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Abstract

In this paper we develop a Potts spin neural clustering method for clustering belief functions based on attracting and conflicting

metalevel evidence. Such clustering is useful when the belief functions concern multiple events, and all belief functions are mixed up.

The clustering process is used as the means for separating the belief functions into clusters that should be handled independently. A

measure for the adequacy of a partitioning of all belief functions is derived and mapped onto the neural network in order to obtain

fast clustering. A comparison of classification error rate between using conflicting metalevel evidence only and both conflicting and

attracting metalevel evidence demonstrates a significant reduction in classification error rate when using both.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we develop a method for handling belief

functions that concern multiple events. This is the case

when it is not known a priori to which event each belief

function is related. The belief functions are clustered

into clusters that should be handled independently.
In [2] a method for clustering belief functions based on

their pairwise conflict was developed. This method was

extended into a method capable of also handling pairwise

attractions [15]. Such evidence is not generated intrinsi-

cally in the same way as conflicting evidence. Instead, we

assume that it is given from some external source as

additional information about the partitioning of the set

of all belief functions. The extendedmethod handles both
types of evidence internally within all clusters.

First, in this paper, the extended method is further

refined by also using conflicting and attracting metalevel

evidence externally between clusters when finding the
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best partition of all belief functions. Secondly, the new

problem formulation is mapped onto a Potts spin [20]

neural network for fast clustering.

As an example let us look at a real-world problem

from intelligence analysis that we are studying [4]. In

intelligence analysis we may have conflicts (metalevel

evidence) between two different intelligence reports
about sighted objects, indicating that two objects

probably do not belong to the same unit (cluster). Such

conflicts arise when reports about objects are compared

under the hypothesis that they refer to the same unit,

e.g., report object types, times, positions and direction

may be incompatible given constraints about unit

structure. At the same time we may have information

from communication intelligence as an external source
(providing attracting metalevel evidence), indicating

that the two objects probably do belong to the same unit

(cluster) as they are in communication. Such informa-

tion is made available from studying communication

patterns, e.g., if two objects are transmitting in sequence

we may calculate a probability that they are in com-

munication and thus belong to the same unit struc-

ture.
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As conflicts push reports apart (into different clusters)

and attractions pull them together (into the same clus-

ter), using both leads to an improved clustering result

and faster computation.

Similar applications in information fusion of corre-
lation problems using the conflict between belief function

are found in [1,18,19] regarding its use in the transferable

belief model [17] and applied to multi-sensor allocation

in a submarine intelligence problem [1], in [8] applied to

data from radar warners in a system within the Swedish

Air Force, in [9] regarding mine detection when observ-

ing several mines under a multi-sensor platform, in [13]

as part of a multiple processes intelligence management
process, and in [7] using possibility theory.

In the terminology of Blackman [3] this methodology

is All-Neighbors Data Association and can be labeled as

Central-Level Tracking when applied to a tracking

problem. In this paper the method is implemented as,

what Blackman calls, Deferred Decision Logic but this

can easily be changed to Sequential Decision Logic when

applied to a sequential problem and when computation
time is an issue. This was for example done in [14],

extending the methodology in [2].

An alternative to the unsupervised learning of cluster

memberships from conflicts originally put forward in

[11] is when you assume some additionally given infor-

mation such as class membership of belief functions. A

recent paper [6] demonstrates how to use partial

knowledge of class memberships in clustering belief
functions. This method does however not consider the

compatibility of the belief functions clustered into the

same cluster as when using the conflict of Dempster’s

rule as the criterion [11]. Presumably, it would be pos-

sible to combine both ideas when such partial class

memberships are available.

In Section 2 we give an introduction to the conflict in

Dempster–Shafer theory, and in Section 3 we describe
the problem at hand. We give an introduction to Potts

spin neural networks (Section 4) and show how to map

our Dempster–Shafer clustering problem onto the neu-

ral network (Section 5). Finally, in Section 6, we per-

form a series of simulations to compare classification

errors and computation time of two different problems;

one using conflicting metalevel evidence only and an-

other using both conflicting and attracting metalevel
evidence.
2. Conflict in Dempster–Shafer theory

In Dempster–Shafer theory [5,16] a problem is rep-

resented by an exhaustive set of mutually exclusive

possibilities called a frame of discernment, H. Belief is
assigned to any subset A of H by a mass function. The

mass function is then a function from the power set of H
to [0,1], m : 2H ! ½0; 1�.
If we receive two pieces of information concerning the

same issue but from different sources, the two pieces can

be combined to yield a more informed view. Combining

two mass functions is done by calculating their orthog-

onal combination using Dempster’s rule. Let Ai be a
focal element of Bel1 and Bj a focal element of Bel2, i.e.,

Ai and Bj are subsets of H with m1ðAiÞ > 0 and

m2ðBjÞ > 0, where Bel1 and Bel2 are belief functions.

Furthermore, let e1 and e2 be two bodies of evidence

each containing a set of propositions fAig and fBjg and
corresponding mass functions m1ðAiÞ for all i and

m2ðBjÞ, for all j. When we combine two belief functions

we might notice that the two functions are not entirely
consistent. Combining m1 and m2 of the two pieces of

evidence may result in a conflict defined as

Confðfe1; e2gÞ ¼
X

Ai\Bj¼£
m1ðAiÞm2ðBjÞ; ð1Þ

whenever there are at least one focal element from fAig
and one focal element from fBjg such that Ai \ Bj ¼£.

For simplicity we will denote Confðfei; ejgÞ by cij
whenever the cardinality of feig is equal to two.

Thus, between a pair of belief functions the conflict is

the sum of all products of support for logically incon-

sistent statements, e.g., if our first belief function sup-

ports A, B or C, while our second belief function

concerning the same issue supports D or E, where A and

D, as well as B and E, are deemed to be inconsistent

statements, i.e., A \ D ¼ B \ E ¼£, then the conflict
between these two belief functions is mðAÞmðDÞþ
mðBÞmðEÞ. This number is between zero and one. The

higher this value is, the more conflict there is between

the two belief functions. When the conflict is one the two

belief functions are completely inconsistent, while a

conflict of zero is no indication that the two belief

functions belong together in some way, it is merely a

lack of inconsistent information. Thus, the conflict is
always a form of negative information and the lack of a

negative indication is no positive information, it is just

not negative. This is why we have introduced [15] pair-

wise attractions as a separate entity to handle the cor-

responding positive information.
3. Problem description

When we are reasoning under uncertainty in an

environment of several different events we may find

some pieces of evidence that are not only uncertain but
may also have propositions that are weakly specified in

the sense that it may not be certain to which event a

proposition is referring. In this situation we must make

sure that we do not by mistake combine pieces of evi-

dence that are referring to different events.

When we have several belief functions regarding dif-

ferent events that should be handled independently we

want to arrange them according to which event they are
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referring to. We partition the set of belief functions v
into clusters where each cluster va refers to a particular

event where belief functions within the cluster are all

assumed to refer to the same event. In Fig. 1, thirteen

pieces of evidence ei are partitioned into four clusters.
However, if the belief functions are not labeled as to

which event they are referring to, it is uncertain whether

two different belief functions are referring to the same

event and not possible to directly differentiate between

two different events using only the propositions of the

two belief functions.

We can then use the conflict of Dempster’s rule when

the two belief functions are combined, as an indication
of whether they belong together. This conflict is the

basis for separating belief functions into clusters. A high

conflict between the two belief functions is an indication

of repellency that they do not belong to the same cluster.

The higher the conflict is, the less credible that they

belong to the same cluster.

For each cluster we may create a new belief function on

the metalevel with a proposition stating that we do not
have an ‘‘adequate partition’’. The new belief functions

do not reason about any of the original problems corre-

sponding to the clusters. Rather they reason about the

partitioning of the other belief functions into the different

clusters. Just so we do not confuse the two types of belief

functions, we call the new ones ‘‘metalevel evidence’’.
Fig. 1. The conflict in each cluster is interpreted as evidence at the

metalevel, in addition we have attracting evidence from an external

source.
On the metalevel we have a simple frame of discern-

ment where H ¼ fAdP;:AdPg, where AdP is short for

‘‘adequate partition’’. Let the proposition take a value

equal to the conflict of the combinationwithin the cluster,

mvað:AdPÞ,Confðfejjej 2 vagÞ; ð2Þ
where Confðfejjej 2 vagÞ is the conflict of Dempster’s

rule when combining all mass functions in va.

In [11] we established a criterion function of overall

conflict for the entire partition called the metaconflict

function (Mcf). The metaconflict was derived as the

plausibility of having an adequate partitioning based on
fmvað:AdPÞg for all subsets va.

Definition. Let the metaconflict function,

McfðK; e1; e2; . . . ; eN Þ,1� ð1� c0Þ �
YK
a¼1
ð1� caÞ ð3Þ

be the conflict against a partitioning of N belief functions
of the set v into K disjoint subsets va, where ca is the
conflict in Dempster’s rule when combining all belief
functions in cluster va, c0 is a domain dependent conflict,
which is set to zero in this paper.

Minimizing the metaconflict function was the method

of partitioning the belief functions into subsets repre-
senting the different events.

However, instead of considering the conflict in each

cluster it is possible to refine the analysis and consider all

pairwise conflicts between the belief functions in va;
m�ij ð�Þ ¼ cij, where cij is the conflict of Dempster’s rule

when combining ei and ej. When cij ¼ 1, ei and ej must

not be in the same cluster, when cij ¼ 0 there simply is no

indication of the repellent type. It was demonstrated in
[12] that minimizing a sum of logarithmized pairwise

conflicts,X
a

X
ðklÞjek^el2va

� logð1� cklÞ; ð4Þ

is a close approximation to minimizing the overall

conflict, Eq. (3), making it possible to map the optimi-

zation problem onto a neural network for neural opti-
mization.

3.1. Internal cluster conflicts and attractions

In addition to the conflicting metalevel evidence in-

duced by the internal conflict between belief functions

belonging to the same cluster, in many applications it is

important to be able to handle attracting metalevel
evidence from some external source stating that two

belief functions concern the same object, Fig. 1. The

mathematics of this problem was analyzed in [15].

Such an external metalevel evidence is represented as

a pairwise piece of evidence mþij ð�Þ ¼ pij, where pij is a

degree of attraction. When pij ¼ 1, ei and ej must be in



312 J. Schubert / Information Fusion 5 (2004) 309–318
the same cluster, when pij ¼ 0 we have no indication of

the attracting type. However, let us first study the con-

flicts and their representation before we state the cor-

responding proposition of mþij ð�Þ.
The frame for each cluster va is refined as Ha ¼

fAdP; :AdPg ¼ f8j:ej 2 vag1 [ fej 62 vag
jvaj
j¼1 where

‘‘adequate partition’’ AdP is equal to the singleton

proposition 8j:ej 2 va, that each belief function ej
placed in cluster va actually belongs to va. On the other

hand, ‘‘not adequate partition’’ :AdP is refined to a set
of jvaj propositions ej 62 va, each stating that a particular

belief function is misplaced. Representing the conflicting

metalevel evidence as

m�ij ðei _ ej 62 vaÞ ¼ cij; m�ij ðHÞ ¼ 1� cij; ð5Þ

all conflicting metalevel evidence is combined within

each cluster 8i; j; a. �fm�ij ð�Þjei ^ ej 2 vag to derive

m�fvagð:AdPÞ ¼ 1�
Y
a

Y
ðijÞjei^ej2va

ð1� cijÞ;

m�fvagðHÞ ¼ 1� m�v ð:AdPÞ: ð6Þ

Representing the attracting metalevel evidence as

mþij ðei ^ ej 2 vaÞ ¼ pij; mþij ðHÞ ¼ 1� pij; ð7Þ

all attracting metalevel evidence is combined within each

cluster 8i; j; a. �fmþij ð�Þjei ^ ej 2 vag to derive

mþfvagðAdPÞ ¼
Y
a

X
I�Pjva j jMI�Njva j

Y
I

pij
Y
Pjva j�I

ð1� pijÞ;

mþfvagðHÞ ¼ 1� mþv ðAdPÞ; ð8Þ

where Pjvaj ¼ fðijÞj16 i < j6 jvajg is the set of all pairs
of ordered numbers 6 jvaj, MI ¼ fij9p:ðipÞ _ ðpiÞ 2 Ig is
the set of all numbers in the pairs of I , and Njvaj ¼
f1; . . . ; jvajg is the set of all numbers 6 jvaj.

This takes account of all internal cluster conflicts and

all attractions between belief functions within each

cluster.

3.2. External cluster conflicts and attractions

In this paper we supplement the above analysis by

also taking into account any external conflicts and

attractions between belief functions that are placed in
different clusters.

While for the internal metalevel evidence we wanted

to find a partition that minimized all conflicts and

maximized all attractions, the situation is reversed for

the external metalevel evidence. When belief functions

are placed in different clusters, we like to see a maxi-

mization of conflicts and a minimization of attractions

between these belief functions.
We combine all conflicting metalevel evidence for

belief functions that are in different clusters 8i; j; a.
�fm�ij ð�Þjei ^ ej 62 vag. From the result of this combina-

tion we derive
m�v ðAdPÞ ¼
Y

ðijÞj8a:ei^ej 62va

m�ij ðei _ ej 62 vaÞ ¼
Y

ðijÞj8a:ei^ej 62va

cij;

m�v ðHÞ ¼ 1� m�v ðAdPÞ: ð9Þ

In addition we also combine all attracting metalevel

evidence for belief functions that are in different clusters

8i; j; a. �fmþij ð�Þjei ^ ej 62 vag. From the result of this

combination we derive

mþv ð:AdPÞ ¼ 1�
Y

ðijÞj8a:ei^ej 62va

½1� mþij ðei ^ ej 2 vaÞ�

¼ 1�
Y

ðijÞj8a:ei^ej 62va

ð1� pijÞ;

mþv ðHÞ ¼ 1� mþv ð:AdPÞ: ð10Þ
3.3. Combine internal and external evidence

In Section 3.1 we derived m�fvagð:AdPÞ and

mþfvagðAdPÞ based on all conflicting and all attracting
internal metalevel evidence, respectively. In Section 3.2

we derived m�v ðAdPÞ and mþv ð:AdPÞ based on all con-

flicting and all attracting external metalevel evidence,

respectively. We will here separately combine all evi-

dence against and in favor of the partition.

We combine all evidence against the adequacy of the

partition, m�fvagð:AdPÞ and mþv ð:AdPÞ, Eqs. (6) and

(10), to receive

m�
þ

fvag�vð:AdPÞ
¼ 1�

Y
ðijÞj8a:ei^ej 62va

ð1� pijÞ �
Y
a

Y
ðijÞjei^ej2va

ð1� cijÞ;

m�
þ

fvag�v
ðHÞ ¼ 1� m�

þ

fvag�vð:AdPÞ; ð11Þ

and combine all evidence in favor of the adequacy of the

partition, mþfvagðAdPÞ and, m�v ðAdPÞ, Eqs. (8) and (9), to

receive

mþ
�

fvag�vðAdPÞ

¼ 1� 1

0
@ �

Y
ðijÞj8a:ei^ej 62va

cij

1
A

� 1

2
4 �

Y
a

X
I�Pjva j jMI�Njva j

Y
I

pij
Y
Pjva j�I

ð1� pijÞ

3
5;

mþ
�

fvag�vðHÞ ¼ 1� mþ�fvag�v
ðAdPÞ: ð12Þ

As the final step we combine all evidence against and in

favor of the partition, Eqs. (11) and (12). We receive

mfvag�vðAdPÞ ¼ ½1� m�
þ

fvag�vð:AdPÞ�mþ�fvag�vðAdPÞ;
mfvag�vð:AdPÞ ¼ m�

þ

fvag�vð:AdPÞ½1� mþ
�

fvag�vðAdPÞ�;
mfvag�vðHÞ ¼ ½1� m�

þ

fvag�vð:AdPÞ�½1� mþ
�

fvag�vðAdPÞ�;
mfvag�vð£Þ ¼ m�

þ

fvag�vð:AdPÞmþ�fvag �v ðAdPÞ:
ð13Þ
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This is the amount of support awarded to the proposi-

tion that we have an ‘‘adequate partition’’ mfvag�vðAdPÞ,
and awarded to the proposition that we do not have an

‘‘adequate partition’’, mfvag�vð:AdPÞ respectively, when
taking everything into account. 1

In Section 5 we will investigate how to minimize

mfvag�vð:AdPÞ by finding the best partition of evidence.
Fig. 2. Clustering algorithm.
4. Potts spin theory

The Potts spin problem consists of minimizing an

energy function

E ¼ 1

2

XN
i;j¼1

Xq

a¼1
ðJ�ij � Jþij ÞSiaSja ð14Þ

by changing the states of the spins Sia’s, where Sia 2
f0; 1g and Sia ¼ 1 means that report i is in cluster a. This
model serves as a clustering method if J�ij is used as a

penalty factor when report i and j are in the same

cluster, and Jþij when they are in different clusters.
The minimization is carried out by simulated

annealing. In simulated annealing temperature is an

important parameter. The process starts at a high tem-

perature where the Sia change state more or less at

random taking little account of the interactions (Jij’s).
The process continues by gradually lowering the tem-

perature. As the temperature is lowered the random

flipping of spins gradually come to a halt and the spins
gradually become more influenced by the interactions

(Jij’s) so that a minimum of the energy function, Eq.

(14), is reached. This gives us the best partition of all

evidence into the clusters with minimal overall conflict.

For computational reasons we use a mean field

model, where spins are deterministic with Via ¼ hSiai
(thermal averages), Via 2 ½0; 1�, in order to find the

minimum of the energy function. The Potts mean field
equations are formulated [10] as

Via ¼
e�Hia½V �=TPK
b¼1 e

�Hib ½V �=T
; ð15Þ

where

Hia½V � ¼
XN
j¼1

JijVja � cVia þ a
XN
j¼1

Vja: ð16Þ
1 The observant reader will notice that we have not normalized in

Eq. (13). While this approach is in spirit equal to Smets’ transferable

belief model (TBM) [17] it is done here simply for simplicity. Since we

will only use mfvag�vð:AdPÞ as a measure in optimization, its absolute

value is without significance. Simply put, the question of normalizing

or not is outside of the scope of our method. Thus, we consider the

partitioning method described in this and previous articles to be

compatible with both Shafer’s and Smets’ approaches.
In order to minimize the energy function Eqs. (15) and

(16) are iterated until a stationary equilibrium state has

been reached for each temperature. Then, the tempera-

ture is lowered step by step by a constant factor until

8i; a:Via ¼ 0; 1 in the stationary equilibrium state, Fig. 2.
5. Mapping a Dempster–Shafer clustering problem onto
potts spin

In order to map the function mfvag�vð:AdPÞ onto a

Potts spin neural network we must make one approxi-

mation and rewrite the function as a sum of terms that is

to be minimized. For large scale problems we have few

pairwise conflicts. If two different belief functions are

drawn randomly we have (in our test case, Section 6) a
probability of conflict between them of

P ðAi \ Aj ¼£Þ ¼

PK�1
j¼1

K
j

� 
PK�j
k¼1

K � j
k

� 


ð2K � 1Þ2 � ð2K � 1Þ
; ð17Þ
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where Ai and Aj are focal elements, K is the number of

clusters and, e.g., P ðAi \ Aj ¼£Þ ¼ 3:12% when K ¼
12. When the information content is that low the

product term of conflicts may be approximated by zero.

If the attracting metalevel evidence has a similar low
information content then product terms of attractions

will also be approximated by zero. 2 Remaining will be

all terms from probabilistic sums likeY
ðijÞ
ð1� cijÞ; ð18Þ

andY
ðijÞ
ð1� pijÞ: ð19Þ

We make this low information content assumption and

the corresponding approximation to mfvag�vð:AdPÞ in
Eq. (13);

mfvag�vð:AdPÞ

¼ 1

2
4 �

Y
ðijÞj8a:ei^ej 62va

ð1� pijÞ �
Y
a

Y
ðijÞjei^ej2va

ð1� cijÞ

3
5

� 1

0
@ �

Y
ðijÞj8a:ei^ej 62va

cij

1
A

� 1

2
4 �

Y
a

X
I�Pjva j jMI�Njva j

Y
I

pij
Y

Pjva j�I
ð1� pijÞ

3
5

� 1

2
4 �

Y
ðijÞj8a:ei^ej 62va

ð1� pijÞ �
Y
a

Y
ðijÞjei^ej2va

ð1� cijÞ

3
5;
ð20Þ

where the last approximation in Eq. (20) is equal to Eq.

(11).

Note that, in the last term before the approximation,
the minimum cardinality of I is djvaj=2e. Thus, the

probability thatY
I

pij ¼ 0 ð21Þ

given our assumption is greater or equal to
2 It is a reasonable assumption that this is the case in many real-

world situations that have a high data rate. With a high data rate many

pairwise conflicts will tend to be small or equal to zero as physical

constraints resulting in conflicts are usually not violated in applica-

tions. For large scale problems this product term will fast approach

zero as the problem size increases. The same argument can be made for

the product terms of attractions, but to a somewhat lesser degree.

Although it will certainly be possible to construct special situations

when these product terms may not be approximated with zero, such

situations would tend to have small data sets making them uninter-

esting for this method. In a real-world situation a previous version [2]

of the method was implemented successfully using conflicts only [4].
1� P ðAi \ Aj ¼£Þdjvaj=2e: ð22Þ
In order to map the approximated mfvag�vð:AdPÞ onto a
Potts spin neural network we need to rewrite Eq. (20) as

a sum of terms. Let us rewrite the minimization as fol-

lows:

minmfvag�vð:AdPÞ
� min 1�

Y
ðijÞj8a:ei^ej 62va

ð1� pijÞ �
Y
a

Y
ðijÞjei^ej2va

ð1� cijÞ

() max
Y

ðijÞj8a:ei^ej 62va

ð1� pijÞ �
Y
a

Y
ðijÞjei^ej2va

ð1� cijÞ

() max log
Y

ðijÞj8a:ei^ej 62va

ð1� pijÞ �
Y
a

Y
ðijÞjei^ej2va

ð1� cijÞ

¼ max
X

ðijÞj8a:ei^ej 62va

logð1� pijÞ

þ
X
a

X
ðijÞjei^ej2va

logð1� cijÞ

¼ min
X

ðijÞj8a:ei^ej 62va

� logð1� pijÞ

þ
X
a

X
ðijÞjei^ej2va

� logð1� cijÞ: ð23Þ

In order to apply the Potts model to Dempster–Shafer

clustering we use interactions J�ij ¼ � logð1� cijÞdjAi\Ajj
and Jþij ¼ � logð1� pijÞð1� djAi\AjjÞ in the energy func-
tion Eq. (14), where d is the Kronecker delta with

djAi\Ajj �
1; Ai \ Aj ¼£;
0; otherwise;

�
ð24Þ

where Ai and Aj are two focal elements and

dij ¼
1; i ¼ j;
0; i 6¼ j;

�
ð25Þ

in Fig. 2.

By minimizing the energy function we also minimize

mfvag�vð:AdPÞ. In Fig. 2 an algorithm for minimizing

the energy function through iteration of Eqs. (15) and
(16) is shown.
6. Results

In this section we compare the clustering performance

and computational complexity of two different cluster-

ing methods. First, Potts spin clustering using conflict-
ing evidence only. Secondly, Potts spin using both

conflicting and attracting evidence. For each method,

and all problem sizes, we will cluster 2K � 1 belief

functions into K clusters. The frame of discernment is

the set of natural numbers between 1 and K, H ¼
f1; 2; 3; . . . ;Kg. Each of the 2K � 1 subsets of the frame

receives support from exactly one belief function. Thus,

we only use simple support functions in this test, but this
can easily be extended to consonant belief functions.



J. Schubert / Information Fusion 5 (2004) 309–318 315
Each belief function is given a mass number randomly

selected in [0,1]. Although K (¼ jHj; the number of

clusters) and N (¼ j2Hj � 1; the number of belief func-

tions) are not changed independently in the test exam-

ples, evidence is rather striking (Table 1) that the Potts
spin computation time scales as N 2 log2 N . A small

overhead is noted for the smallest problem sizes.

In Table 2 we notice the clustering performance when

using only conflicting evidence. A near perfect clustering

performance is demonstrated for this problem with a

near constant mean metaconflict per belief function for

a few orders of magnitude. This demonstrates the ade-

quacy of using a Potts spin neural network for Demp-
ster–Shafer clustering.

The metaconflict (Mcf) in Table 2 is defined in Eq.

(3), [11]. The metaconflict per cluster hcii was defined in

[12] as

hcii ¼ 1� ð1�McfÞ1=K ; ð26Þ
and the metaconflict per belief function as hciiK=N .

In order to make a comparison between using con-

flicting only with using both conflicting and attracting

metalevel evidence we need another measure that is
Table 1

Computation time using conflicting evidence only or both conflicting and

randomly generated problems. All times are measured in seconds, running C

(2.667 GHz CPU, 1.024 GB RAM) with Linux

No. of clusters, K No. of items of

evidence, N
Potts spin using conflictin

Time T

3 7 0.023 5

4 15 0.212 5

5 31 0.120 5

6 63 0.338 2

7 127 0.906 1

8 255 9.59 2

9 511 11.0 5

10 1023 56.9 5

11 2047 484 9

12 4095 3540 1

Table 2

Metaconflict, metaconflict per cluster and metaconflict per belief function (m

No. of

clusters, K
No. of items

of evidence,

N

Metaconflict

Median Mean Standard

deviation

3 7 0 0.001 0.006

4 15 0 0.009 0.031

5 31 0 0.023 0.098

6 63 0 0.030 0.074

7 127 0.001 0.029 0.070

8 255 0.004 0.040 0.080

9 511 0.177 0.248 0.289

10 1023 0.205 0.331 0.361

11 2047 0.877 0.728 0.306

12 4095 0.999 0.885 0.263
objective to both methods. We use target classification

error rate as the measure where a target identity is

randomly selected from the focal element of each belief

function. This becomes a much harder clustering prob-

lem. While two belief functions with subsets f1; 2g and
f2; 3g will have no conflict when placed in the same

cluster as they have a nonempty intersection this will be

seen as a classification error unless both belief functions

have number 2 selected as their target.

In this test we set pij ¼ rand½0; 1Þ with a frequency

such that jfpijjpij 6¼ 0gj ¼ jfcijjcij 6¼ 0gj, and pij ¼ 0 for

the remainder. Thus, we let the attracting and conflict-

ing metalevel evidence be of equal importance.
In Table 3 we notice an improvement in the classifi-

cation error rate of 76–80% (in the median) for some of

the larger problem sizes when including attracting

metalevel evidence compared to when using conflicting

metalevel evidence only. This is achieved while also

receiving a small reduction in computation time for

most problem sizes, Table 1.

In Fig. 3 we observe the convergence of two
clustering processes. Each line is a path traveled by a

belief function from the center of the circle at the first
attracting evidence simultaneously. Each number is the mean of ten

MU Common Lisp 18d+ using MatLisp 1.0b on an Intel Pentium 4

g evidence only Potts spin using conflicting and attracting

evidence

ime/N 2K2 Time Time/N 2K2

.22· 10�5 0.015 3.40· 10�5

.89· 10�5 0.101 2.81· 10�5

.00· 10�6 0.101 4.20· 10�6

.37· 10�6 0.247 1.73· 10�6

.15· 10�6 0.988 1.25· 10�6

.31· 10�6 2.02 4.85· 10�7

.21· 10�7 8.57 4.05· 10�7

.44· 10�7 67.7 6.47· 10�7

.54· 10�7 353 6.97· 10�7

.46· 10�7 3520 1.46· 10�6

edian and mean over ten runs) using conflicting evidence only

Metaconflict per cluster Metaconflict per belief

function

Median Mean Median Mean

0 0.0004 0 0.0002

0 0.002 0 0.0006

0 0.005 0 0.0008

0 0.005 0 0.0005

0.0002 0.004 0.00001 0.0002

0.0005 0.005 0.00002 0.0002

0.021 0.031 0.0004 0.0005

0.023 0.039 0.0002 0.0004

0.173 0.112 0.0009 0.0006

0.524 0.165 0.002 0.0005



Table 3

Classification error rate (median and mean over ten runs) using conflicting evidence only or both conflicting and attracting evidence simultaneously

No. of clusters,

K
No. of items of

evidence, N
Potts spin using conflicting evidence only Potts spin using conflicting and attracting evidence

Median Mean Standard

deviation

Median Mean Standard

deviation

3 7 0.214 0.257 0.227 0 0.100 0.235

4 15 0.467 0.420 0.189 0 0.073 0.179

5 31 0.468 0.497 0.128 0.113 0.123 0.201

6 63 0.595 0.578 0.065 0.063 0.121 0.176

7 127 0.638 0.652 0.056 0.118 0.157 0.228

8 255 0.694 0.700 0.024 0.218 0.236 0.207

9 511 0.740 0.741 0.020 0.150 0.201 0.204

10 1023 0.764 0.762 0.008 0.181 0.218 0.196

11 2047 0.795 0.794 0.007 0.174 0.239 0.195

12 4095 0.815 0.813 0.005 0.163 0.247 0.190

Fig. 3. The clustering process of 4095 belief function into twelve clusters. Left using conflicts only in 66 successive iterations (vertical axis). Right

using attractions and conflicts in 33 iterations.
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iteration of the neural network towards one of the

twelve cluster positions at the edge of the circle. As the

neural network gradually converges from an initial

starting position with a 1=K output signal for each

neuron to a situation with a 1 output signal for one

neuron (corresponding to the cluster where the belief

function is placed) and a 0 output signal for all other

neurons, these output signals can be interpreted as
partial memberships towards the different clusters. In

Fig. 3 the twelve clusters are placed on a circle with

radius 1. Each output signal of a neuron is represented

by a vector from the center of the circle pointing to-

wards the corresponding cluster position at the edge of

the circle. The vector is scaled by the absolute value of

the output signal. Each belief function is plotted as a

point in the cylindrical plane of the figure as the
weighted average of the twelve vectors and by iteration

step on the vertical axis. Thus, a position along the

path (starting from the center of the circle at iteration

step 1 and terminating at one of the twelve cluster
positions at the final iteration step) is a visualization of

the weighted average of all partial cluster memberships

for the belief function during the convergence. The

figure on the left shows convergence when using con-

flicts only. Here the convergence is only gradual with

much of the convergence taking place in the last dozen

iterations. Right we observe the process when using

both conflicts and attractions. Now much of the con-
vergence takes place between iteration 10–12 with a few

latecomers gradually converging thereafter.

In Fig. 4 we see a top view of the two processes.

Notice in the left part of the figure that when using

conflicts only many belief functions have to change

course from one cluster to another as the process con-

verges. When using both conflicts and attractions most

belief function head directly for an appropriate cluster,
right part of the figure.

Finally in Fig. 5 we observe the convergence of the

two processes. Each curve is a normalized entropy-like

measure



Fig. 4. A top view of Fig. 3. Left using conflicts only and right using attractions and conflicts.

Fig. 5. The convergence of two cluster processes. Each curve is a normalized entropy-like measure of the neural output of the 4095 neurons cor-

responding to the cluster.
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X
ia

Via log2ðViaÞ ð27Þ

of each cluster. To the left, twelve curves illustrate the

rapid convergence in 33 iterations of the twelve clusters

when using both conflicts and attractions. To the right,
twelve curves illustrate the more gradual convergence in

66 iterations when using conflicts only.
7. Conclusions

We have shown how to map a Dempster–Shafer

clustering problem using both conflicting and attracting
metalevel evidence onto a Potts spin neural network in

order to obtain a fast and accurate method for large

scale clustering problems.

Compared to the situation when using only conflict-

ing metalevel evidence the new clustering method offers
a significant reduction in classification errors as well as a

small reduction in computation time.
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