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Abstract— Force aggregation is one of the most important
functionalities of a situation analysis system. In order to reduce
the amount of information displayed for an analyst, it is vitally
important to cluster information that belongs together and
display the aggregated information for the cluster instead of all
the original objects.

In order to do this, two different kinds of algorithms are
necessary. First, we must have a method for grouping objects that
belong together. This problem is often referred to as clustering
or association; it is a variant of the NP-complete graph coloring
problem.

Second, a group of objects that belong together must be
classified. There have been some methods proposed for doing this.
All of the present alternatives for aggregation rely on doctrinal
information. However, in the new kind of situations that face us,
it is increasingly likely that we will meet organizations that do
not follow a strict doctrine in their organization. Instead, they
will use task-forces or ad-hoc forces that are organized to solve
a specific objective.

Here, we present a formalism for doing classification of task-
forces based on less amount of doctrinal knowledge. The kind of
doctrinal knowledge required by the approach suggested here
is similar to the one needed to put together task-forces for
solving a specific mission, ie, it is capabilities oriented. Using
random set theory, we describe several different ways of force
aggregation and present results from experiments performed with
them. User interaction could be used to further enhance the
method presented here.

I. I NTRODUCTION

Information fusion [1] deals with ordering, fusing and
classifying information in order to display it to a user in
the best possible way. In order to reduce the amount of
information, it is necessary to cluster or group data together,
and present aggregated information. Traditionally, such aggre-
gation is done using methods based on knowing the detailed
doctrines of actors on a battle-field. However, in the new kinds
of situations facing us in operations other than war (OOTW)
applications, such doctrines are not available. In this paper,
we present a possible way of aggregating information using
less strict and detailed doctrinal information. The approach is
based on generating lists of capabilities for observed entities
and task-forces that the system recognizes, either because a
user has input them or because an automatic plan-generation

module has generated them. The method uses random sets,
and is meant to be used in conjunction with both sensor and
human intelligence.

This paper is outlined as follows. Section II introduces
the problem and lists some previous approaches for force
aggregation. In section III, we motivate the use of task-
forces and capabilities. Section IV presents the mathematics
of the presented method, while section V discusses how user
interaction could be used to improve it. Finally, in section VI
we present the results of a computer simulation of the method,
and section VII contains our conclusions.

II. FORCE AGGREGATION AND OPERATIONS OTHER THAN

WAR

In order to reduce the amount of information displayed for
an analyst, it is vitally important to cluster information that
belongs together and display the aggregated information for
the cluster instead of all the original objects. Force aggregation
is one of the most efficient ways of reducing/transforming the
amount of information presented to decision-makers.

In order to do this, two different kinds of algorithms are
necessary. First, we must have a method for grouping objects
that belong together. This problem is most referred to as
clustering or association (see,e.g., [2], [3]); it is a variant
of the NP-complete graph coloring problem. Second, a group
of objects that belong together must be classified. There have
been some methods proposed for doing this [4], [5], [6], [7].
All of the present alternatives for aggregation rely on doctrinal
information.

The world, however, has changed. The likelihood of an
armed attack by an adversary that follows strict doctrines
has been reduced significantly. At the same time, the in-
creased level of international engagement of Swedish armed
forces in peace-enforcing or other operations other than war
overseas has increased the importance of providing decision-
support tools that are useful in the near future. In these
kinds of situations it is increasingly likely that we will meet
organizations that do not follow a strict doctrine in their
organization. In many OOTW situations, we will be faced
with groups of opponents that organize spontaneously,e.g.,
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legal demonstrations that degenerate into riots. A slightly more
organized opponent will use task-forces orad hocforces that
are specified to solve a specific objective.

An added difficulty in such situations is the fact that there is
not just one opponent, but many. In peace-keeping operations,
for instance, there will be at least two opposing sides. It is also
important to be able to fuse and present to a user information
on friendly or neutral units. There might be several entities
belonging to several different types of organizations that need
to be displayed for the user, both in order to avoid firing on
neutral or friendly units, and in order to determine if a hostile
group threatens a neutral group. Another possible extension
of the work considered here is to use it to label/classify the
health status of own forces. This approach would consider
how the state of health of a soldier influences the capabilities
both of the individual and of the groups to which they belong.
By monitoring soldiers with for example sensors that measure
heart-rate or perspiration, we could get a good view of the
status of groups. This could be combined with systems for
planning, to show how the physical state of the soldiers affects
their ability to solve given tasks. For instance, in a riot situation
such a display could be used to determine if a group of soldiers
should try to reason with the rioters or call for backup: if their
heart-rate and perspiration is high, it is likely that they are too
excited to be able to convince the rioters to cease, and the
commander must choose some other option.

In this paper, we assume that the clustering problem has
already been solved, and that we are given a list of capabili-
ties/features of groups. The task is to classify this group. For
future work, it would be interesting to try to extend the method
presented here and use it to aid in clustering, or for tracking
groups of,e.g., rioters.

III. C APABILITIES-BASED TASK-FORCES

Here, we present a formalism for doing classification of
task-forces based on less detailed doctrinal knowledge as well
as user interaction. The kind of doctrinal knowledge required
by the approach suggested here is similar to the one needed
to put together task-forces for solving a specific mission,i.e.,
it is capabilities oriented.

In addition to the benefit of being able to classify and
label units that don’t use doctrines, capabilities-based force
aggregation can also be interfaced to other parts of a fusion
system, such as plan-recognition, in a natural way. Much work
has recently been done on recognizing enemy behavior and
building Bayesian nets that accurately represent a situation
(e.g., [8]). By using partial Bayesian nets to represent capa-
bilities, this work could be connected to the present, giving us
the possibility of generating task-forces based on the perceived
actions of the enemy units. Such partial Bayesian nets have
previously been used by some authors [9], [10] to represent
situations.

Figure 1 shows a conceptual view of the relations between
an enemy’s goals and its plans, actions and capabilities. The
maps from {goals} → {plans} → {capabilities} and
{capabilities} → {plans} are actually sort of inverse maps:

Goals

Capabilities

Plans Actions

Observer

Fig. 1. Conceptual view of relations between observed capabilities and goals,
actions and plans. Actions are determined by the plans of the enemy. The
plan is developed in order to fulfill the enemy goals, but is constrained by the
available resources. We can observe both enemy actions and their capabilities,
and hence try to infer plans using two different sets of observations.

They specify that in order to achieve these goals, I must
do these things and have these capabilities. Both actions and
capabilities can be observed by sensors.

Methods for plan-recognition that use the movement pat-
terns or actions of the enemy as input can give us suggested
plans. Plans can also be inferred by observing capabilities
and noting how the available capabilities and resources con-
strain the actions of the opponent. Determining plans from
capabilities in this way would require the use of ontologies
(e.g., [11]) and some sort of simulation module that determines
what the options of the enemy are; user interaction would then
probably be required in order to make a reasonable choice
between them. By having several different means of predicting
plans, we get another opportunity to discover deception and
misinformation: cases where plans determined using different
methods don’t match.

Note that a capability that comes from a specific entity
(object or person) might be present in several different task-
forces. This might occur, for example, in situations where we
do not know the allegiances of all objects or persons.

IV. M ETHOD

The most natural way of representing the capabilities asso-
ciated to a given task-force is as a random set [12], [13]. A
random set is simply a set-valued stochastic variable.

In the following, let Θ denote the set of possible classi-
fications or capabilities.2Θ is the set of subsets ofΘ. Let
A be a representation of capabilities needed to reach some
goal or describing some known task-force. In general, we will
assume that a type of task-force can be modeled as a random
set A : Ω → 2Θ. This just means that we can list a number
of focal sets ofA and give the probability assigned to each.
Each probability is a measure of the likelihood that such a
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task-force will have the capabilities listed. Example:

A : P ({a, f, g}) = 0.5
P ({a, b}) = 0.2
P ({a, c}) = 0.25
P ({a, d}) = 0.05

Here and in the rest of this paper,a, b, . . . represent arbitrary
capabilities. We will useA to indicate task-force capability-
lists that are present in the fusion system and used to classify
and label discovered task-forces. Possible sources of such
A’s could be: automatically generated from plan-generators,
user input, comparison to old scenarios/using organizational
memory to recognize situations/capabilities.

It is likely that most such “task-force templates” stored in
the system will include only a few focal-sets, in order to make
them comprehensible to the human operator of the system.

We also have an object of interest, whose capabilities have
been determined. This too we represent as a random set

Z : P ({a, b, c}) = p1

P ({a, b}) = p2

P ({a, c, d}) = p3

P ({a, d, e}) = p4

and is assumed to represent some clustered object or a group of
actors in a crowd that either the system or the human operator
have determined belong together.

Note that in order to represent the capabilities as random
sets, it is necessary to remove duplications of capabilities. For
the purpose of presenting information to a user, this is not a
severe restriction. However, if a particular capability vanishes
when used (for example, bombs), it might be necessary to add
a numerical marker to it, indicating how large the capacity is.
Another possible way of dealing with such situations is to use
random multi-sets instead of random sets; this would allow
repetitions of capabilities.

Note that the use of random sets here is essential and cannot
be replaced with Dempster-Shafer mass functions. This is be-
cause we here have a different interpretation of the probability
mass given to a certain set: by allocating a probabilityp to
a set{a, b, c}, we mean that the observed object has all the
capabilitiesa, b, and c with probability p. In the Dempster-
Shafer interpretation, on the other hand, such an allocation
would mean that our belief that one ofa, b, or c is correct is
p, but we cannot make any further statement regarding which
one is the correct capability. The difference is the same as the
difference between conjunctions and disjunctions. It is possible
to extend the representation of capabilities and use Dempster-
Shafer theory to represent an additional layer of uncertainty
in the observations by considering sets of sets,i.e., using22Θ

.
This could be done in two separate ways, analogous to the
disjunctive or conjunctive normal forms of logical expressions,
but here we do not consider either of those possibilities.

Now we seek to combine the task-force template and the
clustered object in order to get a matching or fitness value
for how well the observed task-force matches the stored ones.

By calculating this matching value for a number of different
task-forces, the system can indicate to the user what type of
task-force that it believes the clustered object represents.

There are a number of different ways of calculating this.
One simple is ∑

x,y∈Θ

∑
t∈T

f(x, t)g(y, t), (1)

whereT is some set to which we can compare the elements
of A and Z. The simplest would be to simply letT = Θ.
Another alternative is to allowT to depend onA andZ. The
functionsf and g measure the similarity of their arguments;
they could be identical or different to take into account the
added uncertainty in observations.

Another possibility is to use the Dempster-Shafer [14]
conflict ∑

x∩y=∅

A(x)Z(y) = 1−
∑

x∩y 6=∅

A(x)Z(y). (2)

There are however a number of reasons why the Dempster-
Shafer conflict is not good as a measure of similarity of
random sets. The DS conflict measures the amount of con-
tradiction of the combined beliefs and assumes that there is
a correct alternative inΘ, whereas we here have one in2Θ.
It would be correct to use the DS conflict if the beliefs to be
combined were elements of22Θ

instead of2Θ. Since we here
are not interested in the degree of internal conflict of a report
on a task-force it is better to use a function that explicitly
measures the similarity of the random sets.

An alternative that partially overcomes the limitation of
the DS conflict is the modified Dempster-Shafer combination
introduced by Mahler [15] and Fixsen-Mahler [16]. This rule
integratesa priori knowledge in the rule∑

x∩y=∅

A(x)Z(y)
Γ(x ∩ y)
Γ(x)Γ(u)

, (3)

where Γ is a measure that can be taken to represent prior
knowledge. In our context,Γ could be the prior probability
that the object of interest possesses the capabilities.

The measure introduced below in equation (7) can be seen
as an application of this rule, but with a different interpretation
and implementation ofΓ.

The first fitness measure used in the experiments presented
in section VI is

P (A = Z). (4)

This equation corresponds to taking the trace of the combined
tensor constructed by taking the outer product ofZ and A
represented as vectors, and seems at first glance to be the
most natural measure. It turns out, however, to be worse than
the next two measures.

Recall that Z denotes the clustered object or group of
actions that we wish to label, whileA is the templates
or automatically generated capabilities lists that we wish to
compare to. Note that it is also possible to compare the
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task-force to fragments of templates. Such fragments would
probably be easier to generate in a real system.

When having such partially or fragmentary task-forces, the
most natural measure seems to be

P (A ⊆ Z). (5)

This equation simply checks to what extent the template
fragment is present in the observed entity. If we defineAi

as fragments of templates, then we would compare

P (Ai ⊆ Z) (6)

and output a list ofAi and their probabilities to the user.
Motivated by the Fixsen-Mahler rule above, we also tried

to determine the match or fitness between the observed object
and the task-forces by using a “fuzzy” measure∑

x,y∈Θ

P (A = x)P (Z = y)S(x, y), (7)

where the functionS measures the similarity between its
arguments. This equation is the one to use when we are
not sure if the capabilities inZ are determined completely
accurately. If there is a finite probability that a capability
could be mistaken for another in the observations, this could
be compensated for in theS function.

Simply by playing around with the order ofA and Z and
choosing different operators to put in-between, it is possible to
come up with a long list of other alternative measures. Using

P (Z ⊆ A) (8)

could also be useful.A here should be interpreted as the
capabilities required to reach a major goal. In the case where
Z is a proper subset ofA, then takingA \Z could be used to
determine what capabilities the enemy might need to obtain in
the future. It could be used in order to prioritize what supply
lines or resources that should be destroyed or protected in
order to prevent them from being captured by the opponents.

Another possibly representation of the task-forces is to try
to model the problem with true Dempster-Shafer structures.
As mentioned above, this would entail adding a level of
abstraction by using sets of sets of capabilities. In this case,
we could use ∑

x

P (Z ⊆ x)P (A ⊆ x) (9)

to compare them. This equation is inspired by the approach
used in [4]. For the application presented in this paper,
however, it is not as useful. This is because here we do not
have the Dempster-Shafer interpretation ofZ, as explained
above.

V. USER INTERACTION

As mentioned above, user interaction could be used to
improve the method in many different ways.

Interaction could be used to control the task-force genera-
tion. A user could describe possible goals for the enemy, the
system could generate plans needed to reach that objective
and another module could determine the capabilities needed

for that. If the user distrusts the results of the computer system,
it should be possible to manually change them. In such cases,
however, it would be useful if the system also stored the
change, and possibly used both its original result and the one
changed by the user. There should be an option for displaying
both of them, and if they differ by too much, the user should
be alerted to it. The kind of interaction suggested here is very
similar in spirit to level 5 fusion for sensor management [17].

Figure 2 shows an example of how information could be
shown to a user. Several groups of rioters (red objects) with
different capabilities have been seen. A threat analysis module
has suggested that the hospital (green star) is the most likely
goal. The commander of our forces has access to a company
in the south of the city as well as a small group of MP’s that
are positioned between the rioters and their goal. However,
the health status of the MP’s is not good (as shown by the
ligher color on the map): they are too excited to be able to
reason rationally with the rioters and convince them to stop.
By combining this kind of information with planning tools that
take into account the capabilities of both own and opposing
groups, it should be possible to suggest good courses of action
to the commander.

VI. SIMULATIONS

In this section we discuss how to determine capabilities
from observations for two different types of scenarios, and
present results from a computer simulation of the method.

A. Traditional war

In traditional war scenarios we do not get capabilities
directly from the sensors. Instead, we are given mass functions
of object types. Using force aggregation based on doctrines
and force templates, we can also get platoons, companies,
and battalions. By providing a translation table listing the
capabilities of various recognized enemy units, we can get
instead a list of capabilities for each recognized force unit.
Even though doctrinal-based approaches are clearly best when
the enemy follows a doctrine, complementing that system with
one based on task-forces and capabilities could be beneficial
in some cases. For example, if we manage to destroy several
of the enemy vehicles, they will be forced to re-organize in an
ad hocmanner, leading to capabilities-based task-forces. Using
the methods presented here could also enable us to discover
situations where the enemy tries to surprise us.

B. Operations other than war

The example scenario used in the computer experiments
presented below is imagined to take place in international op-
erations such as peace-keeping or enforcing. In such situations,
the other actors do not necessarily have a clear doctrine or
even clear goals for their actions. We will assume that the
sensor system looks at an area where there are a lot of actors.
There could be both organized crowds and spontaneously
formed mobs. There could also be present regular or semi-
regular troops, such as a guerilla or militia force. As men-
tioned above, in some cases it might be difficult to determine
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Fig. 2. This figure shows an example of how the capabilities-oriented
aggregation of opposing forces (red objects) could be combined with health-
monitoring of own forces (blue and cyan objects). In the picture, three groups
of rioters are converging on a hospital (green star). We have a company of
rested soldiers in the southern part of the city that need to come to the aid
of the small group of fatigued soldiers in the middle of the map. Two of the
groups of rioters have been determined to consist of people armed with side-
arms and stones to throw (red circles), while the third group also has access to
machine-guns (red triangle). Note that the symbols used are examples only: a
real system would have to take usability and man-machine interaction aspects
into account.

exactly to which faction a specific entity belongs, making it
necessary to include its capabilities in several different task-
forces belonging to different groups of actors. For example, an
unmarked truck might belong to task-forceZ1 with probability
p1 and task-forceZ2 with probability p2. Then the capability
represented by that truck should be represented in both random
sets corresponding to the different task-forces. Explicitly, this
would mean that the one-point cover function ofZ1 and Z2

would have the valuesp1 andp2 for that capability.
Capabilities can be generated in several different ways.

• As in the scenario with traditional warfare, sensor reports
could be one source. This would necessitate translating
from object or unit type to capabilities. Such translations
would require having an ontology that is appropriate
to the situation and that links types to capabilities. An

ontology for this would also allow the translation to
depend on external factors, such as weather.

• Capabilities could also be determined directly from ob-
servations. It can be argued that most intelligence data in
OOTW arise from human observation. Such HUMINT
reports could come either from operators immersed in
the area of interest, or from analysts viewing surveillance
cameras or UAV video sensors. Text mining could be used
to extract relevant information on observed capabilities
from such reports.

• Processing sensor output might also give rise to reports
on capabilities. This could be the case, for example, if an
algorithm that is capable of recognizing guns runs over
the output of a video sensor.

Some examples of capabilities that might be of interest are
shown in figure 3.

Fast truck

Stones

Small guns

Molotov-cocktails

Machine-guns

Fig. 3. Some possible capabilities that a group of actors in an OOTW
scenario might possess.

C. Experiments

Here we present results from a computer simulation using
the rules in equations 4, 6, and 7. For this simulation, we
used a set of 8 possible capabilities, giving a total of 255
possible non-empty subsets of capabilities. 4 task-forces were
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generated, making sure that they were reasonably different.
Each task-force consists of a number of focal sets and as-
sociated probabilities, and are assumed to represent either
known structures or the output of a planning system. For
equation 7, we used a similarity functionS that was loosely
based on cardinality of the symmetric difference between its
two arguments.

We randomly generatedN = 100 samples of observations.
Each observation was generated by taking a focal set of one
of the task-force structures and assigning mass to both it and
several mutations of it. These mutations correspond to errors in
sensor reports. The error probability of the sensors was varied
between between 0 and 1.

As can be seen in figure 4, the fuzzy similarity measure
(equation (7)) gives best results for small error probabilities.
For larger error probabilities, the subset measure (equation (6))
gives the best results. Note, however, that the fraction of cases
where the subset measure was unable to determine a best fit
(shown in figure 5) increases considerably for these cases.

For realistic sensors, given that the errors in determining
correct capabilities are smaller than those corresponding to
about 0.1 error probability in the simple model given here,
we can conclude that the fuzzy measure seems to be the most
reliable. In a real system, the user should be presented with
all of the measures. It would be interesting to see if some
combination of the measures presented here would give better
results.

VII. SUMMARY AND FUTURE WORK

In conclusion, we presented a formalism for determining
appropriate labels or classifications of task-forces based on
what capabilities they were determined to possess. The kind
of force aggregation method presented here is useful in
situations where we do not have detailed doctrines or other
domain knowledge on enemy organization. Examples of such
situations are military operations other than war, such as
peacekeeping or peace-enforcing operations.

In such situations, we might face several different oppo-
nents who are not organized in standard military ways using
platoons, companies, and battalions. Instead, they will form
ad hoctask-forces that are organized to solve a specific task.
By connecting the method presented here with improved task-
recognition and planning methods, it might be possible to
reach a higher level of situation awareness in such operations.

As shown in section VI, the measure based on fuzzy
similarity (equation (7)) gave very good results for small
observation error probabilities. For larger error probabilities,
the measure based on subsets (equation (6)) seemed better.

There are many opportunities for future work in this area.
First, the simulation presented here is purposefully very
simplistic. The measures presented here need to be tested
in a more realistic scenario, with a more realistic way of
generating observations. It would be very interesting to see
if data collected in missions overseas could be used to test the
method. Second, work needs to be done on how to present
the aggregations formed here to a user. In particular, how
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Fig. 4. This figure shows the results from a computer simulation using
simulated sensors to determine capabilities and a list of four manually
constructed task-force templates. The fraction of correct classification using
either equality (equation (4)), subset (equation (6)) or the fuzzy similarity
measure (equation (7)) as a function of the error probability of the simulated
sensors are shown.

should a user interact with the system, both in order to input
fragmentary templates or to request additional information on
a task-force that is deemed interesting. Should just one of the
classifications be presented to the user or several of them?

Other possible future improvements include using boosting
to get better classification, or designing better measures of
similarity. In particular, it would be very interesting to see
if methods inspired by conditional event algebra (e.g., [12])
could be used.

Acknowledgement: I thank Christian M̊artenson for com-
menting on a draft version of this manuscript and Johan
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