target to examine the role
of the sensor applied in uncertainty reduction.

The prediction alone enlarges the uncertainty of the state estimate due to sys-
tem noise. The a priori error covariance for target j is given by

Pi(klk—1) = F;P;(k—1lk—1)F + Q;(k— 1) (6)

with Q; denoting the system noise covariance of the underlying target. Sensor i is
then activated to make measurement on target j to provide new evidence for belief
revision. We get the updated error covariance after the measurement by

Pg,'(k|k) :Pij(k|k_1)_Kij(k)szPij(k|k_1) (7)
where

y

It is apparent that the a posteriori error covariance P;;(k|k) is largely affected by
the measurement noise covariance R;;. Larger measurement noise leads to bigger
updated covariance of state estimate and vice versa. An extreme case is the one
without measurement or, equivalently, with infinite measurement noise covari-
ance, then we get to P;;(k|k) = P;(k|k — 1) from the above two equations.

The role of the applied sensor in reducing target uncertainty can be seen more
clearly from an alternative formulation'> for updating covariance of states. Accord-
ing to this alternative method, we have

Py(klk)™" = Py(klk—1)"" + H] R; ' H; 9)

We see here H,-JT- Rl-;‘ H,. as an important matrix for discerning the difference of

L

covariances of state estimates before and after the measurement. The achieved
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reduction of uncertainty is enabled by sensor i through its measurement. In view
of this, we define the norm of this matrix as sensor information gain, g(i,j), con-
tributed by sensor i on target j. So we write

g(i,j) = |H;j R;" Hy| (10)

In reality, the measurement noise of sensor i on target j is not a simple entity
but reflects a composite effect of the sensor’s inherent property, sensor—target rel-
ative position, terrain conditions, enemy countermeasures, and so forth. The covari-
ance of such noise varies with time and is dependent on factors like

sensor quality (accuracy and reliability)

distance from sensor to target (accuracy declines with increase in distance)
viewing angle from sensor to target (sometimes better with larger angle)
transparency along the path between sensor and target

opponent interference on sensor signals.

A competent sensor with respect to a target is the one that exhibits a small
noise covariance R;; when measuring that target. Competent sensors are more valu-
able to target uncertainty reduction as expressed by their sensor information gains
defined in (10).

Finally, we establish the measure of performance of a sensor in accomplish-
ing all tasks appointed to it. Suppose sensor i is in charge of target group D;; its
contribution to the global picture is accrued by measuring all assigned targets within
a sampling period. As information gains are elicited by the sensor for uncertainty
reduction on respective targets assigned, the performance of sensor i is defined
to be the sum of these information gains effective for state estimates of the targets
in D;. Thus, we express sensor performance in face of assigned targets as

P.(D;) = > g(i.j) (11)

JED;

In the following, sensor performance will be used as a basic quantity for
(sensor) agent negotiation on target distribution. The assumption made is that every
sensor hopes to be “excellent” in its own performance by taking over more jobs.
Such demands and emerging conflicts are resolved through game theoretic nego-
tiation, resulting in a possibly balanced distribution of tasks.

4. AGENT NEGOTIATION ON TARGET DISTRIBUTION

In this section we study the negotiation issue for target distribution on the
basis of game theory. Our motivation is to enable interactions among agents in
decision making and to achieve a final outcome that is dependent on everyone’s
choice and acceptable for all parties. Considering interplay of agents is useful to
distribute tasks to possibly more sensors, enhancing measurement robustness and
system survivability. In addition, we want to achieve task allocation in a distrib-
uted fashion, that is, without a centralized supervisor. Each agent makes a selec-
tion considering the characteristics of its opponents apart from its own preference.
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4.1. Agents and Their Utility Functions

We consider sensors as autonomous agents that bargain over redistribution of
targets for every fixed time interval. Such a time interval usually consists of a
given number of sampling periods and is termed an R-interval in this article. The
involved agents are assumed to exhibit the following behaviors in the whole track-
ing process:

o Rationality. Agents are self-interested and rational; they try to maximize their own sen-
sor performance and payoffs in negotiations.

e Cyclicity. Negotiation is launched among agents at the beginning of an R-interval but
cannot continue beyond the end of it. In the next R-interval, another round of negotia-
tion is needed to update decisions in the possibly new situation. Such processes are
repeated for the whole interesting time span.

o Initial quiescence. After negotiation begins, agents will not make any measurements
until an agreement is reached. Certainly this is not a desideratum from an operational
point of view. Here we postulate it just to create a setting of the game under which
agents can interact productively and fairly. Such an introduced rule (of the game) fosters
the same attitude toward time by all agents and motivates them to become more coop-
erative in accepting offers. Later we will show that, under our negotiation strategy, agree-
ment will be reached in the first time step, thus making quiescence in sensing never
really happen.

e Temporary commitment. Once an agreement is reached, all parties will follow it until
the end of the underlying R-interval. Subsequently, the agents will start another round
of negotiation.

There are two kinds of consequences if a negotiation is performed: either
disagreement or agreement. Disagreement means that no solution acceptable for
all parties can be reached in a limited duration for negotiation, that is, R-interval.
The other case is arrival at an agreement within the underlying R-interval. Every
agent has its own preference about whether and when an agreement is reached and
what portion it obtains from the agreement. We assume that agent i € Agents has
a utility function, U;, over all possible outcomes: {A X {0,1,...,K}} U {Disagree-
ment}, where A is the set of possible offers and K refers to the last period of the
R-interval in which the negotiation is conducted. Specification of utility functions
for all agents is a prerequisite for developing efficient negotiation strategies.

As agents negotiate in order to realize cooperative behaviors among them in
multitarget tracking, finding agreement is in line with the interests of everybody,
and no one can benefit from bargaining without fruit. This leads to the preference
of agreement over disagreement by any agent and in any circumstance, as stated
in C1 (the first characteristic of agent preferences).

C1. Disagreement is the worst outcome. For any agent i € Agents and any
outcome x € {A X{0,1,...,K}} U{Disagreement}, U;(Disagreement) <
Ui(x).

Now we turn to discussing the utility of reaching agreement D, as a target
division profile, at time t € {0,1, ..., K}. By D; we denote the allocation to sensor
i in the agreement that causes the performance of sensor i to be
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P(D;) = X |H]R;"Hyl (12)

JED;

Moreover, the agent is assumed to receive a reward not more than unity in terms of
its performance contributed. The purpose of doing so is to normalize the sensor
performance index for easy handling and to allow for nonzero assessment for a
sensor’s quiescence in complying with the agreement. The reward to sensor i, under
appointed target group D;, is given by

rD)=a+(1—a)(l—eFr®P)) 0=a<landB>0 (13)

such that P; € R™ is converted into a regular interval [, 1). Here « is a user-
defined coefficient representing the agent’s attitude toward measurements versus
quiescence. It can also reflect the emotion of an agent to get a nonempty portion of
targets in the negotiation. A typical dependence between sensor performance and
sensor reward is depicted in Figure 2.

Further, because the sensors keep commitments once a treaty is reached until
the end of the R-interval, rewards are received in the duration from period ¢ to
period K, and they have to be accumulated to indicate the overall payoff engen-
dered. Herein we also take for granted that the R-interval is properly specified as
short enough to assure approximately constant covariance of measurement noises
within it. This suggests and justifies the calculation of the utility of sensor 7, from
outcome (D, t), by

Ui(D,t) = (K—t+ 1)ri(D,) (14)
Sensor
reward
A
1 --------------------------------------------
.
|
0 Sensor
performance

Figure 2. Sensor reward derived from sensor performance.
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The above defined (sensor) reward and utility function manifest the other two
characteristics of agent preferences in the negotiation.

C2. Sensor performance is valuable. For any r €{0,1,...,K}, D, Q € A, and
i € Agents: U;(D, 1) < U;(Q,t) & P;(D) < P;,(Q). For agreements that
are reached at the same time, each agent prefers an allocation leading to
greater sensor performance.

C3. Benefit is lost with time. For any ¢, € {0,1,...,K}, D € A,and i €
Agents: U;(D,t,) > U;(D,1,) © t; < t,. For the same agreement that is
reached at different times, each agent desires the earlier rather than the
later.

4.2. Negotiation Game

We model the negotiation for target division among sensors as an extensive
game characterized by a 5-tuple (Agents,A, H, P(H ), U;), where

Agents = {Sensor 1, Sensor 2, Sensor 3,...,Sensor n}

A is the set of possible divisions of targets among sensors

H is the set of sequences of offers and responses

P(h) determines which agent has the turn to make an offer after a nonterminal history &
U; is the utility functions of agents on x € {A X {0,1,...,K}} U {Disagreement}.

It is assumed that at a particular time period one of the agents makes an offer
and the other agents respond to it by acceptance or rejection. The order in which
the agents make their proposals is specified before the negotiation begins. The
first action in the game occurs in period O when one agent makes the first offer and
the other agents accept or reject it. Acceptance by all other agents ends the game
with agreement whereas rejection by one other participant pushes the game into
period 1. Subsequently, another agent proposes something in period 1 that is then
accepted or rejected by its opponents. The game continues in this manner as long
as no agreement has been reached until the last period K of the R-interval. If still
no agreement is achieved at time K, we say that the game ends with disagreement.

4.3. Negotiation Strategies

Negotiation strategies, as a key element in our bargaining game, are utilized
by participants to maximize the expected values of their respective payoffs. A
strategy for an agent is essentially a function that specifies what the agent has to
do after every possible history. Concretely speaking, the strategy prescribes what
to offer when it is the turn of the agent to make an offer, and whether to accept or
reject an offer in periods when the agent’s turn is to respond to a proposal made by
an opponent. A strategy profile is a collection of strategies for all involved agents.
We would like to find strategies leading to an outcome that is profitable for all
participants and nobody can benefit from using another strategy.

A fundamental concept for analyzing behaviors of rational agents is the
Nash equilibrium.!® A strategy profile of a game of alternating offers is a Nash
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equilibrium if no agent can profit by deviation given that all other agents use the
strategies specified for them in the profile. Unfortunately, a simple Nash equilib-
rium does not seem sufficient in extensive games in the sense that it ensures the
equilibrium of its strategies only from the beginning of the negotiation, but it may
be unstable if starting from certain intermediate stages.

A stronger notion for extensive games is that of subgame perfect equilibrium
(SPE),'? which requires that the strategy profile included in every subgame is a
Nash equilibrium of that subgame. This is a comprehensive concept implying that
agents are rational at any stage of the negotiation process: no one can be better off
by using another strategy regardless of what happened in the history. This article
adopts the notion of SPE to develop negotiation strategies for target division among
sensors. Later we will show that if all agents honor SPE strategies, there is an offer
made in the first period that is preferred by all parties over all possible future
outcomes.

We begin from strategies at step K, the last period in the R-interval for nego-
tiation. Our point is that an agreement will be reached at the last period because
disagreement is the worst case for anyone and agents will do their best to prevent
this from happening. It is formally stated in the following.

LemmaA 1. Ifit is agent i’s turn to make an offer in period K, then following the
SPE strategy agent i will propose the offer D € A that maximizes U;(D,K), and
all other agents will accept this offer.

Here we can see rational behaviors from all participants. Agent i chooses the
offer that is best for its own payoff, and the other agents accept this offer because
it is better than disagreement for them.

Then we discuss strategies at periods before K. The intention is that the agent
whose turn it is to make an offer considers the agreement that will be reached at
the next stage and proposes something that is better for all parties than what they
will attain in the future. Suppose a(t + 1) represents the agreement that will be
reached at stage ¢ + 1; we claim the set of offers acceptable for all parties at
stage ? is

Super(t) ={D € A|Vi U,(D,t) = U;(a(t +1),t + 1)} (15)

The above definition is obvious, for a rational agent will accept any offer that
gives it a better payoff than what it will gain in the upcoming stage.

Further, it is important to note that the set Super(t) is nonempty for any period
before K. This is induced from the characteristic that all agents lose over time as
indicated in C3. Particularly, the agreement a(z + 1) is included in Super () because
we have U;(a(t +1),t) > U;(a(t +1),t + 1) for any agent i.

The set, Super(t), of acceptable offers is very useful to establish SPE strat-
egies at periods before K. The nonemptiness of this set ensures that the agent whose
turn it is to make an offer has enough choices to make its proposal acceptable to
opponents. In other words, agreement can be achieved at any stage of the negoti-
ation process. The formal SPE strategy for period 7 (¢ < K) is given in Lemma 2.
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LEMMA 2. [fit is agent i’s turn to make an offer in period t < K, then, following
the SPE strategy, agent i will propose the offer D € Super(t) that maximizes
U;(D, t), and all other agents will accept this offer.

Apart from rationality according to the SPE strategies (stated in Lemmas 1
and 2), agents are also expected to possess some awareness of social welfare.!”
This is concerned with selecting the best offer when multiple optimums exist
according to the utility of the agent having the turn to make an offer. A supplemen-
tary rule is thus required to guide the proposing agent to the right choice in light of
social responsibility. We prescribe herein that if an agent encounters multiple max-
imums when making a proposal, it chooses the one of them which maximizes the
sum of utilities of other agents. The interpretation is that an agent, though self-
interested, will give the best opportunity for the social welfare provided that its
own profit is not sacrificed.

Now we formulate agreement a(r) according to the SPE strategies in combi-
nation with the supplementary rule. By Compet(i, t) we denote the set of best offers
for agent i, which has the turn to make an offer at period #; so we have

Compet(i,K) = {D € A|U,(D,K) = max Ui(D,K)} (16)
DEA

Compet(i,1) = {D € Super(1)|U.(D,t) = max U,(D, z)}, <K  (17)
DESuper(t)
Formulas (16) and (17) define the set of agreements that comply with the SPE
strategies. Then the supplementary rule is employed to select a solution desirable
for other agents as a whole. This is given by

a(t) =arg max [U/(D,t)+---+U_,D,T)

D&Compet(i, t)
+Ui+l(D’t)+ Tt +Un(D’t):| (18)

The derivation of a(¢) in terms of (18) brings about a useful thread for the
backward analysis of the SPE strategy profile. First, we calculate the offer a(K)
for the agent that has the turn to make an offer at time K. This offer is then used as
the basis for computing the set of acceptable offers in the proceeding period, from
which a new offer a(K — 1) is figured out for another agent having the turn (to
make a proposal) at K — 1 and similarly for other previous periods.

Apparently all agents prefer a(z) in period 7 to a(¢ + 1) in period (¢ + 1). In
other words, a(r) is better for all parties than what can be achieved in the future.
The fact of U;(a(t),t) > U;(a(t + 1), + 1) for any agent causes the game to be
ended in the first period with agreement a(0). This is stated in the following lemma.

LEmmA 3. Ifall the agents use the SPE strategies for negotiation and the supple-
mentary rule for accounting for social welfare, then in the first period the agent
who has the turn to make an offer will propose a(0), and all other agents will
accept this offer.
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Additionally it is worth noting that the final outcome of our negotiation game
is Pareto efficient, and so is any other offer emerging in the backward analysis.
This is obviously warranted by the nature of formula (18). The connotation is that
our bargaining process is actually performed upon Pareto (optimal) solutions for
multiple agents. This means that negotiation space can be restricted to a degraded
subset using the concept of Pareto efficiency, although for a generic game formu-
lation we have in Section 4.2 referred to the set of offers, A, as containing all
possible divisions of targets. An algorithm to construct a set of Pareto nondomi-
nated solutions in multiobjective environments can be found in Ref. 18.

S. SIMULATION TESTS AND RESULTS

To examine the effectiveness of our negotiation model in target distribution,
simulation tests were made for scenarios in which the sensor network consisted of
sensors 1, 2, and 3. We assume, for simplicity, that the covariance of measurement
noises only depends on the distance between sensor and target. All sensors exhibit
the same quality in accuracy and their measurement covariance is given by

08 0 0.00005 0
Cov(dist) = + dist- (19)
0 038 0 0.00005

where dist denotes the corresponding distance. Further we supposed that four tar-
gets were present in the area and were collectively monitored by the three sensors
stated above. The sensors had to divide the targets among themselves to decide
which sensors should track which targets. Next we present the results of simula-
tions in two scenarios. In the first case all four targets moved along certain trajec-
tories, and in the second setting the locations of targets were stochastically generated
in order to obtain a wide coverage of geographical distributions of targets.

5.1. Test with Targets Moving on Trajectories

In this test we assumed that the sensors were located at (—100 km, 0), (0, 0),
and (100 km, 0), respectively, and targets made their movements as depicted in
Table I. The sampling period for tracking was fixed to be 0.1 s for every target. As
the targets were moving in the environment, decisions on target division among
sensors had to be made frequently to adapt to recent status of sensor—target rela-
tive positions for improving system performance. Here we specified the length of

Table I. Descriptions of movements of targets.

Initial position Velocity in x direction Velocity in y direction
Target 1 (=110 km, 10 km) 50 m/s 0
Target 2 (=120 km, 5 km) 50 m/s 0
Target 3 (120 km, —5 km) —60 m/s 0
Target 4 (110 km, —10 km) —60 m/s 0
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Figure 3. Targets handing off from one sensor to another.

the R-interval to be 6 s, meaning that the negotiations happened every 60 sam-
pling periods for target distribution across sensors. All three sensors were involved
in the negotiations, which caused the targets to occasionally be handed off from
one sensor to another as shown in Figure 3, where targets 1 and 2 were initially
tracked by sensor 1, intermediately by sensor 2 and finally by sensor 3, and the
opposite sequence occurred to targets 3 and 4. These switches among sensors and
targets were smooth and reasonable, according to our intuition, at least.

For an in-depth analysis of the results presented above, we intend to make an
assessment in terms of two criteria: the sum of sensor information gains in the
global picture and the degree of targets concentrated to particular sensors. The
concentration degree for a distribution profile D is defined as

2|num(Di) — num(D;)|
cd(D) =~ o (20)
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where num(D;) denotes the number of targets in the allocation D; to sensor i.
Additionally, dynamic target distribution was also realized by maximizing the global
sensor information gains for every second. The performance of both negotiation
and optimization is depicted in Figure 4 in terms of the criteria of the sum of
sensor information gains and the concentration degree. The solid lines in the fig-
ure correspond to the performance of negotiation and the dashed lines correspond
to that of optimization. We see clearly here that, by negotiation, the degree of
concentration is reduced significantly at the cost of a slight loss in the sum of
information gains.

The average values of performance over 4800 s are illustrated in Table II for
both negotiation and optimization. This table convincingly indicates that it is worth-
while to accept a trivially reduced tracking accuracy in return for a more robust
task division to enhance system survivability.

Undoubtedly what we see now is a very simplified example assuming sen-
sors aligned in line and targets moving in parallel to that line. Our purpose for
doing so is only to create an illustrative scenario from which readers can see some
easily understandable results without detailed calculation. Indeed the proposed
negotiation model is unaffected by where sensors are arranged and how targets are
moving because merely instantaneous positions of sensors and targets are needed
for negotiation.

sum of gains
[ ] I

]

1 L il 1 Il L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time: seconds

'y

=
oo
T
1

=
B

concentration degree
=]
O
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Figure 4. Comparison of results by negotiation and optimization.
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Table II. Comparison of average performance along trajectories.

Sum of sensor Concentration
information gains degree
Negotiation 2.9710 0.5722
Optimization 2.9873 0.6319

5.2. Tests with Randomly Located Targets

To investigate the performance of the proposed negotiation model in a
wide spectrum of various target locations, further experiments were made by
just “dropping” four targets randomly within the range of (—100 km, 100 km)
in both x and y coordinates. Sensors were positioned at (—50\/§ km, —50 km),
(0, 100 km), and (50V3 km, —50 km), respectively. A total of 16 experiments
were made, with each experiment consisting of 200 randomly generated combina-
tions of target positions. For each generated combination of targets, we divided
them among sensors using the mechanisms of negotiation and global optimiza-
tion, respectively. Table III gives a comparison of the average performance in these
tests in terms of the sum of sensor (information) gains and the concentration degree.
Again we see from this table that in all the tests, negotiation produced obviously
superior performance in concentration degrees and very similar results in sensor
(information) gains in comparison to the outcomes from global optimization.

Table III. Comparison of average performance with randomly generated targets.

Optimization Negotiation
Number Sum of Concentration Sum of Concentration
of tests sensor gains degree sensor gains degree
1 1.7129 0.4838 1.6976 0.3762
2 1.7229 0.4575 1.7079 0.3650
3 1.7338 0.4875 1.7125 0.3675
4 1.7740 0.4750 1.7608 0.3713
5 1.7132 0.4688 1.6950 0.3675
6 1.7279 0.4700 1.7134 0.3825
7 1.7304 0.4950 1.7129 0.3875
8 1.7804 0.4950 1.7683 0.3912
9 1.7502 0.4850 1.7367 0.3937
10 1.7168 0.4750 1.7007 0.3625
11 1.7359 0.4850 1.7203 0.3812
12 1.7647 0.5100 1.7471 0.3950
13 1.8047 0.4763 1.7884 0.3738
14 1.7155 0.4838 1.7042 0.4013
15 1.7938 0.4938 1.7745 0.3750
16 1.7944 0.4800 1.7795 0.3800
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6. CONCLUSION AND DISCUSSION

This article proposes a negotiation model to deal with target distribution among
geographically dispersed sensors in multitarget tracking. Every sensor is assumed
to be an autonomous agent that interacts with its opponents to receive more jobs
and to get better payoffs. A SPE strategy profile is established for agents to bar-
gain over the division of targets and to find agreement without delay. Such imme-
diate arrival at consensus maintains required communications at a minimal amount.

A significant advantage of using negotiation in task distribution is that a solu-
tion taking into account interests of all parties can be expected. This can lead to,
on one side, distribution of targets to possibly more sensors to enhance system
survivability under potential threat of adversaries and, on the other side, still near-
optimal measuring performance in the global picture.

Another nice merit of our work is its adaptation to various scenarios, that is,
with varied sensor and target numbers. We do not have to reconfigure the protocol
of the game nor change the structure of sensor utility functions in face of a new
scenario. All decisions are made through negotiations of sensors in terms of situ-
ations, leading to adaptive and cooperative behavior of the whole sensor network
without the requirement of defining an overall goal function in advance. In fact,
designing a comprehensive, explicit objective for sensor management is often dif-
ficult in complex and perplexing scenarios. Under other circumstances, a goal func-
tion devised beforehand might become inappropriate during an unfolding situation.
Negotiation is valuable in relieving us from such difficulties.

The method proposed in this article is applicable to both decentralized and
centralized data fusion systems. It fits directly into a decentralized sensor network
where sensor stations need to bargain over what to observe in order to achieve
coordinated sensing behaviors. Moreover, the negotiation model is also useful in a
centralized fusion system in the sense that the central node wants to work out a
robust sensing plan across sensors.

Further investigations can be conducted to study the negotiation model in
more complicated scenarios and under many practical constraints. Among sug-
gested points for future studies are the following:

e experiments under variable terrain conditions

e adaptive organization of simultaneous local negotiations (in case of a large number of
sensors in the network)

e negotiation with limited computation

e negotiation under uncertain and approximate information.
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APPENDIX: WHY IS BALANCED TARGET DISTRIBUTION
BENEFICIAL?

Here we provides useful supplementary material by analyzing why a bal-
anced distribution (of targets across sensors) can enhance the robustness in target
monitoring. We intend to explain this in terms of the probability of the sensor
network being detected and the expected number of losses of tracks under threats
of enemy attacks.

We are in the position that a sensor is subject to some risk of betraying its
location as long as it sends signals for measurements, and the sensor’s probability
of being detected is proportional to the number of targets it measures in a sam-
pling period. By p we denote here the value of the detection probability when a
sensor is allocated to only one target; then the probability of the sensor being dis-
covered turns to k-p when it is associated with k targets. We discuss in the follow-
ing the properties of the network using detection probabilities of individual sensors.

We begin from the simplest case of two-sensor and two-target tracking
where one can either make an equal distribution by allocating every sensor to a

International Journal of Intelligent Systems DOI 10.1002/int



1268 XIONG, CHRISTENSEN, AND SVENSSON

respective target or assign both targets to a single sensor. It is obvious that an
equal distribution will yield a smaller overall detection probability P(1, 1) of the
network than the probability P(2,0) when one sensor measures two targets and
the other remains quiescent, due to the fact P(1, 1) = p + p — p? whereas P(2,0) =
2p. Further we assume that enemy attack will occur to a sensor if it has been
detected. The expected number of losses of tracks when assigning two targets to a
single sensor is double of that with an equal distribution, because EN(2,0) =2-2p =
4p whereas EN(1,1) =p + p = 2p.

Next we move to a general case with n sensors, with m; standing for the num-
ber of targets assigned to sensor i. The analysis is performed, without loss of gen-
erality, upon the change of assignments to a pair of sensors, say sensor 1 and
sensor 2. Suppose sensor 1 is allocated to more sensors than sensor 2, that is,
m; > m,; we now make a redistribution by assigning m; — § targets to sensor 1
and m, + 6 targets to sensor 2 with § < m; — m,. The conclusion that is shown in
the following is that this reduction of the difference of the numbers of targets
between both sensors will lead to improvement of the robustness for the whole
sensor network.

From the initial distribution we have the overall probability of being detected
for the whole network as

P(my,my,...,m,) = P(m;,m,) + P(ms,...,m,) — P(m;,m,)P(my,...,m,)
where
P(my,my) = myp +myp — mym,p*

After the redistribution toward balance, the overall detection probability of the
network becomes

P(m,—8,m,+39,...,m,)
= P(m;—8,my, +8) + P(ms,...,m,) — P(m; — 8,m, + 8)P(ms,...,m,)
where
P(m, —8,m,+8) = (my + my)p — (m, — 8)(m, + 8)p*

By subtraction of the overall detection probabilities before and after redistribu-
tion, we obtain

P(m,,m,,...,m,) —P(m, —8,my,+36,...,m,)
=8(m; —my,—8)p*[1 — P(ms,...,m,)] >0

This clearly demonstrates the decrement of the overall detection probability by a
more balanced distribution of targets.
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Likewise we examine the change in the expected number of losses of tracks
caused by the redistribution. Previously we have the expected number of losses of
tracks as

EN(my,m,,...,m,) =mip+mip+ 2”: m?p
i=3
Reducing the difference of workloads between two sensors pushes this measure to
a new value given by
EN(m, —8,m,+6,....,m,) = (m, —8)*p+ (m, + 8)*p + 2": m?p
i=3
Clearly the expected number of losses of tracks decreases owing to this redistribu-

tion, as is seen from

EN(m,,m,,...,m,) —EN(m, —6,my+8,...,m,) =28(m, —m, —8)p >0
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