
A Uniform (Bi-)Simulation-Based Framework
for Reducing Tree Automata

Parosh A. Abdulla1

Department of Information Technology
University of Uppsala

Uppsala, Sweden

Lukáš Hoĺık5 ,2

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

Lisa Kaati3

Department of Information Technology
University of Uppsala

Uppsala, Sweden

Tomáš Vojnar5 ,4

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

Abstract

In this paper, we address the problem of reducing the size of nondeterministic (bottom-up) tree automata.
We propose a uniform framework that allows for combining various upward and downward bisimulation and
simulation relations in order to obtain a language-preserving combined relation suitable for reducing tree
automata without a need to determinise them. The framework generalises and extends several previous
works and provides a broad spectrum of different relations yielding a possibility of a fine choice between
the amount of reduction and the computational demands. We, moreover, provide a significantly improved
way of computing the various combined (bi-)simulation relations. We analyse properties of the considered
relations both theoretically as well as through a series of experiments.

Keywords: tree automata, bisimulation, simulation, combined relations, size reduction

Electronic Notes in Theoretical Computer Science 251 (2009) 27–48

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.08.026

http://www.elsevier.com/locate/entcs

1 Introduction

Finite tree automata are a natural generalisation of word automata. Since trees

(or terms) appear in many areas of computer science and engineering, tree au-

tomata are quite broadly applicable—including, for instance, applications in XML

manipulation, natural language processing, or formal verification. In most of these

applications, dealing with as small automata as possible is highly desirable. In order

to reduce the size of a given tree automaton, one can always try to determinise and

minimise it. However, the determinisation may lead to an exponential blow-up in

the size, and even the minimal deterministic automaton might still be bigger than

the original nondeterministic automaton. Moreover, even if the minimal determin-

istic automaton is really small, it might be impossible to compute it due to the very

expensive determinisation step.

An alternative way to reduce a given (nondeterministic) tree automaton is to

identify a suitable, language-preserving equivalence relation over its states and col-

lapse those states that are equal according to this relation. As in the case of word

automata, good candidates for such relations are various bisimulations and simula-

tion equivalences. In particular, the so-called forward and backward bisimulations

and simulation equivalences are well known to be useful when reducing the size of

word automata. In this paper, we deal with their tree automata extensions—the

so-called downward and upward bisimulations and simulation equivalences.

The downward (bi-)simulations, which straightforwardly generalise the appropri-

ate backward (bi-)simulations from word automata to (bottom-up) tree automata,

are compatible with the language inclusion preorder. That is, if a state r downward

(bi-)simulates a state q, then the language accepted by q is a subset of the language

accepted by r. Therefore, these relations are a natural choice for reducing the size

of tree automata.

The upward (bi-)simulations are not compatible with the language inclusion

preorder. Instead, they are compatible with the inclusion of the so-called context

languages, where a context of a state q arises from a tree accepted at q by replacing

some of its leaves by a “hole”. It can, however, be shown that when we restrict our-

selves to upward (bi-)simulations compatible with the set of final states of automata,

the downward and upward (bi-)simulations can be combined in such a way that they

yield a language-compatible equivalence. In the worst case, the combined relation

is as coarse as the appropriate downward (bi-)simulation equivalence, but according

to our practical experiments, it usually leads to significantly better reductions of

the automata.

Tree bisimulations can be computed efficiently in time O(r̂2 m log n) where r̂

is the maximal rank of the input symbols, m the size of the transition table, and

n the number of states of the given tree automaton [3,9,1]. However, the reduction

1 Email: parosh@it.uu.se
2 Email: holik@fit.vutbr.cz
3 Email: lisa.kaati@it.uu.se
4 Email: vojnar@fit.vutbr.cz
5 This work was supported by the Czech Science Foundation (projects 102/07/0322, 102/09/H042) and the
Czech Ministry of Education, Sports, and Youth by the project MSM 0021630528.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–4828

mailto:parosh@it.uu.se
mailto:holik@fit.vutbr.cz
mailto:lisa.kaati@it.uu.se
mailto:vojnar@fit.vutbr.cz

obtained by using bisimulations is often limited. Tree simulations are weaker than

bisimulations and hence offer a better reduction. On the other hand, despite the

recent advances in algorithms devised for computing them [2], they are significantly

more expensive to compute. The time complexity of computing simulation preorders

is roughly in O(� r̂2 m2) where � is the size of the alphabet.

In this paper, we propose a novel notion of upward simulations and bisimula-

tions parameterised by an inducing downward simulation or bisimulation (in any

possible combination). Moreover, we introduce a new operator—called a weaken-

ing combination operator—for combining such upward and downward simulation

and bisimulation relations on tree automata. This way, we obtain a uniform tree

(bi-)simulation framework which brings in several significant advantages.

First, the proposed framework allows one to combine not only maximal down-

ward and upward simulations or maximal downward and upward bisimulations as

considered in previous works [2,1], but to combine any inducing downward simu-

lation (i.e., also a downward bisimulation or, e.g., the identity relation) with any

induced upward simulation (i.e., also a bisimulation or identity). This way, we ex-

plain in a uniform way several previous results [9,2,1] and, moreover, we obtain

several new combined relations suitable for reducing tree automata. The use of

such relations mixing in various ways the advantages of simulations and bisimula-

tions allows the user to fine-tune the ratio between the possible reductions and their

cost.

We carefully analyse mutual relationships of the various considered relations.

We establish a certain partial ordering between their reduction capabilities, but we

also show that many of them have an incomparable reduction power.

Further, compared to the previous works, the newly proposed combination

operator brings in also a significantly improved way of computing the combined

(bi-)simulation relations. Before the combination was accomplished by randomly

looking for some combined relation satisfying the needed requirements. The newly

proposed combination operator computes a maximal combined relation, which we

show to be unique. The algorithm that we propose for this purpose turns out to be

quite simple and runs in time O(n3) (or, in fact, even in a slightly better time). The

use of the maximal combined relations turns out to itself give much better results

in our experiments than the previously used random combination algorithms. Let

us also note that the notion of combined (bi-)simulation relations that we propose

is applicable even for word automata as for a special case of tree automata.

In order to experimentally examine the broad spectrum of relations offered by

our framework, we implemented a prototype tool in which we have performed thor-

ough experiments with tree automata from the domain of formal verification of

infinite-state systems based on the so-called regular tree model checking and ab-

stract regular tree model checking [6,4,7,5]. Our experimental results confirm that

we have obtained a broad range of algorithms for reducing tree automata, differing

in their computation complexity and reduction capabilities.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–48 29

Related Work.

Several algorithms for reducing the size of non-deterministic tree automata while

preserving their language have been proposed in the literature. The first attempt

was done in [3] where an algorithm inspired by the partition refinement algorithm by

Paige and Tarjan [11] was presented. In [9], two different types of bisimulations—

a backward and forward bisimulation—were presented. These bisimulations turn

out to be special cases of the relations arising in our framework.

Efficient algorithms for computing simulation equivalences over tree automata

have then been discussed in [2] together with a proposal of combined simulation

relations. In [1], the ideas from [2] were extended to work for bisimulations. In

this paper, we combine these previous works in a framework which allows us to

explain them in a uniform way and, moreover, to obtain multiple new relations

applicable for reducing tree automata. The obtained framework allows the user to

mix advantages of simulation and bisimulation approaches in a degree suitable for

a given scenario. The way we use for computing the upward and downward relations

that we are dealing with is inspired by the approach of [2] and [1]. We, however,

provide a new and significantly improved way of combining these relations via the

newly proposed weakening combination operator.

Plan of the Paper.

The rest of the paper is organised as follows. We start with some preliminaries

in Section 2. In Section 3, we introduce the notions of downward (bi-)simulations,

and propose the notion of parameterised upward (bi-)simulations. Subsequently,

in Section 4, we propose the weakening combination operator and its use for ob-

taining combined relations suitable for reducing tree automata. Next, Section 5

analyses properties of the most interesting possible combined relations. Section 6

overviews algorithms usable for computing downward and upward (bi-)simulations

and proposes an algorithm for computing their combinations. In Section 7, we give

an experimental evaluation of using the obtained spectrum of relations for reducing

tree automata. Finally, we summarise the paper and discuss possible future work

in Section 8.

2 Preliminaries

In this section, we introduce some preliminaries on relations, trees, and tree au-

tomata.

Trees.

A ranked alphabet Σ is a set of symbols together with a function # : Σ → N. For

f ∈ Σ, the value #(f) is called the rank of f . For any n ≥ 0, we denote by Σn the

set of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree t over

a ranked alphabet Σ is a partial mapping t : N∗ → Σ that satisfies the following

conditions:

• dom(t) is a finite, prefix-closed subset of N∗, and

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–4830

• for each p ∈ dom(t), if #(t(p)) = n ≥ 0, then {i | pi ∈ dom(t)} = {1, . . . , n}.

Each sequence p ∈ dom(t) is called a node of t. For a node p, we define the ith

child of p to be the node pi, and the ith subtree of p to be the tree t′ such that

t′(p′) = t(pip′) for all p′ ∈ N∗. A leaf of t is a node p which does not have any

children, i.e., there is no i ∈ N with pi ∈ dom(t). We denote by T (Σ) the set of all

trees over the alphabet Σ.

Tree Automata.

A (finite, non-deterministic, bottom-up) tree automaton (abbreviated as TA in

the following) is a quadruple A = (Q,Σ,Δ, F) where Q is a finite set of states, F ⊆ Q

is a set of final states, Σ is a ranked alphabet, and Δ is a set of transition rules.

Each transition rule is a triple of the form ((q1, . . . , qn), f, q) where q1, . . . , qn, q ∈ Q,

f ∈ Σ, and #(f) = n. We use (q1, . . . , qn)
f

−→ q to denote that ((q1, . . . , qn), f, q) ∈
Δ. In the special case where n = 0, we speak about the so-called leaf rules, which

we sometimes abbreviate as
f

−→ q. We use Lhs(A) to denote the set of left-hand

sides of rules, i.e., the set of tuples of the form (q1, . . . , qn) where (q1, . . . , qn)
f

−→ q

for some f and q. Finally, we denote by r̂(A) the smallest n ∈ N such that n ≥ m

for each m ∈ N where (q1, . . . , qm) ∈ Lhs(A) for some qi ∈ Q, 1 ≤ i ≤ m. We omit

the reference to A if no confusion may arise.

A run of A over a tree t ∈ T (Σ) is a mapping π : dom(t) → Q such that, for

each node p ∈ dom(t) where q = π(p), if qi = π(pi) for 1 ≤ i ≤ n, then Δ has a rule

(q1, . . . , qn)
t(p)
−→ q. We write t

π
=⇒ q to denote that π is a run of A over t such that

π(ε) = q. We use t =⇒ q to denote that t
π

=⇒ q for some run π. The language of

a state q is defined by L(q) = {t| t =⇒ q}, while the language of A is defined by

L(A) =
⋃

q∈F L(q).

An environment is a tuple of the form ((q1, . . . , qi−1,�, qi+1, . . . , qn), f, q) ob-

tained by removing a state qi, 1 ≤ i ≤ n, from the ith position of the left hand

side of a rule ((q1, . . . , qi−1, qi, qi+1, . . . , qn), f, q), and by replacing it by a spe-

cial symbol � �∈ Q (called a hole below). Like for transition rules, we write

(q1, . . . ,�, . . . , qn)
f

−→ q provided ((q1, . . . , qi−1, qi, qi+1, . . . , qn), f, q) ∈ Δ for some

qi ∈ Q. Sometimes, we also write the environment as (q1, . . . ,�i, . . . , qn)
f

−→ q to

emphasise that the hole is at position i. We denote the set of all environments of

A by Env(A) and we will drop the reference to A if no confusion may arise.

Relations.

For an equivalence relation ≡ defined on a set Q, we call each equivalence class

of ≡ a block, and use Q/≡ to denote the set of blocks in ≡. For a preorder P , we

will denote ≡P the maximal equivalence included in P .

Quotient Tree Automata.

The idea of reducing the size of an automaton is to identify suitable equivalence

relations on its states, and then collapse the sets of states which form equivalence

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–48 31

classes. Consider a TA A = (Q,Σ,Δ, F) and an equivalence relation ≡ on Q. The

quotient tree automaton derived from A and ≡ is A≡ = (Q≡,Σ,Δ≡, F≡) where:

• Q≡ is the set of blocks in ≡. In other words, we collapse all states which belong

to the same block into one state of the quotient automaton.

• (B1, . . . ,Bn)
f

−→ B iff (q1, . . . , qn)
f

−→ q for some q1 ∈ B1, . . . , qn ∈ Bn, q ∈ B.

This is, there is a transition in the quotient automaton iff there is a transition

between states in the corresponding blocks in the original TA.

• F≡ contains a block B iff B∩F �= ∅. Intuitively, a block is accepting if it contains

a state which is accepting.

3 (Bi-)Simulations on Tree Automata

We now present definitions of downward (bi-)simulations and subsequently, we pro-

pose a notion of upward (bi-)simulations parameterised by a downward simulation

as one of the cornerstones of our framework. We will call a downward simulation

that is used as a parameter of an upward (bi-)simulation an inducing relation, and

the obtained upward (bi-)simulation will then be called an induced relation.

In the next section, we will show how a pair of an inducing and induced relation

can be combined into a new equivalence suitable for reducing tree automata. Note

that the inducing relation is thus used in two different ways: as a parameter of the

upward (bi-)simulation and as a constituent of the combined relation. By consid-

ering various inducing relations, we obtain a wide spectrum of combined relations

differing in their computational complexity and coarseness (which is usually better

and never worse than that of the inducing relation).

3.1 Downward (Bi-)Simulations

For a tree automaton A = (Q,Σ,Δ, F), a downward simulation D is a binary

relation on Q such that if qDr and (q1, . . . , qn)
f

−→ q, then (r1, . . . , rn)
f

−→ r with

qiDri for each i : 1 ≤ i ≤ n. A downward bisimulation D is a binary relation on Q

such that if qDr, then (q1, . . . , qn)
f

−→ q if and only if (r1, . . . , rn)
f

−→ r with qiDri

for each i : 1 ≤ i ≤ n.

The two lemmas below state some basic properties of downward (bi-)simulations.

Lemma 3.1 The set of all downward simulations on A is closed under reflexive

and transitive closure and under union.

Proof. Union: Given two downward simulations D1 and D2, we want to prove

that D = D1 ∪ D2 is also a downward simulation. Let qDr for some q, r ∈ Q, then

either qD1r or qD2r. Assume without loss of generality that qD1r. Then, from the

definition of downward simulations, whenever (q1, . . . , qn)
f

−→ q, then there is a rule

(r1, . . . , rn)
f

−→ r with qiD1ri for all i : 1 ≤ i ≤ n. As D1 ⊆ D gives qiDri for all

the positions i, D fulfils the definition of a downward simulation.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–4832

Reflexive closure: It can be seen from the definition of downward simulations

that the identity is a downward simulation. Thus, the union of the identity and any

downward simulation is a downward simulation.

Transitive closure: Let D be a downward simulation and let DT be its transitive

closure. Let q1DT qm and (q1
1, . . . , q

1
n)

f
−→ q1. From q1DT qm, we have that there

are states q1, . . . , qm such that q1Dq2D . . . Dqm. Therefore, from the definition of

downward simulations, there are also rules (q1
1 , . . . , q

1
n)

f
−→ q1, . . . , (qm

1 , . . . , qm
n)

f
−→

qm with q1D . . . Dqm, and q1
i D . . . Dqm

i for all i : 1 ≤ i ≤ n. Thus, as DT is the

transitive closure of D, we obtain q1
i DT qm

i for all i : 1 ≤ i ≤ n. We have proven

that DT fulfils the definition of downward simulations. �

Lemma 3.2 The set of all downward bisimulations on A is a subset of the set of

all downward simulations on A and it is closed under symmetric, reflexive, and

transitive closure and under union.

Proof. The fact that each downward bisimulation is also a downward simulation

follows straight from the definitions of these relations. The closure under union,

reflexivity, and transitivity can be proven analogically as in the case of downward

simulations. What remains is the closure under symmetry. Let D be a downward

bisimulation and let DS = D ∪ D−1 be its symmetrical closure. It is sufficient to

prove that D−1 is a downward bisimulation because then, from the closure under

union, DS is a downward bisimulation too.

Let qD−1r. Then, from rDq, we have that (r1, . . . , rn)
f

−→ r if and only if

(q1, . . . , qn)
f

−→ q with riDqi for all i : 1 ≤ i ≤ n. As rDq is equivalent to

qD−1r, we can write that (q1, . . . , qn)
f

−→ q iff (r1, . . . , rn)
f

−→ r with qiD
−1ri for

all i : 1 ≤ i ≤ n. We directly see that D−1 matches the definition of downward

bisimulations. �

Lemma 3.1 and Lemma 3.2 imply that for a given tree automaton, there is

a unique maximal downward bisimulation which is an equivalence and a unique

maximal downward simulation which is a preorder. We note that the notion of

downward bisimulations corresponds to that of backward bisimulations from [9].

The obvious fact that any downward bisimulation is a downward simulation al-

lows us to simplify some further reasoning by considering just downward simulations

and handling bisimulations as their special case.

3.2 Induced Upward Simulations

Given a tree automaton A = (Q,Σ,Δ, F) and an inducing downward simulation

preorder D on A, an upward simulation U induced by D is a binary relation on Q

such that if qUr, then

(i) if (q1, . . . , qn)
f

−→ q′ with qi = q, 1 ≤ i ≤ n, then (r1, . . . , rn)
f

−→ r′ with

ri = r, q′Ur′, and qjDrj for each j : 1 ≤ j �= i ≤ n;

(ii) q ∈ F =⇒ r ∈ F .

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–48 33

The following lemma subsumes basic properties of upward simulations. Note

that it also implies that for any inducing downward simulation preorder D, there is

always a unique maximal upward simulation induced by D which is a preorder.

Lemma 3.3 Given a downward simulation preorder D on A, the set of all upward

simulations induced by D is closed under reflexive and transitive closure and under

union.

Proof. Union: Given two upward simulations U1 and U2 induced by D, we want

to prove that U = U1 ∪U2 is also an upward simulation induced by D. Let qUr for

some q, r ∈ Q, then either qU1r or qU2r. Assume without loss of generality that

qU1r. Then, from the definition of upward simulations, whenever (q1, . . . , qn)
f

−→ q′

with qi = q, then there is a rule (r1, . . . , rn)
f

−→ r′ with q′U1r
′, q′ ∈ F =⇒ r′ ∈ F ,

and qjDrj for all j : 1 ≤ j �= i ≤ n. As U1 ⊆ U gives q′Ur′, U fulfils the definition

of upward simulations induced by D.

Reflexive closure: It can be seen from the definition that the identity is an up-

ward simulation induced by D for any downward simulation preorder D. Therefore,

from the closure under union, the union of the identity and any upward simulation

induced by D is an upward simulation induced by D.

Transitive closure: Let U be an upward simulation induced by D and let

UT be its transitive closure. Let q1UT qm and (q1
1 , . . . , q

1
n)

f
−→ r1 with q1 = q1

i .

From q1UT qm, we have that there are states q1, . . . , qm such that q1Uq2U . . . Uqm.

Therefore, there are also rules (q1
1 , . . . , q

1
n)

f
−→ r1, . . . , (qm

1 , . . . , qm
n)

f
−→ rm with

q1
i = q1

i , . . . , q
m
i = qm, r1U . . . Urm, r1 ∈ F =⇒ . . . =⇒ rm ∈ F , and q1

j D . . . Dqm
j

for all j : 1 ≤ j �= i ≤ n. Thus, from the definition of UT , we have r1UT rm, from

the transitivity of =⇒ , we have r1 ∈ F =⇒ rm ∈ F , and from the transitivity of

D, we have q1
j Dqm

j for all j : 1 ≤ j �= i ≤ n. We have thus proven that UT fulfils

the definition of an upward simulation induced by D. �

3.3 Induced Upward Bisimulations

Let A = (Q,Σ,Δ, F) be a tree automaton and let D be a downward simulation

preorder on A. An upward bisimulation U on A induced by D is a binary relation

on Q such that if qUr, then

(i) (q1, . . . , qn)
f

−→ q′ with qi = q, 1 ≤ i ≤ n, if and only if (r1, . . . , rn)
f

−→ r′ with

ri = r, q′Ur′, and qj ≡D rj for each j : 1 ≤ j �= i ≤ n;

(ii) q ∈ F ⇐⇒ r ∈ F .

As for upward simulations, it is not hard to prove the basic properties of up-

ward bisimulations. Note that the following lemma implies that for any downward

simulation preorder D, there is a unique maximal upward bisimulation induced by

D that is an equivalence. It is also clear that any upward bisimulation induced by

D is also an upward simulation induced by D. This will allow us to prove the main

results just for upward simulations and maintain bisimulations as a special case.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–4834

Lemma 3.4 Given a downward simulation preorder D on A, the set of all upward

bisimulations induced by D is a subset of the set of all upward simulations induced

by D and it is closed under symmetric, reflexive, and transitive closure and under

union.

Proof. The fact that each upward bisimulation induced by a downward simulation

D is also an upward simulation induced by D follows straight from the definitions of

these relations. The closure under union, reflexivity, and transitivity can be proven

analogically as in the case of upward simulations. What remains is the closure under

symmetry. Let U be an upward bisimulation induced by a downward simulation

preorder D and let US = U∪U−1 be its symmetrical closure. It is sufficient to prove

that U−1 is an upward bisimulation induced by D because then, from the closure

under union, US is an upward bisimulation induced by D too.

Let qU−1r. Then, from rUq, we have that (r1, . . . , rn)
f

−→ r′ with r = ri if

and only if (q1, . . . , qn)
f

−→ q′ with q = qi, r′Uq′, and rj ≡D qj for all j : 1 ≤
j �= i ≤ n. As ≡D is an equivalence and as r′Uq′ is equivalent to q′U−1r′, we can

write (q1, . . . , qn)
f

−→ q′ with q = qi iff (r1, . . . , rn)
f

−→ r′ with r = ri, q′U−1r′, and

qj ≡D rj for all j : 1 ≤ j �= i ≤ n. We directly see that U−1 matches the definition

of an upward bisimulation induced by D. �

Let us note that the notion of an upward bisimulation induced by the identity

relation corresponds to the notion of a forward bisimulation from [9].

4 Combined Relations for Reducing Tree Automata

Upward simulation equivalences and upward bisimulations alone cannot be used for

reducing tree automata as they do not preserve their language. To circumvent this

problem, we have to take into account the inducing relation and combine it with

the induced upward (bi-)simulation—as we have already mentioned in the previous

section, the induced relation is thus used in two different ways.

As one of the main contributions of this work, we are now going to define a new

combination operator—we call it a weakening combination operator—over the in-

ducing downward simulations and induced upward simulations. Unlike the operators

used in previous works [2,1], the new operator allows us to combine any inducing

downward simulation (i.e., also a bisimulation or identity) with any induced upward

simulation (bisimulation, identity) offering us a broad spectrum of the resulting re-

lations.

Moreover, in the previous works, we were randomly computing one relation

out of the set of possible language-preserving combined relations. Here, we first

prove that there is always a unique maximal combined preorder for a given upward

simulation and its inducing downward simulation. In Section 6, we then provide

a simple algorithm for computing this maximal preorder. From a practical point

of view, using the maximal preorder instead of a random one has in some cases

a great impact on the size of the reduced automaton as witnessed by our practical

experiments.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–48 35

4.1 A Weakening Combination Operator

We define the weakening combination operator ⊕, which is normally to be applied

over an inducing downward simulation and an induced upward simulation, on arbi-

trary preorders as follows: Given two preorders H and S over a set Q, for x, y ∈ Q,

x(H ⊕ S)y iff (i) x(H ◦ S)y and (ii) ∀z ∈ Q : yHz =⇒ x(H ◦ S)z. 6 Intuitively,

a pair e = (x, y) ∈ Q×Q that is in H ◦S will also appear in H⊕S iff after adding it

to the preorder H, there is a possibility to supplement the obtained relation H∪{e}
by other pairs of elements of Q that are in H ◦S to ensure transitivity and get this

way a preorder again.

Lemma 4.1 For any set Q and any preorders H,S ⊆ Q × Q, H ⊕ S is a unique

maximal preorder such that H ⊆ H ⊕ S ⊆ H ◦ S.

Proof. Let W = H ⊕ S and C = H ◦ S. 7 Keep in mind that W,H,S ⊆ C and

that H and S are reflexive and transitive. We first prove some auxiliary facts for

any x, y, z ∈ Q allowing us to derive existence of certain elements of the relations

that we are dealing with:

(I) xCy =⇒ xHwSy for some w ∈ Q, which follows directly from the definition

of C.

(II) xHyCz =⇒ xCz. From yCz and (I), we have yHwSz for some w ∈ Q. From

xHyHw, we have xHw. From xHwSz and from the definition of C, we have

xCz.

(III) xWyHz =⇒ xCz, which follows directly from the definition of W .

(IV) xCySz =⇒ xCz. From xCy and (I), we have xHwSy for some w ∈ Q. From

wSySz, we have wSz. From xHwSz and (II), we have xCz.

(V) xWyCz =⇒ xCz. From yCz and (I), we have yHwSz for some w ∈ Q.

From xWyHw and (III), we have xCw, which together with (I) gives xHvSw

for some v ∈ Q. From vSwSz, we have vSz and so vCz (as S ⊆ C), which

together with xHv and (II) gives xCz.

Now, we can prove the claim of the lemma. First, we will argue that H ⊆ W .

To do this, suppose that xHy for some x, y ∈ Q. We will show that xWy. As

H ⊆ C, we have that xCy, which fulfils Condition (i) from the definition of ⊕. To

satisfy Condition (ii), we have to show that for arbitrary z ∈ Q such yHz, xCz

holds. From transitivity of H and from xHyHz, we have xHz, which implies that

xCz when we take into account that H ⊆ C. Thus, even Condition (ii) is fulfilled,

and we are obtaining xWy from the definition of ⊕. Hence, we have proved that

H ⊆ W . Moreover, the fact that W ⊆ C is trivial as it is a part of the definition of

⊕.

We will now prove that W is a preorder. We first prove by contradiction that

W is transitive. Suppose that there exist x, y, z ∈ Q such that xWyWz, but not

6 Here, H ◦ S is the common composition of relations, i.e., ∀x, y ∈ Q : x(H ◦ S)y ⇐⇒ ∃z ∈ Q : xHzSy.
7 For an easier orientation in the symbols, let us note that we use W for the result of applying the weakening
combination operator, C to denote the composition of H and S, H is a preorder which is “hard” in the
sense that it has to be included in W , whereas S is “soft” in the same sense.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–4836

xWz. Recall that W ⊆ C. From (I), we have xHwSyHvSz for some v,w ∈ Q.

From xWyHv and (III), we have xCv. From xCvSz and (IV), we have xCz. From

the definition of ⊕, xCz together with not xWz imply that there is a q ∈ Q such

that xCzHq, but not xCq. From yWzHq and (III), we get yCq. Then xWyCq,

and (V) gives xCq, which is a contradiction. We have proven that the relation W is

transitive. Showing that W is also reflexive is immediate as we already know that

H ⊆ W and that H is reflexive. Thus, we have proven that W is a preorder.

Finally, we will show that W is a unique maximal preorder included in C and

containing H. It can be easily seen from the definition of ⊕ that any pair (x, y) ∈
C \W cannot be contained in any preorder P such that H ⊆ P ⊆ C as no relation

P such that H ⊆ P ⊆ C and (x, y) ∈ P can be transitive. Thus, W contains all

the pairs that can be elements of a preorder included in C and containing H, and

therefore any such preorder P is a subset of W . As we have proven that W itself is

a preorder, it has to be the unique maximal preorder that includes H and that is

itself included in C. �

Lemma 4.1 is a key result that allows us to define combined preorders and

equivalences applicable for reducing the size of tree automata as follows.

4.2 Combined Relations for Reducing Tree Automata

Consider a tree automaton A = (Q,Σ,Δ, F), a downward simulation preorder D on

A, and an upward simulation U induced by D. We call the relation W = D ⊕ U−1

a combined preorder and ≡W a combined equivalence. Correctness of using the

combined equivalence for reducing the size of tree automata by quotienting is stated

in the following Theorem 4.6 that relates the languages of A and A≡W
. 8

Within the proof of Theorem 4.6, we make use of the notion of a context. In-

tuitively, a context is a tree with “holes” instead of leaves. Formally, we consider

a special symbol � �∈ Σ with rank 0. A context over Σ is a tree c over Σ∪{�} such

that for all leaves p ∈ c, we have c(p) = �. For a context c with leaves p1, . . . , pn

and for trees t1, . . . , tn, we define c[t1, . . . , tn] to be the tree t, where

• dom(t) = dom(c)
⋃

{p1 · p
′| p′ ∈ dom(ti)}

⋃
· · ·

⋃
{pn · p′| p′ ∈ dom(tn)},

• for each p = pi · p
′, we have t(p) = ti(p

′), and

• for each p ∈ dom(c) \ {p1, . . . , pn}, we have t(p) = c(p).

In other words, c[t1, . . . , tn] is the result of appending the trees t1, . . . , tk to the

holes of c. We extend the notion of runs to contexts. Let c be a context with leaves

p1, . . . , pn. A run π of A on c from (q1, . . . , qn) is defined in a similar manner to

a run on a tree except that for a leaf pi, we have π(pi) = qi, 1 ≤ i ≤ n. In other

words, each leaf labelled with � is annotated by one qi. We use c [q1, . . . , qn]
π

=⇒ q

to denote that π is a run of A on c from (q1, . . . , qn) such that π(ε) = q. The

notation c [q1, . . . , qn] =⇒ q is explained in a similar manner to runs on trees.

8 Note that contrary to downward simulations, the combined preorders do not have to refine the language
inclusion preorder, which is due to the fact that they strongly depend also on the upward simulations,
which are not compatible with the language inclusion preorder. Nevertheless, Theorem 4.6 shows that the
combined equivalences still preserve the language of the entire automaton when used for collapsing it.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–48 37

Lemma 4.2 If c[q1, . . . , qn] =⇒ q and qDr, then there are states r1, . . . , rn such

that for each i with 1 ≤ i ≤ n, qiDri, and c[r1, . . . , rn] =⇒ r.

Proof. By induction on the height of c. The base case (where c is empty) is

trivial. We consider the case where c contains at least one node. We know that

c[q1, . . . , qn]
π

=⇒ q for some π. Let c(ε) = f . Furthermore, we know that there

are q′1, . . . , q
′
m such that (q′1, . . . , q

′
m)

f
−→ q, and π(i) = q′i for each i with 1 ≤

i ≤ m. In other words, the run labels the root with q, and labels the children

of the root with q′1, . . . , q
′
m, respectively. This means that for all i : 1 ≤ i ≤ m,

ci[qni−1+1, . . . , qni
]

πi=⇒ q′i where ci is the ith subtree of c, πi is the restriction of

π to ci, n0 = 0, and nm = n. Since qDr, we know that there are r′1, . . . , r
′
m

such that (r′1, . . . , r
′
m)

f
−→ r and q′iDr′i for each i, 1 ≤ i ≤ m. By the induction

hypothesis, it follows that for each i, 1 ≤ i ≤ m, there are states rni−1+1, . . . , rni

such that for each j, ni−1 + 1 ≤ j ≤ ni, qjDrj and ci[rni−1+1, . . . , rni
] =⇒ r′i. Hence

c[r1, . . . , rn] =⇒ r. �

Lemma 4.3 If c[q1, q2, . . . , qn] =⇒ q and qiUri for some 1 ≤ i ≤ n, then there are

states r1, . . . , ri−1, ri+1, . . . , rn, r such that qjDrj for each j : 1 ≤ j �= i ≤ n, qUr,

and c[r1, . . . , rn] =⇒ r.

Proof. To simplify the notation, we assume (without loss of generality) that i =

1. We use induction on the structure of c. The base case is trivial since the

context c consists of a single hole. For the induction step, we assume that c is not

only a single hole. Suppose that c[q1, q2, . . . , qn]
π

=⇒ q for some run π and that

q1Ur1. Let p be the parent of the leaf p1 labelled by q1 and let p1, . . . , pm be its

children. Let cp be the subtree of c rooted at p. Notice that for all i, 2 ≤ i ≤ m,

ci[qni−1+1, . . . , qni
]

π
=⇒ q′i, where ci is the subtree of c rooted at pi, n1 = 1 and nm =

k for some k ≤ n. Let q′ = π(p) and let c′ be the context c with the subtrees rooted

at p1, . . . , pm deleted. In other words, dom(c′) = dom(c) \
⋃m

i=1{pip
′ | p′ ∈ N∗},

c′(p′) = c(p′) if p′ ∈ dom(c′), and c′(p) = �. Observe that c′[q′, qk+1, . . . , qn] =⇒

q and that (q1, q
′
2, . . . , q

′
m)

f
−→ q′ for some f . By the definition of the upward

simulation and the premise q1Ur1, it follows that there are r′2, . . . , r
′
m, r′ such that

q′2Dr′2, . . . , q
′
mDr′m, q′Ur′, and (r1, r

′
2, . . . , r

′
m)

f
−→ r′. Since c′ is smaller than c, by

the induction hypothesis, there are rk+1, . . . , rn, r such that qk+1Drk+1, . . . , qnDrn

and c′[r′, rk+1, . . . , rn] =⇒ r. For each i, 2 ≤ i ≤ m, we have q′iDr′i, and thus by

Lemma 4.2, there are states rni−1+1, . . . , rni
such that for each j, ni−1 + 1 ≤ j ≤ ni,

q′jDr′j and ci[rni−1+1, . . . , rni
] =⇒ r′i. The claim follows immediately. �

For a state r ∈ Q, a set B ⊆ Q of states, and a relation R ⊆ Q × Q, we write

BRq to denote that there is a q ∈ B with qRr.

Lemma 4.4 For blocks B1, . . . ,Bn,B ∈ Q≡W
and a context c, if c[B1, . . . ,Bn] =⇒

B, then there exist states r1, . . . , rn, r ∈ Q with B1Dr1, . . . ,BnDrn,BUr, and

c[r1, . . . , rn] =⇒ r.

Proof. The claim is shown by induction on the structure of c. In the base case,

the context c consists of a single hole. We choose any q ∈ B ∩ F provided that

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–4838

B ∩ F �= ∅, and any q ∈ B otherwise. The claim holds obviously by reflexivity of D

and U .

For the induction step, we assume that c is not only a single hole. Suppose that

c[B1, . . . ,Bn]
π

=⇒ B for some run π. Let p1, . . . , pj be the left-most leaves of c with

a common parent. Let p be the parent of p1, . . . , pj. Note that B1 = π(p1), . . . ,Bj =

π(pj). Let B′ = π(p) and let c′ be the context c with the leaves p1, . . . , pj

deleted. In other words, dom(c′) = dom(c) \ {p1, . . . , pj}, c′(p′) = c(p′) provided

p′ ∈ dom(c′) \ {p, p1, . . . , pj}, and c′(p) = �. Observe that c′[B′,Bj+1, . . . ,Bn] =⇒
B. Since c′ is smaller than c, we can apply the induction hypothesis and con-

clude that there are v, q′j+1, . . . , q
′
n, q′ such that B′Dv,Bj+1Dq′j+1, . . . ,BnDq′n,BUq′,

c′[v, q′j+1, . . . , q
′
n] =⇒ q′. It follows that there are u ∈ B′, qj+1 ∈ Bj+1, . . . , qn ∈

Bn,q ∈ B such that uDv, qUq′, and qj+1Dq′j+1, . . . , qnDq′n. By the definition of

A≡W
, there are states q1 ∈ B1, . . . , qj ∈ Bj, and z ∈ B′ such that (q1, . . . , qj)

f
−→ z

for some f . Since D ⊆ W and uDv, we get uWv. Since u, z ∈ B′, it follows

that u ≡W z and hence zWu. From transitivity of W , we get zWv. From the

definition of W , there is a state w such that zDw and vUw. By the definition of

the language inclusion preorder and premises zDw and (q1, . . . , qj)
f

−→ z, there are

states r1, . . . , rj with q1Dr1, . . . , qjDrj, and (r1, . . . , rj)
f

−→ w. By Lemma 4.3 and

premises vUw and c′[v, q′j+1, . . . , q
′
n] =⇒ q′, there are states rj+1, . . . , rn, and r with

q′j+1Drj+1, . . . , q
′
nDrn, q′Ur, and c′[w, rj+1, . . . , rn] =⇒ r. Finally, by transitivity of

D and U , we get qj+1Drj+1, . . . , qnDrn, qUr. The claim thus holds. �

Lemma 4.5 If t =⇒ B, then t =⇒ w for some w with BUw. Moreover, if B ∈ F≡W
,

then also w ∈ F .

Proof. Suppose that t
π

=⇒ B for some π. Let p1, . . . , pn be the leafs of t, and let

π(pi) = Bi for each i : 1 ≤ i ≤ n. Let c be the context that we get from t by

deleting the leaves p1, . . . , pn. Observe that c[B1, . . . ,Bn]
π

=⇒ B. It follows from

Lemma 4.4 that there exist states r1, . . . , rn, r ∈ Q and q1 ∈ B1, . . . , qn ∈ Bn, q ∈ B

such that q1Dr1, . . . , qnDrn, qUr, c[r1, . . . , rn] =⇒ r, and if B ∩ F �= ∅, then

r ∈ F . By the definition of A≡W
, it follows that there are q′1 ∈ B1, . . . , q

′
n ∈

Bn, and f1, . . . , fn such that
fi−→ q′i for each i such that 1 ≤ i ≤ n. We

show by induction on i that for each i such that 1 ≤ i ≤ n there are states

ui
1, . . . , u

i
i, v

i
i+1, . . . , v

i
n, wi such that q′1Dui

1, . . . , q
′
iDui

i, qi+1Dvi
i+1, . . . , qnDvi

n, rUwi,

and c[ui
1, . . . , u

i
i, vi

i+1, . . . , v
i
n] =⇒ wi. The base case where i = 0 is trivial. We

consider the induction step. Since D ⊆ W and qi+1Dvi+1, we get qi+1Wvi+1. Since

qi+1, q
′
i+1 ∈ Bi+1, we have that q′i+1 ≡W qi+1 and hence q′i+1Wqi+1. By transitivity

of W , it follows that q′i+1Wvi+1. By the definition of W , there is zi+1 such that

q′i+1Dzi+1 and vi+1Uzi+1. By Lemma 4.3, there are z1, . . . , zi, zi+2, . . . , zn, z with

ui
1Dz1, . . . , u

i
iDzi, vi

i+2Dzi+2, . . . , v
i
nDzn, wiUz, and c[z1, . . . , zn] =⇒ z. By transi-

tivity of D and the premises q′jDui
j and ui

jDzj, we have q′jDzj for each j : 1 ≤ j ≤ i.

By transitivity of D and the premises qjDvi
j and vi

jDzj, we have qjDzj for each

j : i+2 ≤ j ≤ n. Define ui+1
j = zj for j : 1 ≤ j ≤ i+1, vi+1

j = zj for j : i+2 ≤ j ≤ n,

and wi+1 = z.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–48 39

The induction proof above implies that c[un
1 , . . . , un

n] =⇒ wn. From the definition

of the language inclusion preorder and the premises
fi−→ q′i and q′iDun

i , it follows

that
fi−→ un

i for each i : 1 ≤ i ≤ n. It follows that t = c[f1, . . . , fn] =⇒ wn. By

the definition of U and the fact that r ∈ F if B ∩ F �= ∅, it follows that for all

i : 1 ≤ i ≤ n, wi ∈ F provided that B ∈ F≡W
. Thus, in the claim of the lemma, it

suffices to take w = wn. �

Theorem 4.6 L(A≡W
) = L(A) for any tree automaton A and each combined pre-

order W .

Proof. The inclusion L(A≡W
) ⊇ L(A) is trivial. Let t ∈ L(A≡W

), i.e., t =⇒ B for

some block B where B∩F �= ∅. Lemma 4.5 implies that t =⇒ w such that w ∈ F .�

Note that the theorem also covers the case of reducing automata using downward

simulations (and bisimulations) alone. Indeed, given any downward simulation D,

the identity is always an upward simulation induced by D. Then, the combined

preorder D⊕ id−1 equals D, which means that we can reduce the automaton using

≡D. In particular, this covers as special cases the proofs of correctness of reducing

automata using downward bisimulations and simulation equivalences stated in [2].

Corollary 4.7 L(A≡D
) = L(A) for any tree automaton A and each downward

simulation preorder D.

5 Variants of Combined Relations and Their Properties

Theorem 4.6 and Lemmas 3.2 and 3.4 allow us to consider quite a large spectrum

of relations suitable for reducing tree automata. We now examine properties of the

relations from this spectrum that arise when we consider the identity, the maximal

downward bisimulation, and the maximal downward simulation as the inducing

relation D for both the maximal upward bisimulation and upward simulation.

Our notation for the various types of combined equivalences that we consider

consists of two parts: a relation symbol and an additional symbol above the relation

symbol. The relation symbol denotes the type of the inducing downward relation.

Namely, = denotes the identity, � denotes the maximal downward bisimulation,

and ∼ the maximal downward simulation. The additional symbol then denotes the

type of the upward relation. We use • for the maximal upward bisimulation and

◦ for the maximal upward simulation. No additional symbol corresponds to the

maximum equivalence embedded in the downward relation itself—the downward

(bi-)simulations can be viewed as compositions where the role of the upward relation

is played by the identity. For example,
◦
� denotes the relation ≡D⊕U−1 where D

is the maximal downward bisimulation and U is the maximal upward simulation

induced by D. In what follows, we will implicitly consider all the downward and

upward (bi-)simulations that we will be dealing with to be the maximal ones.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–4840

�
�

�
�

=

�

∼

•

=
•

∼
•

�

◦

�
◦

∼
◦

=

Fig. 1. Coarseness of various types of combined equivalences

5.1 A Partial Ordering of the Combined Relations wrt. their Coarseness

From the definition of a combined preorder, it clearly follows that, for a fixed in-

ducing relation D, if we are choosing the type of the upward relations U from the

strongest one to the coarsest one, i.e., starting from the identity and going through

the upward bisimulation induced by D to the upward simulation induced by D, we

obtain coarser and coarser combined preorders D ⊕ U−1.

On the other hand, if the inducing preorder D is growing, from the definition of

the upward (bi-)simulation, we can see that the maximal upward (bi-)simulation U

induced by D and thus also the relation D◦U−1 are growing too. But, when having

D ◦U−1 computed and then computing the preorder D ⊕U−1 from it, the relation

D acts as a restriction. A bigger relation D can cause that more pairs are violating

Condition (ii) from the definition of ⊕. In general, having two downward simulation

preorders D1 and D2, we are guaranteed that the maximal upward (bi-)simulation

U1 induced by D1 is included in the maximal upward (bi-)simulation U2 induced

by D2. Therefore, we know that D1 ◦U−1
1 ⊆ D2 ◦U−1

2 , but the combined preorders

D1 ⊕ U−1
1 and D2 ⊕ U−1

2 can be incomparable. 9

Based on these observations, we obtain the partial ordering of all the considered

types of combined equivalences according to inclusion which is depicted in Figure 1.

For an automaton A, we denote by ≡(A) the combined equivalence of type ≡ on A.

In the figure, the line from ≡1 up to ≡2 means that for any automaton A, ≡1(A) ⊆
≡2(A). It is not hard to find an automaton A showing that all these relationships

are strict, i.e., such that for each of the edges in the figure, ≡1(A) � ≡2(A). We

construct such an automaton in Example 5.1.

Example 5.1 Let Q = {q, r, s, t, u, v, w, x, y, z} be a set of states and let Σ be

a ranked alphabet such that Σ0 = {l} and Σ1 = {a, b, c}. The automaton A =

(Q,Σ,Δ1, {x}) proves strictness of the relations in Figure 1. For each two types

of relations from Figure 1 such that ≡2 is above ≡1, ≡1(A) � ≡2(A) holds. The

transition relation Δ1 is depicted in Figure 2(a). In the table below there are stated

the appropriate combined equivalences for all the combinations of the considered

types of inducing and induced relations. For each type of combination, we list

9 Although, in our experiments, the former one usually is included in the latter one.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–48 41

nontrivial equivalence classes of the resulting combined equivalence:
◦
=: {q, r, s}

◦
�: {t, u}, {q, r, s}

◦
∼: {t, u, v}, {q, r, s}, {x, z}

•
=: {r, s}

•
�: {t, u}, {r, s}

•
∼: {t, u, v}, {r, s}

=: �: {t, u} ∼: {t, u, v}

It is now easy to check that all the inclusions from Figure 1 are strict for the

automaton A. �

To complete the picture, we need to show that the types of combined relations

that are not connected in Figure 1 are really incomparable. In other words, that for

each pair ≡1,≡2 of types of combined equivalences that are not connected in Figure 1

there exists an automaton A such that neither ≡1(A) � ≡2(A) nor ≡1(A) � ≡2(A).

We construct such automata within Example 5.2.

Example 5.2 Let Q = {q, r, s, t, u, v} be a set of states and let Σ be a ranked

alphabet such that Σ0 = {l} and Σ1 = {a, b, c}. All the incomparability results show

up taking automata A1 = (Q\{v},Σ,Δ2, {u}) and A2 = (Q,Σ,Δ2∪{v a−→ q}, {u})
where the transition relation Δ2 is depicted in Figure 2(b). One can easily check

that
•
=(A1) and

◦
=(A1) define just one nontrivial equivalence class {r, s} and thus

they are incomparable with
◦
�(A1),

•
∼(A1),

◦
∼(A1) that define only one nontrivial

equivalence class {q, r}. In the case of the automaton A2, the added transition

v a−→ q distinguishes the downward simulation from the downward bisimulation.

Analogically as for A1, we have that
•
�(A2) and

◦
�(A2) define just one nontrivial

equivalence class {r, s} and thus they are incomparable with
•
∼ (A2) and

◦
∼(A2) that

define only one nontrivial equivalence class {q, r}. This gives all the incomparability

relationships. �

According to our experiments presented in Section 7, the reduction capabilities

are rising when we move in Figure 1 not only in the bottom-up direction (according

to the edges), but also in the left-right direction (as though within a full diamond).

r

s

a
l

q

a

a

d

c
b

a

x

y

w

a

u
d

v

a

b

a

c

az

w x

t

(a) Δ1

ra

b

s

ut

q
b

a

a
a

l

(b) Δ2

raq

uaas t
(c) Δ3

Fig. 2. Transition relations of automata proving the non-inclusion relationships from Figure 1, and of an
automaton proving that one cannot use within ⊕ preorders included in the language inclusion preorder that
are not downward simulations.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–4842

As a trade-off, the computational complexity of constructing the relations is rising

in the same way from the bottom to the top and from the left to the right.

5.2 Impossibility of Relaxing the Need of Downward Simulations

It is easy to see that when not considering combined relations (and when not

thinking of the computational complexity), one can replace the use of downward

(bi-)simulations in reducing the size of tree automata by a use of any preorder

which is included in the so called language inclusion preorder LP ((q, r) ∈ LP ⇐⇒
L(q) ⊆ L(r)). A natural question comes forward: Is it also possible to induce (and

combine by ⊕) an upward (bi-)simulation with any preorder included in LP (not

only with downward simulations)? Here, we give a negative answer. Not all pre-

orders included in LP can be used within the operator ⊕ for reducing automata.

We prove this claim by the following counterexample.

Example 5.3 Consider an automaton A = (Q,Σ,Δ3 ∪ Leaves, F) where Q =

{q, r, s, t, u}, Σ0 = {l}, Σ1 = {a}, Δ3 is depicted in Figure 2(c), Leaves = { l−→ x |
x ∈ Q}, 10 and F = Q. Let us choose the relation R = id ∪ {(q, r), (r, t), (q, t)},
which is apparently contained in LP , as the inducing preorder. 11 We can choose

the relation U = id ∪ {(q, t)} as the upward simulation preorder induced by R.

Then, we obtain R ◦U−1 = R∪U−1 ∪ {(r, q)}. The pair (r, q) is present in R ◦U−1

because of (r, t) ∈ R and (q, t) ∈ U . Let W = R ⊕ U−1 be the combined preorder.

R ◦ U−1 itself is already a preorder, and therefore W = R ◦ U−1. We see that we

have obtained an equivalence class {q, r} of ≡W which is bad as it implies that

the quotient automaton A≡W
contains the rule {q, r} a−→ {q, r}. This definitely

changes the language of the original automaton A since no cycles were present in

A.

Observe that if we take a downward simulation as the inducing preorder, such

a situation does not arise. The problem above is caused by the presence of (r, q) in

R◦U−1, which is enabled by (r, t) ∈ R. If R was a downward simulation containing

(r, t), then R would have to contain even (q, s) from the definition of a downward

simulation. So, we would get r(R ⊕ U−1)qRs which according to Condition (ii) of

the definition of ⊕ enforces r(R ◦ U−1)s. However, r(R ◦ U−1)s does not hold for

any pair of an inducing downward simulation R and an induced upward simulation

U (not even when one considers the maximal ones), and so the pair (r, q) is not

present in any combined preorder, and we are never allowed to collapse q and r. �

5.3 A Note on Word Automata

We note that all the above results carry over to word automata. The inclusion

properties from Figure 1 hold for word automata too since they can be seen as

a special case of tree automata. Moreover, our automata examples proving strictness

10The set of rules Leaves is present so that the language of the automaton is not be empty.
11As we deal here only with unary and leaf symbols, upward (bi-)simulation does not depend on the inducing
relation.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–48 43

of the relationships and incomparability relationships are built using just leaf and

unary rules, and so they are valid for word automata as well.

6 Computing the Proposed Relations

Below, we first briefly discuss methods for computing downward and upward

(bi-)simulations proposed in earlier works. Then, we propose an algorithm for

computing the combined relations and analyse its complexity. For the rest of the

section, let us fix a tree automaton A = (Q,Σ,Δ, F) and let n = |Q|, m = |Δ|,
� = |Σ|.

6.1 Computing Downward and Upward (Bi-)Simulations

The problem of computing (bi-)simulations over tree automata is addressed in

[2,1,9]. In [2,1], a quite general method for computing tree (bi-)simulations via

transforming this problem to special instances of the classical problem of comput-

ing (bi-)simulations over labelled transition systems (LTS) is proposed. Classical

(bi-)simulation algorithms like [11,12] are then applied to the LTSs obtained from

the translation.

As studied in [1], using the above approach, we obtain algorithms for comput-

ing the maximal downward and upward bisimulations in time O(r̂3 m log n) and

O(m log(n + �) + T (D)), respectively, where T (D) denotes the complexity of com-

puting the inducing relation D.

The case of tree simulations is considered in [2], where we obtain algorithms with

the following complexities when using the translation to LTS: Let D be the maximal

downward simulation on A and let |Lhs(A)/≡D| be the size of the partitioning of the

left-hand sides of the transition rules according to D. D can be computed in time

O((�+ r̂)) · |Lhs | · |Lhs/≡D|+m · |Lhs/≡D|), which can be roughly approximated by

O((r̂+�) m2). Let U be the maximal upward simulation on A induced by a preorder

D, we denote the set of environments partitioned with respect to U as Env/≡U .

Assuming that T (D) is the time of computing the inducing relation D, U can be

computed in time O((� |Env|+ r̂ m) |Env/≡U |+ r̂2 m log |Env|+T (D)), which can

be roughly approximated by O(� r̂2 m2 + T (D)).

Let us add that specialised algorithms for computing the downward bisimula-

tion and upward bisimulation induced by the identity were proposed in [9]. These

algorithms run in time O(r̂2 m log n) and O(r̂ m log n), respectively.

6.2 Computing the Combined Relations

Given an inducing downward simulation D and an upward simulation U induced by

D, the combined preorder W = D⊕U−1 can be easily computed by simply following

its definition. It is sufficient to start by computing the relation C = D ◦ U−1 and

then just erase all the elements of C (which are pairs of elements of the base set Q)

that break Condition (ii) from the definition of ⊕. Using suitable data structures,

this computation starting from the relations U and D can be implemented in time

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–4844

O(min{|D| · |Q|, |U | · |Q|}) as follows.

We encode a relation ρ on Q as an array indexed by elements of Q of lists of

elements of Q. A state q is present in a list with index r iff (r, q) ∈ ρ. Note that given

a boolean matrix representation of the relation, the “array of lists”-representation

can be derived in time O(|Q|2). Note also that as U and D are reflexive, we have

that |U |, |D| ≥ |Q| and thus |Q|2 ≤ min{|D| · |Q|, |U | · |Q|}. Let arrays of lists D,U−1

encode relations D,U−1.

The relation C = D ◦U−1 represented by a Boolean matrix C can be computed

in the following way: (1) Initialise all entries of C to false . (2) For each q ∈ Q, pass

through all elements of the list D[q], and for each r ∈ D[q], pass through all elements

s of U−1[r], and set C[q, s] to true. This procedure takes time O(|{(q, r, s) | (q, r) ∈
D ∧ (r, s) ∈ U−1}|) ⊆ O(min{|D| · |Q|, |U | · |Q|}).

Then we compute a Boolean matrix representation W of the relation W =

D ⊕ U−1 as follows: (3) We initialise W as a copy of the matrix C (representing

D ◦U−1), and in the subsequent Step (4), we erase from W all the pairs of elements

of Q that break Condition (ii) from the definition of ⊕. In Step (4), we proceed

in the following way: For all q ∈ Q, for all r ∈ D[q], for all s ∈ U−1[r], if not

C[q, s] (i.e., (q, s) �∈ D ◦ U−1), then W[q, s] = false. This gives us the set D ⊕ U−1

represented by the matrix W. The complexity of Steps (3), (4) is in O(|{(q, r, s) |
(q, r) ∈ D ∧ (r, s) ∈ U−1}| + |{(q, r, s) | (q, r) ∈ U−1 ∧ (r, s) ∈ D}|), which is again

in O(min{|D| · |Q|, |U | · |Q|}).

7 Experiments

We have implemented our algorithms in a prototype tool written in Java. We

have used the tool on a number of tree automata from the frameworks of regular

tree model checking (RTMC) and abstract regular tree model checking (ARTMC)

[6,4,7,5].

RTMC is the name of a family of techniques for analysing infinite-state sys-

tems such as parameterised networks of processes, systems with queues, stacks,

unbounded integers, and/or dynamic linked data structures like lists or trees. In

RTMC, states are represented by trees, sets of states by tree automata, and tran-

sitions by tree transducers (or, sometimes, also by some specialised operations on

tree automata). ARTMC is a combination of RTMC and the abstract-check-refine

paradigm which usually greatly improves the efficiency of the technique. Most of

the algorithms in the frameworks of both RTMC and ARTMC rely crucially on ef-

ficient automata reduction methods since the size of the generated automata often

explodes, making computations infeasible without a reduction.

The tree automata that we have considered in our experiments arose within

various computations within the frameworks of RTMC and ARTMC. Our experi-

mental evaluation was carried out on an AMD Athlon 64 X2 2.19GHz PC with 2.0

GB RAM. We have compared the size of tree automata after reducing them with

all the different reduction techniques considered in this paper.

Table 1 shows the computation time and the reduction (in percent) for the dif-

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–48 45

Table 1
The obtained reduction in percent and the computation time in seconds for the various considered

relations applied for reducing TA obtained from RTMC and ARTMC case studies. The size of the TA is
the number of their states plus the number of their transition rules.

TA ∼
◦
=

◦
�

◦
∼

origin size red. time red. time red. time red. time

ARTMC 195 18% 0.5s 2% 0.5s 23% 0.5s 61% 1.0s

RTMC 613 27% 3.5s 19% 2.0s 19 % 2.5s 88% 5.1s

RTMC 909 52% 3.6s 72% 3.1s 82% 3.4s 89% 35.1s

ARTMC 2029 10% 27.0s 37% 26.0s 33% 29.0s 93% 39.0s

RTMC 2403 26% 31.0s 0% 25.0s 0% 34.0s 82% 37.1s

TA �
•
=

•
�

•
∼

origin size red. time red. time red. time red. time

ARTMC 195 18% 0.1s 2% 0.5s 23% 0.2s 23% 0.6s

RTMC 613 0% 0.3s 0% 0.4s 0% 0.8s 27% 3.7s

RTMC 909 14% 0.6s 72% 0.4s 82% 0.8s 83% 4.1s

ARTMC 2029 10% 1.7s 14% 1.4s 19% 3.1s 44% 29.0s

RTMC 2403 0% 0.3s 0% 0.6s 0% 0.7s 27% 31.0s

ferent relations within the considered framework and illustrates that we have really

obtained a wide spectrum of relations differing in their reduction capabilities and

computational complexity. As can be seen from the results,
◦
∼ gives the best reduc-

tion in all experiments, but it also suffers from a high computation time. Combining

simulations and bisimulations does not give the same amount of reduction as the

combined simulation, but the computation time is lower and the reduction is better

than
•
�. Note that no attempt to optimise the implementation of any of the rela-

tions was done, and therefore the computation times could probably be much lower

with an optimised implementation for all of them.

8 Conclusions and Future Work

We have presented a uniform framework for deriving equivalence relations suitable

for reducing tree automata based on combining upward and downward simulations

and bisimulations. The framework is based on two main ingredients: a new notion of

upward (bi-)simulations parameterised by any downward (bi-)simulation and a new

operator for combining upward and downward (bi-)simulations. The framework ex-

plains in a uniform way various previously obtained results [9,2,1] and also yields

multiple new combined relations for reducing tree automata that mix in various

degrees advantages of the various upward and downward simulations and bisimula-

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–4846

tions. This step is motivated by giving users of tree automata a finer choice between

the reduction capabilities and computational costs of the relations to be used for

reducing tree automata.

We have established a partial ordering of the obtained combined relations ac-

cording to their reduction capabilities, and showed that some of them are also in-

comparable. Moreover, we have performed a number of experiments with automata

from the area of (abstract) regular tree model checking that show a practical ap-

plicability of the obtained relations and allow us to conclude that the considered

relations really offer a fine choice of balance in the trade-off between reduction

capabilities and computational requirements.

Furthermore, the proposed weakening combination operator on which our frame-

work is based yields a significantly more efficient way of combining upward and

downward (bi-)simulations than the previously used random combination algo-

rithms.

The proposed framework is built on quite general principles and we believe that it

can be extended to more advanced types of automata such as guided tree automata,

nested word automata, or hedge automata that find their use in many applications

in formal verification, decision procedures of various logics, structured document

processing, or natural language processing. Reduction of automata from some of

such classes has already been considered in the literature (e.g., in [8], the author

proposes a bisimulation-based minimisation of weighted word automata, and a use

of bisimulations for reducing weighted tree automata is considered in [10]).

From the practical point of view, it is also interesting to investigate more ef-

ficient techniques of computing the (bi-)simulation relations, e.g., by computing

them in a symbolic way (for symbolically encoded automata). Furthermore, it can

be interesting to explore more deeply the principles of the proposed combination

of downward and upward (bi-)simulation relations. One can, for instance, think of

defining still weaker types of relations preserving the language of tree automata by

using the combined relations repeatedly as inducing relations.

Acknowledgement. We would like to thank Ahmed Bouajjani for fruitful discussions

on the subject of the paper.

References

[1] P.A. Abdulla, A. Bouajjani, L. Hoĺık, L. Kaati, and T. Vojnar. Composed Bisimulation for Tree
Automata., 2008. Accepted at CIAA’08.

[2] P.A. Abdulla, A. Bouajjani, L. Hoĺık, L. Kaati, and T. Vojnar. Computing Simulations over Tree
Automata: Efficient Techniques for Reducing Tree Automata. In Proc. of TACAS’08, LNCS. Springer,
2008. An extended version appeared as the technical report FIT-TR-2007-001 of FIT, Brno University
of Technology.

[3] P.A. Abdulla, J. Högberg, and L. Kaati. Bisimulation Minimization of Tree Automata. In Proc. of
CIAA’06, volume 4094 of LNCS, pages 173–185. Springer, 2006.

[4] P.A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular Tree Model Checking. In Proc. of
CAV’02, volume 2404 of LNCS. Springer, 2002.

[5] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model Checking.
ENTCS, 149:37–48, 2006.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–48 47

[6] A. Bouajjani and T. Touili. Extrapolating Tree Transformations. In Proc. of CAV’02, volume 2404 of
LNCS. Springer, 2002.

[7] Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomas Vojnar. Abstract Regular Tree
Model Checking. In Proc. of INFINITY’05. Published in ENTCS 149(1), 2006.

[8] Peter Buchholz. Bisimulation relations for weighted automata. Theor. Comput. Sci., 393(1-3):109–123,
2008.

[9] Johanna Högberg, Andreas Maletti, and Jonathan May. Backward and Forward Bisimulation
Minimisation of Tree Automata. In Proc. of CIAA’07, volume 4094 of LNCS, pages 109–121. Springer,
2007.

[10] Johanna Högberg, Andreas Maletti, and Jonathan May. Bisimulation minimisation for weighted
tree automata. In Tero Harju, Juhani Karhumäki, and Arto Lepistö, editors, Proc. 11th Int. Conf.
Developments in Language Theory, volume 4588 of LNCS, pages 229–241. Springer, 2007.

[11] R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal on Computing,
16:973–989, 1987.

[12] F. Ranzato and F. Tapparo. A New Efficient Simulation Equivalence Algorithm. In Proc. of LICS’07.
IEEE CS, 2007.

P.A. Abdulla et al. / Electronic Notes in Theoretical Computer Science 251 (2009) 27–4848

	Introduction
	Preliminaries
	(Bi-)Simulations on Tree Automata
	Downward (Bi-)Simulations
	Induced Upward Simulations
	Induced Upward Bisimulations

	Combined Relations for Reducing Tree Automata
	A Weakening Combination Operator
	Combined Relations for Reducing Tree Automata

	Variants of Combined Relations and Their Properties
	A Partial Ordering of the Combined Relations wrt. their Coarseness
	Impossibility of Relaxing the Need of Downward Simulations
	A Note on Word Automata

	Computing the Proposed Relations
	Computing Downward and Upward (Bi-)Simulations
	Computing the Combined Relations

	Experiments
	Conclusions and Future Work
	References

