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Abstract: Creating simulation models via composition of predefined and reusable components is 
an efficient way of reducing costs and time associated with the simulation model development. 
However, to successfully compose models one has to solve the issues of syntactic and semantic 
composability of components. The Base Object Model (BOM) standard is an attempt to ease 
reusability and composition of simulation models. However, the BOM does not contain sufficient 
information for defining necessary concepts and terms to avoid ambiguity, and neither does it 
have any method for dynamic aspects matching conceptual models (i.e., their state-machines).  
In this paper, we present our approach for enhancement of the semantic contents of BOMs and 
propose a three-layer model for syntactic and semantic matching of BOMs. The enhancement 
includes ontologies for entities, events and interactions in each component. We also present an 
OWL-S description for each component, including the state-machines. To test our approach,  
we specify some simulation scenarios and implement BOMs as building blocks for development 
of those scenarios, one of which is presented in this paper. We also define composability degree, 
which quantifies closeness of the composed model to a given model specification. Our results 
show that the three-layer model is promising and can improve and simplify the composition of 
BOM-based components.
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1 Introduction 

Creating simulation models via composition of predefined 
and reusable components is a way to reduce the costs  
and time associated with the simulation model development 
process. This approach has been successfully deployed in 
manufacturing industry and software engineering. However, 
to successfully compose models one has to solve the issues 
of syntactic and semantic composability of components. 
Composability has been defined as  

“the capability to select and assemble  
reusable simulation components in various 
combinations into simulation systems to  
meet user requirements.” (Weisel et al., 2003; 
Petty et al., 2004) 

Syntactic composability is concerned with the  
compatibility of implementation details, such as parameter 
passing mechanisms, external data accesses, and  
timing mechanisms. It is the question of whether a set of 
components can be combined (Hu et al., 2003; Szabo and 
Teo, 2007). Semantic composability, on the other hand,  
is concerned with whether the models that make up  
the composed simulation system can be composed in a 
meaningful way and the composition is valid. (Weisel et al., 
2003; Petty et al., 2004) 

HLA is the most widely used architecture for distributed 
simulations today (https://www.dmso.mil). It provides a 
simulation environment and standards for specifying 
simulation parts via Simulation Object Models (SOMs) and 
interactions between simulation parts via Federation Object 
Models (FOMs). A HLA simulation is named Federation, 
which is composed out of Federates, or simulation parts. 
Through SOMs and FOMs, HLA intends to formalise how 
federates function and how they interact. However, SOMs 
and FOMs do not contain enough semantic information 
about what they intend to simulate and hence, have little 
support for semantic composability. The simulation 
community has recently formulated a standard, the Base 
Object Model (BOM), to ease reusability and composability 
(SISO, 2005). 

In this paper, we investigate how BOMs can be  
used to develop simulation models in a component-based 
fashion and suggest a process for component-based 
simulation development using BOMs. We argue that even 
though the BOM standard looks promising and exhibits 
good capabilities for reuse and composability, through,  
e.g., its conceptual model, it lacks the required semantic 
information for semantic matching and composition. 
Moreover, BOM provides little support for defining 
necessary concepts and terms to avoid ambiguity, and  
there is no method for matching dynamic aspects of 
conceptual models (i.e., their state-machines). We also 
discuss utilisation of Semantic Web and Web Service  
(WS) (http://www.w3.org/2001/sw/; http://www-106.ibm. 
com/developerworks/webservices/) technologies for further 
refinement of the process and improving the semantic 
composition of BOMs. 

The main contributions of this paper are:  

enhancement of BOM by a Semantic BOM Attachment 
(SBA) 

proposing a three-layer method for BOMs matching 

defining composability degree to measure goodness of 
the composed models 

implementation, test and analysis of the SBA and the 
three-layer matching method. 

The rest of this paper is organised as follows. Section 2 
discusses the approach we adopted for the Model 
composition, while Section 3 discusses the SBA.  
The overall architecture of our approach is presented in 
Section 4 and Section 5 provides a case study of a restaurant 
scenario. The conclusion is given in Section 6. 

2 Model composition approach 

To compose a simulation out of components, the 
components need to contain (and expose) some information 
about their internal structure and how they can be used.  
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This information is called metadata and contributes to 
simplified use of a component by others (Morse et al., 
2004). 

Generally, the concepts and terminologies used in 
various components may vary substantially and thus can 
lead to misunderstanding. Hence, the concepts and 
terminologies should be defined in an unambiguous way to 
avoid misunderstandings, particularly if the composition 
process is automated. Ontology is used to help create a 
common understanding among components and to  
improve communication among them (Gruber, 1993). In the 
computer science context, ontology is a description of 
terminologies and frames of references between entities  
that interact with each other. Thus, ontology creates a 
shared understanding of entities and events, and contributes 
to reaching an agreement on meanings of what is 
communicated between the components. This shared 
understanding is the key to discover semantic mismatch 
despite syntactically correct matching. By adding axioms  
to the ontology we can use them to narrow the  
selection criteria and detect semantically mismatching items  
(Gruber, 1993). 

2.1 BOM structure 

A BOM is an XML document that encapsulates the 
information needed to describe a simulation component. 
The BOM concept is based on the assumption that  
piece-parts of simulations and federations can be extracted 
and reused as modelling building blocks or components. 
The interplay within a simulation or federation can be 
captured and characterised in the form of reusable patterns. 
These patterns of simulation interplay are sequences of 
events between simulation elements. BOMs are structured 
into four major parts (SISO, 2005) as can be seen in  
Figure 1, Model Identification, Conceptual Model, Model 
Mapping and HLA Object Model. The Model Identification 
contains metadata about the component. This part includes 
Point Of Contact (POC) information, as well as general 
information about the component itself, such as Type, 
Security Classification, Purpose, Application Domain,  
Use Limitations, and Keywords. 

Figure 1 BOM structure  

The Conceptual Model, which is our main concern here, 
contains information that describes the patterns of interplay 
of the component. This part includes the types of actions 
and events that take place in the component, and is 
described by a pattern description, a state-machine, a listing 
of conceptual entities and events, which correspond to  
how real-world objects and phenomena are modelled in the 
simulation. The pattern description describes the flow  
and dependencies of events and their exceptions. There are 
two additional parts in the BOMs, namely Notes and 
Definitions. These two parts contain semantic information 
about events and entities as well as actions that are specified 
in the Conceptual Model, and are used to provide a human 
readable understanding of the patterns described in the 
BOM.

As BOMs are very new, there is a limited toolset  
available. One of the most comprehensive tools available 
for BOM creation and modelling is BOM works (http:// 
www.simventions.com/bomworks/) from SimVentions. 

The current BOM standard lacks the required semantic 
information to avoid ambiguity. Furthermore, there is no 
method for matching state-machines in the conceptual 
models of different BOMs. To address the above issues,  
we suggest extending the BOM description with a semantic 
attachment through utilisation of WS Technology and 
OWL-S language (Web Ontology Language for Services) 
(http://www.w3.org/Submission/OWL-S/) (explained in 
Section 3). The semantic attachment provides the metadata 
required for discovering the composition of BOMs.  
The matching is performed based on a three-layer  
model containing the syntactic layer, static semantic layer  
and dynamic-semantic layer as explained in Section 4.2, 
utilising a set of rules for reasoning about the compositions. 

2.2 Composition process 

In this section, we describe our process for component-
based model development using BOMs. We assume  
that a simulation developer describes the target scenario 
(simulation to be developed) in a formal manner using 
SRML-Light. The composition process is made up of 
parsing the SRML document to identify the necessary 
components, and then a three-phase process consisting  
of Discovery, Matching and Composition (DMC) of the 
components, as shown in Figure 2. 

The BOM Discovery fetches the BOMs from a 
repository. This activity identifies BOMs only at a very high 
level. BOMs that roughly fit the intent of the simulation or 
match the components specified in the simulation document 
are simply fetched from the repository. 

The BOM Matching compares the fetched set of  
BOMs and decides which BOMs might be suitable for the 
simulation. This is a more complex activity that needs to 
take into account the simulation intent (as described in the 
SRML document). One has to handle issues such as, what 
components fit together semantically and practically and 
how it is done. To compare BOMs, other means such as 
ontologies and reference documents will also be used in this 
activity. In the third phase, the selected components are 
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assembled into a BOM assembly. The DMC procedure is 
shown in Figure 2, where each of the three phases is shown 
in square boxes, and is further discussed in the subsequent 
sections. 

Figure 2 BOM discovery, matching and composition (see online 
version for colours) 

2.2.1 An example 

The idea of the DMC phases could be explained via a 
simple scenario. Assume for example that we wish to 
construct a model of a car that can move forward, turn left, 
turn right and brake. In SRML, we would specify that the 
car is made up out of a car body, an engine, steering, four 
tires and a suspension. Furthermore, there is a repository 
available containing many different types of tires, engines, 
suspensions, etc. In the Discovery phase, we identify the 
components needed in our model, i.e., tires, car bodies, 
engines and fetch them from a BOM repository. In the 
Matching phase, we try out these tires, car bodies and 
engines to see if they can be assembled together.  
For example, it might be that we found bus engines that will 
not be suitable in a small car body. In the last phase, 
composability, we check if the selected parts, that could be 
seen to fit together, can be assembled into a car that have 
the specified functionalities, i.e., can move forward,  
turn right, turn left and brake. 

The composition process described above therefore 
comprises four phases:  

SRML Parsing  

BOM Discovery 

BOM Matching and Composition 

BOM Assembly Building.  

These four phases can be further broken down into  
seven steps, as shown by yellow boxes in Figure 3. Here,  

we give a more detailed description of these four phases  
(seven steps). 

Figure 3 The simulation development process (see online 
version for colours) 

The first phase starts with a description of the target 
simulation written in SRML (http://www.w3.org/TR/2002/ 
NOTE-SRML-2002121). The simulation model contains 
simulation components, and events, as connectors of  
those components. The SRML item classes are seen as 
representation of BOM candidates while events (script-tag 
of SRML) represent actions between components.  
The SRML parsing phase comprises one step, where the 
simulation scenario is parsed and information about 
candidate components is extracted. Here, we assume that a 
simplified version of the SRML, called SRML-Light 
standard is used to describe the simulation scenario  
(Moradi et al., 2006). The ‘Item Class’ tag is utilised as a 
heuristic to identify and extract type of the candidate BOMs. 
As an example, the following program shows how an Item 
Class Queue is written in SRML. 
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The output of the parsing step is a collection of entity  
names and their corresponding send/receive events. We call 
this collection SRML Object Model. In our above example, 
the Queue is an entity in the SRML Object Model
with four events, two send events, TakeSit and JoinAck,
and two receive events QueueNeedsCustomerToJoin
and QueueNeedsTableToFree. CustomerID, TbaleID and 
QueueID are parameters. 

During the BOM discovery phase, a query is built  
based on the SRML Object Model and is sent to the  
BOM repository. The repository returns a set of potential 
candidates corresponding to the query. Afterwards, the 
candidate BOMs are matched syntactically (number of 
parameters and event name) and semantically (parameter 
data type and entity type) against the SRML object  
model and the irrelevant BOMs are filtered, see 4.1. In our 
example, the result of the query could be a number of Queue
BOMs. However, not all of them will necessarily match the 
syntactic and semantic requirements described in the SRML 
object model. 

The BOM matching and composition phase is more 
comprehensive and is about finding the right combination  
of components that satisfy the target simulation description 
(the scenario). Since the discovery step can result in 
variations of components, there can be more than one 
combination of components that may build the desired 
simulation. Hence, this phase starts by making different 
combinations of candidate BOMs. There are different 
methods and algorithms for generating these combinations. 
However, they are not covered in this paper. Next, the 
composer adjusts the combinations based on received 
feedback from syntactic and semantic BOM matching.  
The following steps are done for each combination. 

During the next step of this phase for each interaction, 
stated in the simulation scenario, the syntax of messages  
and actions between involving BOMs in the interaction  
is verified. If the BOMs have consensus on syntactic 
composition, the semantic of BOMs is compared against 
each other based on the interactions, as explained in  
Section 4.2. For instance, a Customer BOM that is designed 
for Fastfood restaurant scenarios is probably not suitable for 
an Italian restaurant scenario where she or he is expected  
to be waited on, since it does not have the right type of 
interactions. 

If the syntax and semantic of all BOMs in the  
set are correct, the state-machine composition starts.  
The state-machines of all components in combination are 
run according to the simulation scenario interactions.  
In a successful run, events passed between components will 
result in successful state transitions. After a successful run, 
the order of action executions will be obtained. 

Finally, having in hand a right set of components, their 
interactions and the order of those, we enter the BOM 
assembly building phase during which a BOM assembly can 
be created from the current set of BOMs. Figure 3 shows 
these seven steps in a flow chart format, where each step is 
represented by a rectangle. 

To realise the proposed process, we have defined a set 
of rules for checking the composability between BOMs. 
These rules are divided into discovery and composition 
rules. An inference engine utilises these rules together with 
BOM descriptions and related ontology to reason about 
composability of components. This requires that BOMs are 
described in a logical language and have proper structure, 
which facilitate the reasoning process. For this purpose,  
we suggest an extension to the current BOM description 
called Semantic BOM Attachment. The SBA is based on 
OWL-S and is explained in more detail in Section 3. 

Before proceeding with the description of our matching 
methodology and composition rules we will explain our 
modelling and composition assumptions in the next section. 

2.3 Modelling and composition assumptions 

For implementation of the composition process, we  
have made the following assumptions. First of all, each 
simulation model is a combination of components
and events. A composed model consists of a number of 
communicating components. These components are  
event-driven, which means they act upon occurrence of 
events. After occurrence of an event a corresponding  
action will be executed, which may cause the generation of 
another event. Components in a composition communicate 
through sending messages. A component Ci can interact 
with another component Cj by sending event message Eij
to it. 

An event is something that happens in time such as 
receiving information about the position of a target by an 
airplane. But by action we mean the service, operation or 
action that is executed after an event has happened, e.g., the 
computation done by the airplane and its change of state can 
be considered as the corresponding action to the above 
event. Basically, we define an action in terms of its effects 
on the environment and itself. Candidates to describe such 
properties are pre- and post-conditions. 

We also assume that an event can be initiated  
(a message can be sent) whenever the precondition of the 
corresponding action becomes true. Similarly, a message 
can be received (a receive event can happen) whenever  
the precondition of the action of respective receive event 
becomes true. Occurrence of an event might result in  
state change in the initiator and the receiver components 
while execution of the corresponding action results in 
effects stated in post-condition on itself or its environment 
(other components). 

Besides the above concepts, there are some assumptions 
regarding the way the composition of actions is done.  
First, composition check is done through matching of the 
SBAs, which will be described in detail in Section 3. 

To avoid any confusion, we assume that each BOM with 
corresponding SBA represents only one entity type. In other 
words, we assume a one-to-one mapping between BOMs 
and entity types. Hence, the terms component and entity  
are used interchangeably in this paper. There is also  
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a one-to-one mapping between each event and the 
corresponding action. 

Finally, the Horizontal combination of actions is 
assumed. In our approach, we do not consider other  
models such as Vertical combination. Horizontal and 
Vertical combinations are fully described in Medjahed  
and Bouguettaya (2006). Two operations/actions can be 
combined Horizontally if they model a supply-chain-like 
combination. We have adopted the original definition  
to the concepts and conditions in our work. We use same 
definition for Horizontal composition but with an extra 
condition. To describe our adopted version of Horizontal 
composition, we need to explain the In and Out mode of 
actions. The mode of an action indicates whether the action 
initiates an interaction, via sending a message, or it is 
invoked as a result of receiving a message. If initiating  
a send event results in execution of an action, this action  
is in out mode. Similarly, capturing a message leads to 
immediate execution of corresponding action which by our 
definition is in In mode. So an action is either in In mode  
or Out mode. The mode cannot be changed dynamically and 
it is assigned to the action during SBA development. 

The Horizontal composition should be a combination  
of an Out action belonging to message sender entity  
with the respective In action of the entity (ies) receiving  
that message. Since getting a message cannot happen  
before posting/sending that message, the first action in the 
Horizontal combination should be the Out action of a send 
event, and the second one should be the In action of a 
receive event. 

2.4 Matching methodology 

As explained in the previous section, we consider 
simulation models as combinations of components and 
events. Therefore, to have a successful composition of 
components these two items should match both syntactically 
and semantically. Our approach for composition is based on 
‘event matching’. Components are checked against each 
other both syntactically and semantically according to the 
interactions they have in the composition. The interactions 
in discrete event simulations are through messages that are 
sent and received. Our aim is to make sure that both sender 
and receiver components have a common understanding 
(syntactic and semantic) of the transmitted message, i.e., the 
message transmitted by a send event to the designated target 
will be captured and handled correctly by the target 
component via respective receive event. 

Furthermore, in a semantically correct composition, 
each component should send and receive events designated 
to it. The challenge here is to make sure that the components 
are capable of ‘following’ the interactions stated in  
the simulation model, i.e., they are capable of executing the 
interactions stated in the simulation model in the right  
order. This problem can be solved through utilisation of 
state-machines. State-machine of each BOM represents the 
events that a component can send or receive in each state. 
One can start from the initial state and run each  
state-machine based on the events it can send (stated in the 

simulation model) or receive (again stated in the simulation 
model). However, the practical solution is a bit more 
complicated since the state-machines of all the components 
involved in the composition need to be run and compared 
against each other while the events (sent or received) are 
handled by the components. In a successful run, components 
must be in the ‘correct’ state when events are executed. 

3 Semantic BOM attachment 

To facilitate semantic matching and composition of  
BOM-based components, we suggest an enhancement of the 
current BOM description through utilisation of the Semantic 
WSs concepts and methods for composition, here referred  
to as SBA. For this purpose, we have mapped the  
BOM descriptions into the OWL-S (http://www.w3.org/ 
Submission/OWL-S/) upper ontology. The main reason for 
this mapping is to use OWL (Web Ontology Language) 
(http://www.w3.org/2004/OWL/) as the underlying 
language for describing BOMs and also utilise the language 
features of OWL-S to improve the semantic expressiveness 
of BOMs and hence, facilitate their semantic discovery and 
composition. 

As mentioned earlier, a BOM consists of three main 
parts: Model Identification, Conceptual Model and Model 
Mapping. Model Identification and Model Mapping sections 
of BOMs provide information about the BOM, entities, their 
attributes, interactions and their parameters. However, the 
metadata of a BOM is mainly embedded in its Conceptual 
Model. Semantic information is added to each item of the 
conceptual model such as data type hierarchy and unit. 
Entity type taxonomy is also introduced for each item.  
Here, we might use information provided by the Model 
Identification, such as ‘Purpose’ and ‘Application Domain’. 
The product is a semantic attachment for each BOM.  
Figure 4 depicts the items of BOM metadata converted into 
SBA plus the supportive ontology. 

In the following sections, we explain our approach for 
adding semantic information to each item of the conceptual 
model. 

Figure 4 Semantic BOM attachment (see online version  
for colours) 

3.1 Mapping pattern of interplay 

The pattern of interplay in BOM provides a mechanism for 
defining a sequence of actions. 

Each event type in BOM is associated with an action,
which contains information about the sender entity, receiver 
entity and content of the message being sent. A one-to-one 
mapping pattern of interplay constitutes (action and entity) 
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to Process Model of OWL-S upper ontology is presented in 
Figure 5. 

In this figure, the BOM pattern of interplay is presented 
by UML class diagram on the right side of the figure, and  

the OWL-S process model on the left side of the figure.  
The dashed lines reveal the mapping direction of constitutes 
of the BOM pattern of interplay to corresponding ones in 
OWL-S process model. 

Figure 5 Mapping pattern of interplay to OWL-S process model (see online version for colours) 

When mapping actions to the OWL-S upper ontology, each 
action is mapped to an atomic process since both by 
definition represent a single step task. Actions are resulted 
from occurrence of events and there are two categories of 
events in BOM: directed events (the intended receivers are 
specified) or undirected events (the intended target  
entities are not specified). In BOM, the former is known as 
Message, and the latter as Trigger. In this work, only the 
action of a BOM Message is discussed (and mapped).  
The mode of an action indicates whether the action is the 
result of sending a message (Out mode) or of receiving a 
message (In mode). In case of Out actions, the input of 
atomic process will be empty whereas the output of atomic 
process will be empty for In actions. This issue is shown in 
Figure 5 by grey vs. black dashed lines coming into input 
and output of process model, respectively. What is mapped  

to input or output of process model is the BOM event 
content consisting of identifiers of event initiator and event 
target entities and related attributes of the involved entities 
in simulation scenario. 

In addition, an action in the OWL-S process model will 
be annotated by a pre- and post-condition pair. The reason is 
to show the effect which the execution of an action has  
on its environment. Such effects represented by pairs of  
pre-condition and post-condition, helps the composer to find 
a suitable component to which its action(s) matches the 
current environment facts. BOM messages are not decorated 
with any type of condition. Hence the pre-/post-conditions 
should be either automatically extracted from other parts of 
BOM like Model Identification by an intelligent agent or to 
be defined manually by the component developer (shown as 
Modeller in Figure 5). 
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Consequently, the pattern of interplay can be assumed as 
a composite process in OWL-S or even a service model,  
as was suggested in Moradi (2007). 

3.2 State-machine mapping 
“The state machine template component 
provides a mechanism for identifying the 
behaviour states expected to be exhibited by 
one or more conceptual entities.” (SISO, 2005) 

The state-machine of an entity can basically be seen as a 
transition from one state to the next upon occurrence  
of an event. When composing BOM components, the  
state-machines of the components are matched against each 
other. To verify matching of the state-machines, the Jess 
rule engine (http://herzberg.ca.sandia.gov/jess/) has been 
used. Hence, we need to transform the state transitions rules 
of the BOMs into the Jess rule format. Jess is a rule engine 
and scripting environment, which is used for building  
one type of intelligent software called Expert Systems.  
The BOM state transitions can be described as Jess rules 
such that the head of the rule states the ‘current state’ 
condition while the body states the ‘next state’ assertion. 
The conversion from BOM state-machine format into Jess 
rule format can be done automatically, since a Jess rule has 
a static template. The template is filled by component name, 
current and next state instances. The resulting Jess rule  
can be stored together with other OWL items in an OWL 
file. The following program illustrates transition of a 
Customer entity state-machine from ‘Ready’ state to 
‘Waiting’ state written in the Jess rule format. 

(defrule Rule-Customer-Send-Join 

 (object (is-a Customer) (OBJECT ?objCustomer) 

 (:NAME "Customer_Inst") (hasCurrentState ?state&:(eq 
(isInstnceName ?state "Customer_Ready") TRUE))) 

 => 

 (slot-set ?objCustomer hasCurrentState 
Customer_Waiting)) 

3.3 Entity type mapping 
“The entity type template component provides 
a mechanism for describing the types of 
conceptual entities used to represent senders 
and receivers identified within a pattern of 
interplay and carry out the role of conceptual 
entities identified within a state machine.” 
(SISO, 2005) 

Taxonomy of entity types can be defined using, for  
instance, information provided by the component’s Model 
Identification part. The attributes of an entity are annotated 
with semantic concepts, for example, by defining unit  
for the attributes supported by a hierarchy of units  
in the ontology. As already mentioned, since pre- and  
post-conditions are defined over these attributes,  
more enriched and semantically expressive attributes are 
developed.

4 Overall architecture 

After describing our assumption, composition methodology 
and the SBA, we now explain our implementation  
of the proposed composition process and the rules that we 
have defined to check the composability of BOM-based 
components. Figure 6 depicts the proposed architecture  
for implementing the component-based simulation  
model development process. The two main phases, namely 
discovery and matching, are highlighted and the  
applicable rules (if any) at each phase are shown. 
Obviously, the syntax checking rules are applied before 
semantic counterparts. 

In the following sections, we will describe these two 
phases in more detail and explain the rules that are being 
defined and applied at each phase. 

Figure 6 Proposed Architecture for implementing the 
component-based model development process 

4.1 Discovery phase 

Although the primary focus of this work is not 
implementing the discovery phase, we briefly describe how 
BOMs can be extracted from a repository. In Table 1,  
we present the discovery rules and the items, which are 
being examined. As described earlier, the SRML object 
model contains the names of BOMs and their interactions. 
This is mainly syntactical information. The discovery 
module will look for any BOM containing entity (ies) with 
name (s) stated in the SRML object model. Consequently,  
a set of BOMs will be retrieved. The discovery rules are 
later employed to filter out irrelevant BOMs by comparing 
their signature (event name, number of parameters, entity 
type and message data type) with those stated in the 
simulation model (SRML Object Model). Discovery Rule-1
compares for each BOM the name of events initiated by or 
targeted to that BOM (an entity in the BOM) and filters  
out BOMs lacking those interactions. Next, the number of 
parameters for a message carried by each event is checked 
by Discovery Rule-2, and mismatching ones will be 
removed. 
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Table 1 Discovery rules 

Discovery 
layer 

Feature to be 
checked What is checked Rule 

Action Event Name D-Rule-1 Syntactic 
Message Number of 

parameters
D-Rule-2

Entity Entity Type D-Rule-3 Semantic 
Message Data Type D-Rule-4 

This is a very naive discovery algorithm. However, it  
can be improved if some semantic filtering is also applied 
during the discovery phase. A hierarchy of entity types can 
be defined in the Ontology as part of the SBA so that, one 
can also retrieve all the BOMs containing entities which  
are sub-class or super-class of the queried entity type 
(Discovery Rule-3). More BOMs would be filtered out  
if we check the data type of message parameters  
(Discovery Rule-4). In that case, we need to state the  
data type of message parameters in the simulation model. 
The comparison is done by having taxonomy of data types, 
defined in the SBA. The accuracy of the discovery process 
is dependent on the amount of metadata and semantic 
information that each component contains and exposes,  
the search criteria, and the structure of the component 
repository. The latter is out of the scope of this paper. 

4.2 A three-layer matching method 

The idea of composability stack is inspired by the work 
done by Medjahed and Bouguettaya (2006). In Medjahed 
and Bouguettaya (2006), the authors define Syntactic, 
Static-Semantic and Dynamic-Semantic attributes as the 
following: 

“Syntactic attributes represent the structure  
of a service operation. An example of  
syntactic attribute is the list of input and  
output parameters that define the operation’s 
messages. The semantic attributes are divided 
into two groups:” 

“Static Semantic attributes describe features 
that are not related to the execution of the 
operation. Dynamic-semantic attributes refer to 
the way and constraints under which the 
operation is executed. An example of dynamic 
attributes is the business logic of the operation, 
i.e., the results returned by the operation given 
certain parameters and conditions.” 

Even though we use the same terminology as in Medjahed 
and Bouguettaya (2006), our definitions of the layers  
are slightly different. Syntax layer rules verify whether  
two actions can be combined syntactically or not.  
The static semantic rules compare the semantic values of the 
actions, messages and entities via their supportive ontology. 
Since this ontology information is unchanged (static) during 
the action execution, the operating rules are called  

Static Semantic rules. Dynamic-semantic rules verify the 
BOM matching during action execution. Since the rules  
deal with pre-/post-condition and state-machine of BOMs 
(the conditions and state-machine are supported by the 
ontology), it is called Dynamic-Semantic layer. 

Our composability stack is presented in Table 2.  
There are some composition rules in each layer of the stack 
verifying the composability of different items (data type, 
unit, component, state-machine, etc.). The weight column is 
used to set the composability degree of components, as 
explained in Section 4.2.5. The weight value indicates the 
significance of the corresponding rule from the composer’s 
point of view (Medjahed and Bouguettaya, 2006)).  
The composability degree of components is based on the 
composability degree of events, i.e., a send event in one 
component with the corresponding receive event in the  
peer component. The composability degree for an event is 
computed after finding the degree of similarity at each 
feature and level. If the degree is greater than or equal to 
some threshold, then the component or entity is a potential 
candidate. 

Table 2 Composability stack 

Composition
layer 

Feature to be 
checked 

What is 
checked Rule Weight

Message Message 
name

Rule-1 W1 

Mode In/Out  Action

Binding Horizontal  

Syntactic 

Parameters Number of 
parameters  

Rule-2 W2 

Entity Entity type 
(Source and 
target of 
message 

Rule-3 W3 

Unit Rule-4 W4 

Static 
semantic 

Parameters
Data Type Rule-5 W5 
Action
(Pre-cond and 
post cond ) 

Rule-6Dynamic 
semantic 

State machine 
of composition 
(State machines 
+ Pre/Post 
conditions  
on events) 

State machine 

4.2.1 Syntactic layer 

In the syntactic layer, the syntax of composition is verified 
by checking syntactic aspects of actions and messages.  
The bindings and mode attributes present the syntactic 
attributes of an action. The bindings clarify how two actions 
can be combined. The ‘mode’ of an action indicates whether 
the action initiates the interaction or it is invoked as a result 
of the interaction. The number of message parameters  
and event name should be the same for both In action and 
respective Out action. Syntactic matching is done by the 
following two rules: 
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(Rule-1)–Message Name. The name of the message in 
the simulation scenario with the one in the candidate 
component should be exactly matched. Also, we could 
use a dictionary to resolve synonym names. 

(Rule-2)–Number of Parameters. The quantity of 
parameters of an event in the model with those of the 
candidate should be equal. 

4.2.2 Static semantic layer 

Static Semantic layer compares semantics of the events  
by using the semantic information provided by the SBA. 
This semantic information consists of data type and unit of 
each parameter (for instance, Centimetre or Inch) as well as 
the ontology of the event initiator and receiver entities. 

Entity Type. It gives the type of the entity 
initiating/receiving the event. We assume a predefined 
taxonomy for entities in the ontology. The entity type 
for event initiator and the one which receives the event 
in both components, BOMs, should be either  
exactly the same or be in the same hierarchy (Rule-3). 
For example, consider Customer, RestaurantCustomer 
and SwedishRestaurantCustomer taxonomy. 

Unit. “It refers to the measurement unit in which 
parameter’s content is provided” (Medjahed and 
Bouguettaya, 2006). The unit of a parameter in both 
sides either should be the same or can be convertible 
without loss of information (Rule-4). For example, 
converting Swedish Krona to Singaporean Dollar. 

Data Type (of Parameters). “It gives the range of 
values that may be assigned to the parameter”
(Medjahed and Bouguettaya, 2006). The type of 
parameters of the events in both event initiator and 
event receiver should be compatible (Rule-5). 

4.2.3 Dynamic-semantic layer 

Pre/post-conditions can be used to indicate the context 
within which a component operates, hence defining 
different types of constraints. By comparing these  
pre/post-conditions one can identify potential constraint 
violations. In Medjahed and Bouguettaya (2006), the 
authors point out that plugin-pre form is particularly useful 
to check pre/post condition in horizontal composability. It is 
stated that plugin-pre relation exists between each two 
operations OPi and OPj, if the execution of OPi can be 
followed by the execution of OPj and the following 
implication is true: PreCondi  PostCondi  PreCondj.
Here PreCondi and PostCondi refer to pre condition and 
post condition of operation OPi, and PreCondj refers to  
pre condition of OPj.  

By adjusting the original definition of plugin-pre
definition to the concepts in our work, the definition can be 
seen as the relation between post-condition of an Out action 
with the pre-condition of a matching In action. Thus, the 
plugin-pre implication (PreCondsend  PostCondsend

PreCondreceive) should be held between the actions of a 
send event and the corresponding receive event (Rule-6).

For example, let us consider a Join interaction in which 
Customer entity wants to join the queue of a Queue entity 
by firing a Join event targeted at the Queue. If Customer 
assumes ‘LIFO’ policy for the list it wants to be queued,  
and Queue considers ‘FIFO’ policy for the waiting list; 
obviously these two entities will not have a successful Join 
interaction. This kind of semantic mismatch is discovered in 
this layer. 

4.2.4 State-machine composition 

Syntactic and Static Semantic matching are done to  
make sure that the components involved in an interaction, 
have consensus on the syntax and semantic of the message 
being transmitted and the event causing the interaction.  
But this matching is not sufficient since behaviour of 
participants (entities) in the interaction still remains 
unchecked: Entities expect events to be fired or to be 
received at right state (time). Entities will not accept 
messages at wrong states. So the order of interactions 
among entities should match the current states of the 
involved entities. 

To illustrate the need for checking the state-machines, 
consider the following simple examples with entities, their 
states and events that are sent between them. The entities 
are denoted as Ci, where i is the number of the entity.  
The states are denoted as Sij where i is the number of the 
entity that has the state and j is the number of the state.  
And finally the events, which are synchronous, are denoted 
as Ek,l,m where k is the number of the event, l is the number 
of the sender entity and m is the number of the receiver 
entity. In the first example (Figure 7), entity C1 has the 
states S11, S12, and S13 (S11 is the initial state), and entitiy C2
has the states S21, S22, and S23 (S21 is the initial state). Three 
events E1,2,1, E2,1,2, and E3,2,1 are sent between C1 and C2 in 
this order. We should also mention that the entities agree on 
the syntax and the semantics of the events. However, the 
two entities are not composable since when event E2,1,2 is 
fired C2 is at the wrong state (S22 instead of S23) and  
hence can not accept the event and change its state. While  
in Figure 8, entities C1 and C3 are composable since  
both entities are at right states when the events are sent. 
These examples show that an agreement on syntax and 
semantics of events between components is not sufficient  
to ensure that they are composable. 

Figure 7 Example illustrating state-machine mismatch between 
entities C1 and C2
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Figure 8 Example illustrating state-machine match between 
entities C1 and C3

Since post-conditions are directly resulted from state-
machine transitions, both kind of matching, state-machine 
and dynamic-semantic matching, are done at the same time. 
To discover both types of mismatches, state-machine  
of all involved entities will be ‘executed’ based on given 
interactions in the simulation model. The state-machine 
execution follows two major goals: 

All events, stated in the simulation scenario, can be 
applied to the state-machine of the involved entities 
such that each entity accepts or initiates the designated 
events and possibly changes its state. 

There is no conflict in understanding the semantic  
of interactions (Out action and the corresponding  
In action) among the entities. 

In a successful state-machine execution, there are no 
unapplied rules and each send event is proceeded by 
corresponding receive event. 

4.2.5 Deterministic vs. non-deterministic  
state-machines

Determinism, in the context of state-machines, means that 
for every input stream (set of events indicated in simulation 
scenario in our case) there is exactly one execution path 
(e.g., state-machines presented in Figures 7 and 8). In the 
case of non-deterministic state-machines, there could be 
more than one possible execution for some of the input 
streams. Consequently, the matching algorithm becomes 
more complex. 

In this paper, we address an automatic state-machine 
matching, as a necessary step for automatic BOM 
composition, provided that the behaviour of the components 
is deterministic. However, since this is a simplification of 
the reality, we shortly discuss how non-deterministic 
behaviour in state-machines affects our work. There are two 
types of non-deterministic behaviour: 

Non-deterministic events. Non-deterministic events 
occur when there is more than one applicable event  
to the current state and each event has a probability  
(of taking place) greater than zero. In the BOM 
specification (SISO, 2005), two groups of such  
non-deterministic events are identified, Variations and 
Exceptions. Variation means that different events  
result in successful execution of a task. For instance,  
in Figure 9, both ‘PayByCach’ and ‘PayByCredit’ 
events are applicable to ‘ReadyToPay’ state and 
(eventually) lead the Customer entity to the 

‘WaitForReceipt’ state (i.e., payment is done!).  
The second group, Exceptions, refer to undesired but 
potential behaviour of an entity. They usually refer to 
error events, e.g., ‘InvalidCreditCard’ event in Figure 9. 
At the moment our work does not cover this type of  
non-determinism automatically, but it can be extended 
easily to support it. 

Non-deterministic states. Non-deterministic states  
mean that one event causes two or more transitions to 
different states. This might, for instance, occur because 
of modelling randomness exposing non-deterministic 
properties of a component (Henzinger, 2001).  
Neither of our matching algorithm nor the rule-based 
library (Jess), leveraged in the implementation, can 
handle this type of non-determinism. 

Figure 9 Non-deterministic events in customer state-machine 
(see online version for colours) 

The effect of non-deterministic behaviour (state-machine) 
on WS composition is widely studied in WSs area  
(for instance Berardi et al. (2005)), but their approaches and 
results are not easily applicable to modelling and simulation 
domain and further investigation is required. 

4.2.6 Composability degree 

In many practical situations, it may be difficult to compose 
a model that satisfies all SRML specifications. In such 
cases, one would be interested to find out how good the 
composed model is. For this purpose, we define a 
composability degree. 

In Table 3, each level i is assigned a weight Wi, and  
each rule Rij belonging to level i is assigned a weight Wij.
The function Satisfied(Rulex) is defined for each pair of 
events and returns 1 if the Rulex is satisfied between the two 
events and zero otherwise. The following formula is used to 
calculate the Composability Degree. 

1 1

ComposabilityDegree( X) 

= ( )
RL i

i ij ij
i j

Action

W W satisfied Rule
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where 

L: Number of composability layers 
Ri: Number of rules in layer i
W: Weight assigned to a composability layer or a rule. 

The composition framework described here, has been 
implemented and evaluated. We have implemented the 
application in Java, and utilised Jena inference engine and 
the Jess rule engine for reasoning about matching and 
composition of BOMs. The BOMs are supported by SBAs 
including related ontology. SBAs provide an important 
constitute for reasoning about the composability of BOMs. 
We believe that development of SBAs by employing 
techniques and methods from Semantic Web and WSs  
is feasible, and the three-layered scheme is promising and 
can improve composition of BOM-based components. 
However, the methods used in this approach can be refined, 
especially the algorithm for matching conceptual models, 
which can be further developed to handle more complex 
state-machines. 

5 Case study 

To evaluate our composition scheme, a simple Restaurant 
scenario test application was implemented in Java,  
which utilises the Jess rule engine. The scenario can be  
seen in Figure 10 in sequence diagram format. There are 
five entities in the scenario: Customer, Waiter, Queue, 
Table and Chef. Each BOM is supported by an ontology as 
part of the SBA, as stated in Section 4. For example, one 
can consider a hierarchy of Customers and attributes of a 
Customer, for example, FavoriteFood, defined in the 
ontology. 

The simulation model is described in SRML Light and 
in the format which has been explained in Moradi et al. 
(2006) and it is given to the test application. The application  
first discovers and extracts the potential BOMs from a 

repository. Then BOMs which do not pass the discovery 
rules in Table 1 are filtered out. Discovery is not the  
main goal of this work; therefore, we are not going into 
detail in this example. Thereafter, the discovered BOMs are 
matched based on the interactions designated to them in the 
simulation model. For example, in the above sequence 
diagram, Customer asks Waiter for Bill via ‘AskBill’ 
message, which consists of two subsequent events: event of 
sending the ‘AskBill’ message by Customer BOM and  
event of receiving the message by Waiter BOM. So,  
the action of sending event should be matched with  
the action of the corresponding receive event via the 
composability rules stated in Table 2 and described at 
Section 4.2 (Matching Phase). The semantic comparison  
is done by querying Ontology to find out which of the  
three relations ( , , disjoint) exists between each two  
items in the In and respective Out actions .The matched 
actions receive a composability degree (explained in  
Section 4.2). 

Figure 10 Simulation scenario in form of sequence diagram  
(see online version for colours) 

After matching the actions and assigning composability 
degree, the process ends up with the state-machine 
composition as stated in Section 4.2. Figures 11 and 12 
show the partial state-machine of Customer and Waiter 
entities, respectively. 

Figure 11 Partial state-machine of customer entity (see online version for colours) 
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Figure 12 Partial state-machine of waiter entity (see online version for colours) 

Figure 13 shows one possible sequence of event passing 
among the entities resulting from the state-machine 
composition. This sequence of event passing can be 
identified using our definition of a successful state-machine 
composition (Section 5.2) or alternatively by using the 
sequence diagram of the scenario. In this example, the 
composition is shown to be successful. As explained earlier 
by a successful composition, we mean that all the events are 
sent when the sender entities are in the ‘right’ state and are 
received by the receiving entities when they are in the state 
that allows them to accept those events. In our example, we 
verify the matching of the state-machines of the Customer

and Waiter entities. For instance, the Customer entity sends 
an event with the action RequestMenu when it is in the 
Customer_Sitting state and stays in the same state.  
The Waiter entity receives that event when it is in the 
Waiter_Ready state. The Waiter changes its state to 
Waiter_PresentMenu and sends an event with the 
Give_Menu action back to the customer, who receives the 
event and changes its state from Customer_Sitting to 
Customer_Ordering. Here, the pre-/post-conditions are also 
checked and the In and Out actions are matched both 
syntactically and semantically. The Components in our 
example pass all the matching criteria. 

Figure 13 Sequence of event execution resulted form state-machine composition (see online version for colours) 
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6 Conclusions 

In this paper, we proposed an SBA to enhance the  
semantic expressiveness of BOMs and a three-layer model 
for composing BOM-based components. The semantic 
enhancement is mainly done through inclusion of ontology 
for entities, event and interactions in each component,  
and presentation of an OWL-S description for each 
component including the state-machines. The three-layer 
model contains syntactic matching, static semantic matching 
and dynamic-semantic matching based on the information 
provided by the SBA. We also described our discovery and 
matching rules, which have been implemented in the  
Jess inference engine. To test our composition scheme,  
we defined simulation scenarios and implemented BOMs  
as building blocks for development of those scenarios.  
A composability degree was defined to quantify closeness 
of the composed model to the model specification. We also 
presented a case study to show how SBA and the three-layer 
model can be deployed. Our preliminary results show that 
the three-layered scheme is promising and can improve 
composition of BOM-based components. Future work 
consists of further development of our test environment, as 
well as more experiments and comprehensive test of our 
method using a larger number of components. 
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