
132 Int. J. Simulation and Process Modelling, Vol. 5, No. 2, 2009

Copyright © 2009 Inderscience Enterprises Ltd.

A rule-based semantic matching of base
object models

Farshad Moradi*
Swedish Defence Research Agency (FOI),
164 90 Stockholm, Sweden
E-mail: farshad@foi.se
*Corresponding author

Rassul Ayani and Shahab Mokarizadeh
School of Information and Communication Technology,
Royal Institute of Technology (KTH),
Electrum 229, S-164 40 Kista, Sweden
E-mail: ayani@kth.se
E-mail: shahabm@kth.se

Gary Tan
School of Computing,
National University of Singapore,
13 Computing Drive, Singapore 117417
E-mail: gtan@comp.nus.edu.sg

Abstract: Creating simulation models via composition of predefined and reusable components is
an efficient way of reducing costs and time associated with the simulation model development.
However, to successfully compose models one has to solve the issues of syntactic and semantic
composability of components. The Base Object Model (BOM) standard is an attempt to ease
reusability and composition of simulation models. However, the BOM does not contain sufficient
information for defining necessary concepts and terms to avoid ambiguity, and neither does it
have any method for dynamic aspects matching conceptual models (i.e., their state-machines).
In this paper, we present our approach for enhancement of the semantic contents of BOMs and
propose a three-layer model for syntactic and semantic matching of BOMs. The enhancement
includes ontologies for entities, events and interactions in each component. We also present an
OWL-S description for each component, including the state-machines. To test our approach,
we specify some simulation scenarios and implement BOMs as building blocks for development
of those scenarios, one of which is presented in this paper. We also define composability degree,
which quantifies closeness of the composed model to a given model specification. Our results
show that the three-layer model is promising and can improve and simplify the composition of
BOM-based components.

Keywords: semantic matching; BOMs; base object models; composability of simulation models.

Reference to this paper should be made as follows: Moradi, F., Ayani, R., Mokarizadeh, S.
and Tan, G. (2009) ‘A rule-based semantic matching of base object models’, Int. J. Simulation
and Process Modelling, Vol. 5, No. 2, pp.132–145.

Biographical notes: Farshad Moradi is a senior scientist at the Swedish Defence Research
Agency (FOI). He acts as the programme manager for Modelling and Simulation, and is the
leader of the Simulation and Distributed Systems competence group at the Department of
Informatics. He has been working on modelling and simulation for the past 14 years. He holds
an MSc in Computer Science and Engineering from Chalmers University of Technology,
Gothenburg, Sweden, and a PhD in Distributed Simulations from the Royal Institute of
Technology (KTH). His research interests are in distributed systems, distributed and web-based
modelling and simulation, embedded simulations, service-oriented architectures, computer
generated forces, and logistics.

Rassul Ayani is Professor of Computer Science at the School of Information and Communication
Technology (ICT), Royal Institute of Technology (KTH), Stockholm, Sweden. He received his
first degree from Technical University of Vienna, his MSc from the University of Stockholm and
his PhD from KTH in Stockholm. He has been working on parallel and distributed systems
for the past 20 years, and his current research interests are in distributed systems, performance

A rule-based semantic matching of base object models 133

analysis of computer and communication systems, distributed simulation and composability of
simulation models. He is an area editor of the ACM Transactions on Modeling and Computer
Simulation (TOMACS).

Shahab Mokarizadeh is a PhD student at the School of Information and Communication
Technologies (ICT), the Royal Institute of Technology (KTH) in Sweden. He received his BSc
from Ferdowsi University, Iran, and his MSc from KTH. His research interests are on SOA
and distributed systems, focusing on semantic web, WS composition, and simulation model
composability.

Gary Tan is an Associate Professor at the Department of Computer Science, School of
Computing, National University of Singapore. He is also an Assistant Dean of Corporate
Communications with the School. He received his BSc from the National University of
Singapore and his MSc and PhD from the University of Manchester, UK. His research interests
are in parallel and distributed machines, and parallel and distributed simulation, and he
has published over 50 journal and conference papers. He is currently concentrating on crisis
management and symbiotic simulation.

1 Introduction

Creating simulation models via composition of predefined
and reusable components is a way to reduce the costs
and time associated with the simulation model development
process. This approach has been successfully deployed in
manufacturing industry and software engineering. However,
to successfully compose models one has to solve the issues
of syntactic and semantic composability of components.
Composability has been defined as

“the capability to select and assemble
reusable simulation components in various
combinations into simulation systems to
meet user requirements.” (Weisel et al., 2003;
Petty et al., 2004)

Syntactic composability is concerned with the
compatibility of implementation details, such as parameter
passing mechanisms, external data accesses, and
timing mechanisms. It is the question of whether a set of
components can be combined (Hu et al., 2003; Szabo and
Teo, 2007). Semantic composability, on the other hand,
is concerned with whether the models that make up
the composed simulation system can be composed in a
meaningful way and the composition is valid. (Weisel et al.,
2003; Petty et al., 2004)

HLA is the most widely used architecture for distributed
simulations today (https://www.dmso.mil). It provides a
simulation environment and standards for specifying
simulation parts via Simulation Object Models (SOMs) and
interactions between simulation parts via Federation Object
Models (FOMs). A HLA simulation is named Federation,
which is composed out of Federates, or simulation parts.
Through SOMs and FOMs, HLA intends to formalise how
federates function and how they interact. However, SOMs
and FOMs do not contain enough semantic information
about what they intend to simulate and hence, have little
support for semantic composability. The simulation
community has recently formulated a standard, the Base
Object Model (BOM), to ease reusability and composability
(SISO, 2005).

In this paper, we investigate how BOMs can be
used to develop simulation models in a component-based
fashion and suggest a process for component-based
simulation development using BOMs. We argue that even
though the BOM standard looks promising and exhibits
good capabilities for reuse and composability, through,
e.g., its conceptual model, it lacks the required semantic
information for semantic matching and composition.
Moreover, BOM provides little support for defining
necessary concepts and terms to avoid ambiguity, and
there is no method for matching dynamic aspects of
conceptual models (i.e., their state-machines). We also
discuss utilisation of Semantic Web and Web Service
(WS) (http://www.w3.org/2001/sw/; http://www-106.ibm.
com/developerworks/webservices/) technologies for further
refinement of the process and improving the semantic
composition of BOMs.

The main contributions of this paper are:

enhancement of BOM by a Semantic BOM Attachment
(SBA)

proposing a three-layer method for BOMs matching

defining composability degree to measure goodness of
the composed models

implementation, test and analysis of the SBA and the
three-layer matching method.

The rest of this paper is organised as follows. Section 2
discusses the approach we adopted for the Model
composition, while Section 3 discusses the SBA.
The overall architecture of our approach is presented in
Section 4 and Section 5 provides a case study of a restaurant
scenario. The conclusion is given in Section 6.

2 Model composition approach

To compose a simulation out of components, the
components need to contain (and expose) some information
about their internal structure and how they can be used.

134 F. Moradi et al.

This information is called metadata and contributes to
simplified use of a component by others (Morse et al.,
2004).

Generally, the concepts and terminologies used in
various components may vary substantially and thus can
lead to misunderstanding. Hence, the concepts and
terminologies should be defined in an unambiguous way to
avoid misunderstandings, particularly if the composition
process is automated. Ontology is used to help create a
common understanding among components and to
improve communication among them (Gruber, 1993). In the
computer science context, ontology is a description of
terminologies and frames of references between entities
that interact with each other. Thus, ontology creates a
shared understanding of entities and events, and contributes
to reaching an agreement on meanings of what is
communicated between the components. This shared
understanding is the key to discover semantic mismatch
despite syntactically correct matching. By adding axioms
to the ontology we can use them to narrow the
selection criteria and detect semantically mismatching items
(Gruber, 1993).

2.1 BOM structure

A BOM is an XML document that encapsulates the
information needed to describe a simulation component.
The BOM concept is based on the assumption that
piece-parts of simulations and federations can be extracted
and reused as modelling building blocks or components.
The interplay within a simulation or federation can be
captured and characterised in the form of reusable patterns.
These patterns of simulation interplay are sequences of
events between simulation elements. BOMs are structured
into four major parts (SISO, 2005) as can be seen in
Figure 1, Model Identification, Conceptual Model, Model
Mapping and HLA Object Model. The Model Identification
contains metadata about the component. This part includes
Point Of Contact (POC) information, as well as general
information about the component itself, such as Type,
Security Classification, Purpose, Application Domain,
Use Limitations, and Keywords.

Figure 1 BOM structure

The Conceptual Model, which is our main concern here,
contains information that describes the patterns of interplay
of the component. This part includes the types of actions
and events that take place in the component, and is
described by a pattern description, a state-machine, a listing
of conceptual entities and events, which correspond to
how real-world objects and phenomena are modelled in the
simulation. The pattern description describes the flow
and dependencies of events and their exceptions. There are
two additional parts in the BOMs, namely Notes and
Definitions. These two parts contain semantic information
about events and entities as well as actions that are specified
in the Conceptual Model, and are used to provide a human
readable understanding of the patterns described in the
BOM.

As BOMs are very new, there is a limited toolset
available. One of the most comprehensive tools available
for BOM creation and modelling is BOM works (http://
www.simventions.com/bomworks/) from SimVentions.

The current BOM standard lacks the required semantic
information to avoid ambiguity. Furthermore, there is no
method for matching state-machines in the conceptual
models of different BOMs. To address the above issues,
we suggest extending the BOM description with a semantic
attachment through utilisation of WS Technology and
OWL-S language (Web Ontology Language for Services)
(http://www.w3.org/Submission/OWL-S/) (explained in
Section 3). The semantic attachment provides the metadata
required for discovering the composition of BOMs.
The matching is performed based on a three-layer
model containing the syntactic layer, static semantic layer
and dynamic-semantic layer as explained in Section 4.2,
utilising a set of rules for reasoning about the compositions.

2.2 Composition process

In this section, we describe our process for component-
based model development using BOMs. We assume
that a simulation developer describes the target scenario
(simulation to be developed) in a formal manner using
SRML-Light. The composition process is made up of
parsing the SRML document to identify the necessary
components, and then a three-phase process consisting
of Discovery, Matching and Composition (DMC) of the
components, as shown in Figure 2.

The BOM Discovery fetches the BOMs from a
repository. This activity identifies BOMs only at a very high
level. BOMs that roughly fit the intent of the simulation or
match the components specified in the simulation document
are simply fetched from the repository.

The BOM Matching compares the fetched set of
BOMs and decides which BOMs might be suitable for the
simulation. This is a more complex activity that needs to
take into account the simulation intent (as described in the
SRML document). One has to handle issues such as, what
components fit together semantically and practically and
how it is done. To compare BOMs, other means such as
ontologies and reference documents will also be used in this
activity. In the third phase, the selected components are

A rule-based semantic matching of base object models 135

assembled into a BOM assembly. The DMC procedure is
shown in Figure 2, where each of the three phases is shown
in square boxes, and is further discussed in the subsequent
sections.

Figure 2 BOM discovery, matching and composition (see online
version for colours)

2.2.1 An example

The idea of the DMC phases could be explained via a
simple scenario. Assume for example that we wish to
construct a model of a car that can move forward, turn left,
turn right and brake. In SRML, we would specify that the
car is made up out of a car body, an engine, steering, four
tires and a suspension. Furthermore, there is a repository
available containing many different types of tires, engines,
suspensions, etc. In the Discovery phase, we identify the
components needed in our model, i.e., tires, car bodies,
engines and fetch them from a BOM repository. In the
Matching phase, we try out these tires, car bodies and
engines to see if they can be assembled together.
For example, it might be that we found bus engines that will
not be suitable in a small car body. In the last phase,
composability, we check if the selected parts, that could be
seen to fit together, can be assembled into a car that have
the specified functionalities, i.e., can move forward,
turn right, turn left and brake.

The composition process described above therefore
comprises four phases:

SRML Parsing

BOM Discovery

BOM Matching and Composition

BOM Assembly Building.

These four phases can be further broken down into
seven steps, as shown by yellow boxes in Figure 3. Here,

we give a more detailed description of these four phases
(seven steps).

Figure 3 The simulation development process (see online
version for colours)

The first phase starts with a description of the target
simulation written in SRML (http://www.w3.org/TR/2002/
NOTE-SRML-2002121). The simulation model contains
simulation components, and events, as connectors of
those components. The SRML item classes are seen as
representation of BOM candidates while events (script-tag
of SRML) represent actions between components.
The SRML parsing phase comprises one step, where the
simulation scenario is parsed and information about
candidate components is extracted. Here, we assume that a
simplified version of the SRML, called SRML-Light
standard is used to describe the simulation scenario
(Moradi et al., 2006). The ‘Item Class’ tag is utilised as a
heuristic to identify and extract type of the candidate BOMs.
As an example, the following program shows how an Item
Class Queue is written in SRML.

136 F. Moradi et al.

The output of the parsing step is a collection of entity
names and their corresponding send/receive events. We call
this collection SRML Object Model. In our above example,
the Queue is an entity in the SRML Object Model
with four events, two send events, TakeSit and JoinAck,
and two receive events QueueNeedsCustomerToJoin
and QueueNeedsTableToFree. CustomerID, TbaleID and
QueueID are parameters.

During the BOM discovery phase, a query is built
based on the SRML Object Model and is sent to the
BOM repository. The repository returns a set of potential
candidates corresponding to the query. Afterwards, the
candidate BOMs are matched syntactically (number of
parameters and event name) and semantically (parameter
data type and entity type) against the SRML object
model and the irrelevant BOMs are filtered, see 4.1. In our
example, the result of the query could be a number of Queue
BOMs. However, not all of them will necessarily match the
syntactic and semantic requirements described in the SRML
object model.

The BOM matching and composition phase is more
comprehensive and is about finding the right combination
of components that satisfy the target simulation description
(the scenario). Since the discovery step can result in
variations of components, there can be more than one
combination of components that may build the desired
simulation. Hence, this phase starts by making different
combinations of candidate BOMs. There are different
methods and algorithms for generating these combinations.
However, they are not covered in this paper. Next, the
composer adjusts the combinations based on received
feedback from syntactic and semantic BOM matching.
The following steps are done for each combination.

During the next step of this phase for each interaction,
stated in the simulation scenario, the syntax of messages
and actions between involving BOMs in the interaction
is verified. If the BOMs have consensus on syntactic
composition, the semantic of BOMs is compared against
each other based on the interactions, as explained in
Section 4.2. For instance, a Customer BOM that is designed
for Fastfood restaurant scenarios is probably not suitable for
an Italian restaurant scenario where she or he is expected
to be waited on, since it does not have the right type of
interactions.

If the syntax and semantic of all BOMs in the
set are correct, the state-machine composition starts.
The state-machines of all components in combination are
run according to the simulation scenario interactions.
In a successful run, events passed between components will
result in successful state transitions. After a successful run,
the order of action executions will be obtained.

Finally, having in hand a right set of components, their
interactions and the order of those, we enter the BOM
assembly building phase during which a BOM assembly can
be created from the current set of BOMs. Figure 3 shows
these seven steps in a flow chart format, where each step is
represented by a rectangle.

To realise the proposed process, we have defined a set
of rules for checking the composability between BOMs.
These rules are divided into discovery and composition
rules. An inference engine utilises these rules together with
BOM descriptions and related ontology to reason about
composability of components. This requires that BOMs are
described in a logical language and have proper structure,
which facilitate the reasoning process. For this purpose,
we suggest an extension to the current BOM description
called Semantic BOM Attachment. The SBA is based on
OWL-S and is explained in more detail in Section 3.

Before proceeding with the description of our matching
methodology and composition rules we will explain our
modelling and composition assumptions in the next section.

2.3 Modelling and composition assumptions

For implementation of the composition process, we
have made the following assumptions. First of all, each
simulation model is a combination of components
and events. A composed model consists of a number of
communicating components. These components are
event-driven, which means they act upon occurrence of
events. After occurrence of an event a corresponding
action will be executed, which may cause the generation of
another event. Components in a composition communicate
through sending messages. A component Ci can interact
with another component Cj by sending event message Eij
to it.

An event is something that happens in time such as
receiving information about the position of a target by an
airplane. But by action we mean the service, operation or
action that is executed after an event has happened, e.g., the
computation done by the airplane and its change of state can
be considered as the corresponding action to the above
event. Basically, we define an action in terms of its effects
on the environment and itself. Candidates to describe such
properties are pre- and post-conditions.

We also assume that an event can be initiated
(a message can be sent) whenever the precondition of the
corresponding action becomes true. Similarly, a message
can be received (a receive event can happen) whenever
the precondition of the action of respective receive event
becomes true. Occurrence of an event might result in
state change in the initiator and the receiver components
while execution of the corresponding action results in
effects stated in post-condition on itself or its environment
(other components).

Besides the above concepts, there are some assumptions
regarding the way the composition of actions is done.
First, composition check is done through matching of the
SBAs, which will be described in detail in Section 3.

To avoid any confusion, we assume that each BOM with
corresponding SBA represents only one entity type. In other
words, we assume a one-to-one mapping between BOMs
and entity types. Hence, the terms component and entity
are used interchangeably in this paper. There is also

A rule-based semantic matching of base object models 137

a one-to-one mapping between each event and the
corresponding action.

Finally, the Horizontal combination of actions is
assumed. In our approach, we do not consider other
models such as Vertical combination. Horizontal and
Vertical combinations are fully described in Medjahed
and Bouguettaya (2006). Two operations/actions can be
combined Horizontally if they model a supply-chain-like
combination. We have adopted the original definition
to the concepts and conditions in our work. We use same
definition for Horizontal composition but with an extra
condition. To describe our adopted version of Horizontal
composition, we need to explain the In and Out mode of
actions. The mode of an action indicates whether the action
initiates an interaction, via sending a message, or it is
invoked as a result of receiving a message. If initiating
a send event results in execution of an action, this action
is in out mode. Similarly, capturing a message leads to
immediate execution of corresponding action which by our
definition is in In mode. So an action is either in In mode
or Out mode. The mode cannot be changed dynamically and
it is assigned to the action during SBA development.

The Horizontal composition should be a combination
of an Out action belonging to message sender entity
with the respective In action of the entity (ies) receiving
that message. Since getting a message cannot happen
before posting/sending that message, the first action in the
Horizontal combination should be the Out action of a send
event, and the second one should be the In action of a
receive event.

2.4 Matching methodology

As explained in the previous section, we consider
simulation models as combinations of components and
events. Therefore, to have a successful composition of
components these two items should match both syntactically
and semantically. Our approach for composition is based on
‘event matching’. Components are checked against each
other both syntactically and semantically according to the
interactions they have in the composition. The interactions
in discrete event simulations are through messages that are
sent and received. Our aim is to make sure that both sender
and receiver components have a common understanding
(syntactic and semantic) of the transmitted message, i.e., the
message transmitted by a send event to the designated target
will be captured and handled correctly by the target
component via respective receive event.

Furthermore, in a semantically correct composition,
each component should send and receive events designated
to it. The challenge here is to make sure that the components
are capable of ‘following’ the interactions stated in
the simulation model, i.e., they are capable of executing the
interactions stated in the simulation model in the right
order. This problem can be solved through utilisation of
state-machines. State-machine of each BOM represents the
events that a component can send or receive in each state.
One can start from the initial state and run each
state-machine based on the events it can send (stated in the

simulation model) or receive (again stated in the simulation
model). However, the practical solution is a bit more
complicated since the state-machines of all the components
involved in the composition need to be run and compared
against each other while the events (sent or received) are
handled by the components. In a successful run, components
must be in the ‘correct’ state when events are executed.

3 Semantic BOM attachment

To facilitate semantic matching and composition of
BOM-based components, we suggest an enhancement of the
current BOM description through utilisation of the Semantic
WSs concepts and methods for composition, here referred
to as SBA. For this purpose, we have mapped the
BOM descriptions into the OWL-S (http://www.w3.org/
Submission/OWL-S/) upper ontology. The main reason for
this mapping is to use OWL (Web Ontology Language)
(http://www.w3.org/2004/OWL/) as the underlying
language for describing BOMs and also utilise the language
features of OWL-S to improve the semantic expressiveness
of BOMs and hence, facilitate their semantic discovery and
composition.

As mentioned earlier, a BOM consists of three main
parts: Model Identification, Conceptual Model and Model
Mapping. Model Identification and Model Mapping sections
of BOMs provide information about the BOM, entities, their
attributes, interactions and their parameters. However, the
metadata of a BOM is mainly embedded in its Conceptual
Model. Semantic information is added to each item of the
conceptual model such as data type hierarchy and unit.
Entity type taxonomy is also introduced for each item.
Here, we might use information provided by the Model
Identification, such as ‘Purpose’ and ‘Application Domain’.
The product is a semantic attachment for each BOM.
Figure 4 depicts the items of BOM metadata converted into
SBA plus the supportive ontology.

In the following sections, we explain our approach for
adding semantic information to each item of the conceptual
model.

Figure 4 Semantic BOM attachment (see online version
for colours)

3.1 Mapping pattern of interplay

The pattern of interplay in BOM provides a mechanism for
defining a sequence of actions.

Each event type in BOM is associated with an action,
which contains information about the sender entity, receiver
entity and content of the message being sent. A one-to-one
mapping pattern of interplay constitutes (action and entity)

138 F. Moradi et al.

to Process Model of OWL-S upper ontology is presented in
Figure 5.

In this figure, the BOM pattern of interplay is presented
by UML class diagram on the right side of the figure, and

the OWL-S process model on the left side of the figure.
The dashed lines reveal the mapping direction of constitutes
of the BOM pattern of interplay to corresponding ones in
OWL-S process model.

Figure 5 Mapping pattern of interplay to OWL-S process model (see online version for colours)

When mapping actions to the OWL-S upper ontology, each
action is mapped to an atomic process since both by
definition represent a single step task. Actions are resulted
from occurrence of events and there are two categories of
events in BOM: directed events (the intended receivers are
specified) or undirected events (the intended target
entities are not specified). In BOM, the former is known as
Message, and the latter as Trigger. In this work, only the
action of a BOM Message is discussed (and mapped).
The mode of an action indicates whether the action is the
result of sending a message (Out mode) or of receiving a
message (In mode). In case of Out actions, the input of
atomic process will be empty whereas the output of atomic
process will be empty for In actions. This issue is shown in
Figure 5 by grey vs. black dashed lines coming into input
and output of process model, respectively. What is mapped

to input or output of process model is the BOM event
content consisting of identifiers of event initiator and event
target entities and related attributes of the involved entities
in simulation scenario.

In addition, an action in the OWL-S process model will
be annotated by a pre- and post-condition pair. The reason is
to show the effect which the execution of an action has
on its environment. Such effects represented by pairs of
pre-condition and post-condition, helps the composer to find
a suitable component to which its action(s) matches the
current environment facts. BOM messages are not decorated
with any type of condition. Hence the pre-/post-conditions
should be either automatically extracted from other parts of
BOM like Model Identification by an intelligent agent or to
be defined manually by the component developer (shown as
Modeller in Figure 5).

A rule-based semantic matching of base object models 139

Consequently, the pattern of interplay can be assumed as
a composite process in OWL-S or even a service model,
as was suggested in Moradi (2007).

3.2 State-machine mapping
“The state machine template component
provides a mechanism for identifying the
behaviour states expected to be exhibited by
one or more conceptual entities.” (SISO, 2005)

The state-machine of an entity can basically be seen as a
transition from one state to the next upon occurrence
of an event. When composing BOM components, the
state-machines of the components are matched against each
other. To verify matching of the state-machines, the Jess
rule engine (http://herzberg.ca.sandia.gov/jess/) has been
used. Hence, we need to transform the state transitions rules
of the BOMs into the Jess rule format. Jess is a rule engine
and scripting environment, which is used for building
one type of intelligent software called Expert Systems.
The BOM state transitions can be described as Jess rules
such that the head of the rule states the ‘current state’
condition while the body states the ‘next state’ assertion.
The conversion from BOM state-machine format into Jess
rule format can be done automatically, since a Jess rule has
a static template. The template is filled by component name,
current and next state instances. The resulting Jess rule
can be stored together with other OWL items in an OWL
file. The following program illustrates transition of a
Customer entity state-machine from ‘Ready’ state to
‘Waiting’ state written in the Jess rule format.

(defrule Rule-Customer-Send-Join

 (object (is-a Customer) (OBJECT ?objCustomer)

 (:NAME "Customer_Inst") (hasCurrentState ?state&:(eq
(isInstnceName ?state "Customer_Ready") TRUE)))

 =>

 (slot-set ?objCustomer hasCurrentState
Customer_Waiting))

3.3 Entity type mapping
“The entity type template component provides
a mechanism for describing the types of
conceptual entities used to represent senders
and receivers identified within a pattern of
interplay and carry out the role of conceptual
entities identified within a state machine.”
(SISO, 2005)

Taxonomy of entity types can be defined using, for
instance, information provided by the component’s Model
Identification part. The attributes of an entity are annotated
with semantic concepts, for example, by defining unit
for the attributes supported by a hierarchy of units
in the ontology. As already mentioned, since pre- and
post-conditions are defined over these attributes,
more enriched and semantically expressive attributes are
developed.

4 Overall architecture

After describing our assumption, composition methodology
and the SBA, we now explain our implementation
of the proposed composition process and the rules that we
have defined to check the composability of BOM-based
components. Figure 6 depicts the proposed architecture
for implementing the component-based simulation
model development process. The two main phases, namely
discovery and matching, are highlighted and the
applicable rules (if any) at each phase are shown.
Obviously, the syntax checking rules are applied before
semantic counterparts.

In the following sections, we will describe these two
phases in more detail and explain the rules that are being
defined and applied at each phase.

Figure 6 Proposed Architecture for implementing the
component-based model development process

4.1 Discovery phase

Although the primary focus of this work is not
implementing the discovery phase, we briefly describe how
BOMs can be extracted from a repository. In Table 1,
we present the discovery rules and the items, which are
being examined. As described earlier, the SRML object
model contains the names of BOMs and their interactions.
This is mainly syntactical information. The discovery
module will look for any BOM containing entity (ies) with
name (s) stated in the SRML object model. Consequently,
a set of BOMs will be retrieved. The discovery rules are
later employed to filter out irrelevant BOMs by comparing
their signature (event name, number of parameters, entity
type and message data type) with those stated in the
simulation model (SRML Object Model). Discovery Rule-1
compares for each BOM the name of events initiated by or
targeted to that BOM (an entity in the BOM) and filters
out BOMs lacking those interactions. Next, the number of
parameters for a message carried by each event is checked
by Discovery Rule-2, and mismatching ones will be
removed.

140 F. Moradi et al.

Table 1 Discovery rules

Discovery
layer

Feature to be
checked What is checked Rule

Action Event Name D-Rule-1 Syntactic
Message Number of

parameters
D-Rule-2

Entity Entity Type D-Rule-3 Semantic
Message Data Type D-Rule-4

This is a very naive discovery algorithm. However, it
can be improved if some semantic filtering is also applied
during the discovery phase. A hierarchy of entity types can
be defined in the Ontology as part of the SBA so that, one
can also retrieve all the BOMs containing entities which
are sub-class or super-class of the queried entity type
(Discovery Rule-3). More BOMs would be filtered out
if we check the data type of message parameters
(Discovery Rule-4). In that case, we need to state the
data type of message parameters in the simulation model.
The comparison is done by having taxonomy of data types,
defined in the SBA. The accuracy of the discovery process
is dependent on the amount of metadata and semantic
information that each component contains and exposes,
the search criteria, and the structure of the component
repository. The latter is out of the scope of this paper.

4.2 A three-layer matching method

The idea of composability stack is inspired by the work
done by Medjahed and Bouguettaya (2006). In Medjahed
and Bouguettaya (2006), the authors define Syntactic,
Static-Semantic and Dynamic-Semantic attributes as the
following:

“Syntactic attributes represent the structure
of a service operation. An example of
syntactic attribute is the list of input and
output parameters that define the operation’s
messages. The semantic attributes are divided
into two groups:”

“Static Semantic attributes describe features
that are not related to the execution of the
operation. Dynamic-semantic attributes refer to
the way and constraints under which the
operation is executed. An example of dynamic
attributes is the business logic of the operation,
i.e., the results returned by the operation given
certain parameters and conditions.”

Even though we use the same terminology as in Medjahed
and Bouguettaya (2006), our definitions of the layers
are slightly different. Syntax layer rules verify whether
two actions can be combined syntactically or not.
The static semantic rules compare the semantic values of the
actions, messages and entities via their supportive ontology.
Since this ontology information is unchanged (static) during
the action execution, the operating rules are called

Static Semantic rules. Dynamic-semantic rules verify the
BOM matching during action execution. Since the rules
deal with pre-/post-condition and state-machine of BOMs
(the conditions and state-machine are supported by the
ontology), it is called Dynamic-Semantic layer.

Our composability stack is presented in Table 2.
There are some composition rules in each layer of the stack
verifying the composability of different items (data type,
unit, component, state-machine, etc.). The weight column is
used to set the composability degree of components, as
explained in Section 4.2.5. The weight value indicates the
significance of the corresponding rule from the composer’s
point of view (Medjahed and Bouguettaya, 2006)).
The composability degree of components is based on the
composability degree of events, i.e., a send event in one
component with the corresponding receive event in the
peer component. The composability degree for an event is
computed after finding the degree of similarity at each
feature and level. If the degree is greater than or equal to
some threshold, then the component or entity is a potential
candidate.

Table 2 Composability stack

Composition
layer

Feature to be
checked

What is
checked Rule Weight

Message Message
name

Rule-1 W1

Mode In/Out Action

Binding Horizontal

Syntactic

Parameters Number of
parameters

Rule-2 W2

Entity Entity type
(Source and
target of
message

Rule-3 W3

Unit Rule-4 W4

Static
semantic

Parameters
Data Type Rule-5 W5
Action
(Pre-cond and
post cond)

Rule-6Dynamic
semantic

State machine
of composition
(State machines
+ Pre/Post
conditions
on events)

State machine

4.2.1 Syntactic layer

In the syntactic layer, the syntax of composition is verified
by checking syntactic aspects of actions and messages.
The bindings and mode attributes present the syntactic
attributes of an action. The bindings clarify how two actions
can be combined. The ‘mode’ of an action indicates whether
the action initiates the interaction or it is invoked as a result
of the interaction. The number of message parameters
and event name should be the same for both In action and
respective Out action. Syntactic matching is done by the
following two rules:

A rule-based semantic matching of base object models 141

(Rule-1)–Message Name. The name of the message in
the simulation scenario with the one in the candidate
component should be exactly matched. Also, we could
use a dictionary to resolve synonym names.

(Rule-2)–Number of Parameters. The quantity of
parameters of an event in the model with those of the
candidate should be equal.

4.2.2 Static semantic layer

Static Semantic layer compares semantics of the events
by using the semantic information provided by the SBA.
This semantic information consists of data type and unit of
each parameter (for instance, Centimetre or Inch) as well as
the ontology of the event initiator and receiver entities.

Entity Type. It gives the type of the entity
initiating/receiving the event. We assume a predefined
taxonomy for entities in the ontology. The entity type
for event initiator and the one which receives the event
in both components, BOMs, should be either
exactly the same or be in the same hierarchy (Rule-3).
For example, consider Customer, RestaurantCustomer
and SwedishRestaurantCustomer taxonomy.

Unit. “It refers to the measurement unit in which
parameter’s content is provided” (Medjahed and
Bouguettaya, 2006). The unit of a parameter in both
sides either should be the same or can be convertible
without loss of information (Rule-4). For example,
converting Swedish Krona to Singaporean Dollar.

Data Type (of Parameters). “It gives the range of
values that may be assigned to the parameter”
(Medjahed and Bouguettaya, 2006). The type of
parameters of the events in both event initiator and
event receiver should be compatible (Rule-5).

4.2.3 Dynamic-semantic layer

Pre/post-conditions can be used to indicate the context
within which a component operates, hence defining
different types of constraints. By comparing these
pre/post-conditions one can identify potential constraint
violations. In Medjahed and Bouguettaya (2006), the
authors point out that plugin-pre form is particularly useful
to check pre/post condition in horizontal composability. It is
stated that plugin-pre relation exists between each two
operations OPi and OPj, if the execution of OPi can be
followed by the execution of OPj and the following
implication is true: PreCondi PostCondi PreCondj.
Here PreCondi and PostCondi refer to pre condition and
post condition of operation OPi, and PreCondj refers to
pre condition of OPj.

By adjusting the original definition of plugin-pre
definition to the concepts in our work, the definition can be
seen as the relation between post-condition of an Out action
with the pre-condition of a matching In action. Thus, the
plugin-pre implication (PreCondsend PostCondsend

PreCondreceive) should be held between the actions of a
send event and the corresponding receive event (Rule-6).

For example, let us consider a Join interaction in which
Customer entity wants to join the queue of a Queue entity
by firing a Join event targeted at the Queue. If Customer
assumes ‘LIFO’ policy for the list it wants to be queued,
and Queue considers ‘FIFO’ policy for the waiting list;
obviously these two entities will not have a successful Join
interaction. This kind of semantic mismatch is discovered in
this layer.

4.2.4 State-machine composition

Syntactic and Static Semantic matching are done to
make sure that the components involved in an interaction,
have consensus on the syntax and semantic of the message
being transmitted and the event causing the interaction.
But this matching is not sufficient since behaviour of
participants (entities) in the interaction still remains
unchecked: Entities expect events to be fired or to be
received at right state (time). Entities will not accept
messages at wrong states. So the order of interactions
among entities should match the current states of the
involved entities.

To illustrate the need for checking the state-machines,
consider the following simple examples with entities, their
states and events that are sent between them. The entities
are denoted as Ci, where i is the number of the entity.
The states are denoted as Sij where i is the number of the
entity that has the state and j is the number of the state.
And finally the events, which are synchronous, are denoted
as Ek,l,m where k is the number of the event, l is the number
of the sender entity and m is the number of the receiver
entity. In the first example (Figure 7), entity C1 has the
states S11, S12, and S13 (S11 is the initial state), and entitiy C2
has the states S21, S22, and S23 (S21 is the initial state). Three
events E1,2,1, E2,1,2, and E3,2,1 are sent between C1 and C2 in
this order. We should also mention that the entities agree on
the syntax and the semantics of the events. However, the
two entities are not composable since when event E2,1,2 is
fired C2 is at the wrong state (S22 instead of S23) and
hence can not accept the event and change its state. While
in Figure 8, entities C1 and C3 are composable since
both entities are at right states when the events are sent.
These examples show that an agreement on syntax and
semantics of events between components is not sufficient
to ensure that they are composable.

Figure 7 Example illustrating state-machine mismatch between
entities C1 and C2

142 F. Moradi et al.

Figure 8 Example illustrating state-machine match between
entities C1 and C3

Since post-conditions are directly resulted from state-
machine transitions, both kind of matching, state-machine
and dynamic-semantic matching, are done at the same time.
To discover both types of mismatches, state-machine
of all involved entities will be ‘executed’ based on given
interactions in the simulation model. The state-machine
execution follows two major goals:

All events, stated in the simulation scenario, can be
applied to the state-machine of the involved entities
such that each entity accepts or initiates the designated
events and possibly changes its state.

There is no conflict in understanding the semantic
of interactions (Out action and the corresponding
In action) among the entities.

In a successful state-machine execution, there are no
unapplied rules and each send event is proceeded by
corresponding receive event.

4.2.5 Deterministic vs. non-deterministic
state-machines

Determinism, in the context of state-machines, means that
for every input stream (set of events indicated in simulation
scenario in our case) there is exactly one execution path
(e.g., state-machines presented in Figures 7 and 8). In the
case of non-deterministic state-machines, there could be
more than one possible execution for some of the input
streams. Consequently, the matching algorithm becomes
more complex.

In this paper, we address an automatic state-machine
matching, as a necessary step for automatic BOM
composition, provided that the behaviour of the components
is deterministic. However, since this is a simplification of
the reality, we shortly discuss how non-deterministic
behaviour in state-machines affects our work. There are two
types of non-deterministic behaviour:

Non-deterministic events. Non-deterministic events
occur when there is more than one applicable event
to the current state and each event has a probability
(of taking place) greater than zero. In the BOM
specification (SISO, 2005), two groups of such
non-deterministic events are identified, Variations and
Exceptions. Variation means that different events
result in successful execution of a task. For instance,
in Figure 9, both ‘PayByCach’ and ‘PayByCredit’
events are applicable to ‘ReadyToPay’ state and
(eventually) lead the Customer entity to the

‘WaitForReceipt’ state (i.e., payment is done!).
The second group, Exceptions, refer to undesired but
potential behaviour of an entity. They usually refer to
error events, e.g., ‘InvalidCreditCard’ event in Figure 9.
At the moment our work does not cover this type of
non-determinism automatically, but it can be extended
easily to support it.

Non-deterministic states. Non-deterministic states
mean that one event causes two or more transitions to
different states. This might, for instance, occur because
of modelling randomness exposing non-deterministic
properties of a component (Henzinger, 2001).
Neither of our matching algorithm nor the rule-based
library (Jess), leveraged in the implementation, can
handle this type of non-determinism.

Figure 9 Non-deterministic events in customer state-machine
(see online version for colours)

The effect of non-deterministic behaviour (state-machine)
on WS composition is widely studied in WSs area
(for instance Berardi et al. (2005)), but their approaches and
results are not easily applicable to modelling and simulation
domain and further investigation is required.

4.2.6 Composability degree

In many practical situations, it may be difficult to compose
a model that satisfies all SRML specifications. In such
cases, one would be interested to find out how good the
composed model is. For this purpose, we define a
composability degree.

In Table 3, each level i is assigned a weight Wi, and
each rule Rij belonging to level i is assigned a weight Wij.
The function Satisfied(Rulex) is defined for each pair of
events and returns 1 if the Rulex is satisfied between the two
events and zero otherwise. The following formula is used to
calculate the Composability Degree.

1 1

ComposabilityDegree(X)

= ()
RL i

i ij ij
i j

Action

W W satisfied Rule

A rule-based semantic matching of base object models 143

where

L: Number of composability layers
Ri: Number of rules in layer i
W: Weight assigned to a composability layer or a rule.

The composition framework described here, has been
implemented and evaluated. We have implemented the
application in Java, and utilised Jena inference engine and
the Jess rule engine for reasoning about matching and
composition of BOMs. The BOMs are supported by SBAs
including related ontology. SBAs provide an important
constitute for reasoning about the composability of BOMs.
We believe that development of SBAs by employing
techniques and methods from Semantic Web and WSs
is feasible, and the three-layered scheme is promising and
can improve composition of BOM-based components.
However, the methods used in this approach can be refined,
especially the algorithm for matching conceptual models,
which can be further developed to handle more complex
state-machines.

5 Case study

To evaluate our composition scheme, a simple Restaurant
scenario test application was implemented in Java,
which utilises the Jess rule engine. The scenario can be
seen in Figure 10 in sequence diagram format. There are
five entities in the scenario: Customer, Waiter, Queue,
Table and Chef. Each BOM is supported by an ontology as
part of the SBA, as stated in Section 4. For example, one
can consider a hierarchy of Customers and attributes of a
Customer, for example, FavoriteFood, defined in the
ontology.

The simulation model is described in SRML Light and
in the format which has been explained in Moradi et al.
(2006) and it is given to the test application. The application
first discovers and extracts the potential BOMs from a

repository. Then BOMs which do not pass the discovery
rules in Table 1 are filtered out. Discovery is not the
main goal of this work; therefore, we are not going into
detail in this example. Thereafter, the discovered BOMs are
matched based on the interactions designated to them in the
simulation model. For example, in the above sequence
diagram, Customer asks Waiter for Bill via ‘AskBill’
message, which consists of two subsequent events: event of
sending the ‘AskBill’ message by Customer BOM and
event of receiving the message by Waiter BOM. So,
the action of sending event should be matched with
the action of the corresponding receive event via the
composability rules stated in Table 2 and described at
Section 4.2 (Matching Phase). The semantic comparison
is done by querying Ontology to find out which of the
three relations (, , disjoint) exists between each two
items in the In and respective Out actions .The matched
actions receive a composability degree (explained in
Section 4.2).

Figure 10 Simulation scenario in form of sequence diagram
(see online version for colours)

After matching the actions and assigning composability
degree, the process ends up with the state-machine
composition as stated in Section 4.2. Figures 11 and 12
show the partial state-machine of Customer and Waiter
entities, respectively.

Figure 11 Partial state-machine of customer entity (see online version for colours)

144 F. Moradi et al.

Figure 12 Partial state-machine of waiter entity (see online version for colours)

Figure 13 shows one possible sequence of event passing
among the entities resulting from the state-machine
composition. This sequence of event passing can be
identified using our definition of a successful state-machine
composition (Section 5.2) or alternatively by using the
sequence diagram of the scenario. In this example, the
composition is shown to be successful. As explained earlier
by a successful composition, we mean that all the events are
sent when the sender entities are in the ‘right’ state and are
received by the receiving entities when they are in the state
that allows them to accept those events. In our example, we
verify the matching of the state-machines of the Customer

and Waiter entities. For instance, the Customer entity sends
an event with the action RequestMenu when it is in the
Customer_Sitting state and stays in the same state.
The Waiter entity receives that event when it is in the
Waiter_Ready state. The Waiter changes its state to
Waiter_PresentMenu and sends an event with the
Give_Menu action back to the customer, who receives the
event and changes its state from Customer_Sitting to
Customer_Ordering. Here, the pre-/post-conditions are also
checked and the In and Out actions are matched both
syntactically and semantically. The Components in our
example pass all the matching criteria.

Figure 13 Sequence of event execution resulted form state-machine composition (see online version for colours)

A rule-based semantic matching of base object models 145

6 Conclusions

In this paper, we proposed an SBA to enhance the
semantic expressiveness of BOMs and a three-layer model
for composing BOM-based components. The semantic
enhancement is mainly done through inclusion of ontology
for entities, event and interactions in each component,
and presentation of an OWL-S description for each
component including the state-machines. The three-layer
model contains syntactic matching, static semantic matching
and dynamic-semantic matching based on the information
provided by the SBA. We also described our discovery and
matching rules, which have been implemented in the
Jess inference engine. To test our composition scheme,
we defined simulation scenarios and implemented BOMs
as building blocks for development of those scenarios.
A composability degree was defined to quantify closeness
of the composed model to the model specification. We also
presented a case study to show how SBA and the three-layer
model can be deployed. Our preliminary results show that
the three-layered scheme is promising and can improve
composition of BOM-based components. Future work
consists of further development of our test environment, as
well as more experiments and comprehensive test of our
method using a larger number of components.

Acknowledgement

This is a substantially modified version of a paper published
in DS-RT 2007

References
Berardi, D., De Giacomo, G. and Mecella, M. (2005) ‘Automatic

composition of web services with nondeterministic behavior’,
Proceedings of the 31st International Conference on
Very Large Databases, Norway, pp.613–624.

Gruber, T.R. (1993) ‘A translation approach to portable
ontology specifications’, Knowledge Acquisition, Vol. 5,
No. 2, pp.199–220.

Henzinger, T. (2001) Lecture Notes on State Machines, University
of California at Berkeley, February, http://ptolemy.eecs.
berkeley.edu/eecs20/lectures

Hu, Y., Tan, G. and Moradi, F. (2003) ‘Automatic SOM
compatibility check and FOM development’, Proceedings of
7th IEEE Distributed Simulation and Real-time Applications,
October, Delft, The Netherlands, pp.60–67.

Medjahed, B. and Bouguettaya, A. (2006) ‘A multilevel
composability model for semantic web services’, Journal of
IEEE Transactions on Knowledge and Data Engineering,
Vol. 17, No. 7, July, pp.954–968.

Moradi, F. (2007) ‘Component-based simulation model
development using BOMs and web services’, Proceedings of
the first Asia Modelling Symposium, AMS 2007, March,
Thailand, pp.238–246.

Moradi, F., Ayani, R. and Nordvaller, P. (2006) ‘Simulation
model composition using BOMs’, Proceedings of the 10-th
International Symposium on Distributed Simulation and Real
Time Applications, DS-RT ‘06, October, Spain, pp.242–252.

Morse, K., Petty, M., Reynolds, P., Waite, W. and Zimmerman, P.
(2004) ‘Findings and recommendations from the 2003
composable mission space environments workshop’,
Proceedings of the Spring 2004 Simulation Interoperability
Workshop, April, Arlington, VA, USA, pp.313–323.

Petty, M.D., Weisel, E.W. and Mielke, R.R. (2004) ‘Overview
of a theory of composability’, Proceedings of the Huntsville
Simulation Conference 2004, October, Huntsville, AL, USA,
pp.363–368.

Simulation Interoperability Standards Organization (SISO)
(2005) Guide for Base Object Model (BOM) Use and
Implementation, SISO-STD-003.0-DRAFT-V0.11, SISO Inc.,
Orlando, USA, pp.21–64.

Szabo, C. and Teo, Y.M. (2007) ‘On syntactic composability
and model reuse’, Proceedings of the First Asia Modelling
Symposium, AMS 2007, March, Thailand, pp.230–237.

Weisel, E.W., Petty, M.D. and Mielke, R.R. (2003) ‘Validity of
models and classes of models in semantic composability’,
Proceedings of the Fall 2003 SIW, 14–19 September,
Orlando, FL, USA, pp.526–536.

Websites
BOMworks, http://www.simventions.com/bomworks/
HLA at DMSO, https://www.dmso.mil
IBM Web services tutorial, Online: http://www-106.ibm.com/

developerworks/webservices/
Jess web site, http://herzberg.ca.sandia.gov/jess/
OWL-S: Semantic Markup for Web Services, http://www.w3.

org/Submission/OWL-S/
Semantic Web, http://www.w3.org/2001/sw/
World Wide Web Consortium, Simulation Reference

Markup Language, http://www.w3.org/TR/2002/NOTE-
SRML- 2002121

World Wide Web Consortium, Web Ontology Language, http://
www.w3.org/2004/OWL/

