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Abstract

We develop a method for clustering all types of belief functions, in particular non-consonant belief functions. Such clus-
tering is done when the belief functions concern multiple events, and all belief functions are mixed up. Clustering is per-
formed by decomposing all belief functions into simple support and inverse simple support functions that are clustered
based on their pairwise generalized weights of conflict, constrained by weights of attraction assigned to keep track of
all decompositions. The generalized conflict c 2 ð�1;1Þ and generalized weight of conflict J� 2 ð�1;1Þ are derived
in the combination of simple support and inverse simple support functions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In earlier papers [2–5] we developed methods within Dempster–Shafer theory [6–8] to manage simple sup-
port functions (SSFs) that concern different events where the SSFs were mixed up. This was the case when it
was not known a priori to which event each SSF was related. The SSFs were clustered into subsets that should
be handled independently. This was based on minimizing pairwise conflicts within each cluster where conflicts
served as repellence, forcing conflicting SSFs into different clusters.

This method was extended [9,10] into also handling external information of an attracting nature, where
attractions between SSFs suggested they belonged together.
0888-613X/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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q A short version of this study was presented at the Eleventh International Conference on Information Processing and Management of
Uncertainty in Knowledge-based Systems (IPMU 2006) in Paris, France [1].
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In this paper we develop a method for managing non-consonant belief functions concerning different events
where the belief functions are mixed up.1 This is the general case where no a priori information is available
regarding which event the belief functions refer to. This method is based on the extension introducing attrac-
tions [9,10] and a decomposition method for belief functions [11].

In short, the method can be described as first decomposing all belief functions into a set of SSFs and inverse
simple support functions (ISSFs) [11]. Secondly, all SSFs and ISSFs are clustered, taking account of both the
conflicts between every pair of SSFs and ISSFs as well as information regarding which SSFs and ISSFs were
decomposed from the same belief function.

The number of clusters in the clustering process is an input parameter that needs to be known a priori.
However, determination of number of clusters is outside the scope of this paper. It can be managed with other
methods, e.g., the sequential estimation method proposed by Schubert and Sidenbladh [12] or inferred
through several different trials by the L-method [13].

The methodology developed in this paper is intended to manage intelligence reports whose uncertainty is
represented as belief functions with several alternative nonspecific propositions, i.e., non-singleton focal ele-
ments. This can be the case when handling human intelligence (HUMINT) or for that matter sensor reports
from some advanced type of sensor. For such sensors it is natural to think that the sensor resolution at dif-
ferent ranges will correspond to different sizes of the focal elements supported, while the internal representa-
tion of the frame of discernment will correspond to the maximum resolution. If such sensors can handle two or
more alternative hypotheses as two or more focal elements that will be non-singletons except in the best of
conditions at short ranges, this will force us to manage general belief functions. Presumably, humans as infor-
mation sources will also on average deliver fewer but more complex intelligence reports than simple sensor
systems. Such complex intelligence or advanced sensor reports can be decomposed and managed with these
methods.

An earlier version of this method [2] is implemented in Anubis, a Swedish Army Intelligence System, and
ISFV, a Swedish Air Force Intelligence System [14], and a later version [10] is implemented in IFD03, an infor-
mation fusion demonstrator for tactical intelligence processing [15].

For a recent overview of different alternatives to manage the combination of conflicting belief functions, see
the article by Smets [16].

We begin by describing the decomposition method for belief functions (Section 2). In Section 3 we study the
characteristics of all types of combinations of SSFs and ISSFs and how generalized conflicts between SSFs
and ISSFs are mapped onto weights. We demonstrate how to manage all SSFs and ISSFs using these weights
together with logical constraints that keep track of the decomposition (Section 4). In Section 5 an example is
given. Finally, in Section 6, conclusions are drawn.
2. Decomposition

Let us begin by defining an ISSF:

Definition. An inverse simple support function on a frame of discernment H is a function m : 2H ! ð�1;1Þ
characterized by a weight w 2 ð1;1Þ and a focal element A � H, such that mðHÞ ¼ w;mðAÞ ¼ 1� w and
m(X) = 0 when X 62 fA;Hg.

Let us now recall the meaning of SSFs and ISSFs, [11]: An SSF m1(A) 2 [0, 1] represents a state of belief
that ‘‘You have some reason to believe that the actual world is in A (and nothing more)’’. An ISSF
m2ðAÞ 2 ð�1; 0Þ on the other hand, represents a state of belief that ‘‘You have some reason not to believe that
the actual world is in A’’. Equivalently, in the terminology of [11], Aw

1 where w 2 ½0; 1� and Aw
2 where

w 2 ð1;1Þ, respectively. Here, w is the mass assigned to H in m1 and m2. Note the notation used, where
Aw

1 and Aw
2 represent the support for identical subsets A of the frame given by two different SSFs or ISSFs with
1 Consonant belief functions can be handled in the same way as SSFs without the method developed in this paper, by clustering the
consonant belief functions without any decomposition using conflicts only [2].
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index numbers 1 and 2. The lower index is the index number of the SSF or ISSF that lends support to this
subset.

The ISSF Aw
2 can be understood as some reason not to believe in A due to its absorbing belief. A simple

example is one SSF A3=4
1 , i.e., m1ðAÞ ¼ 1=4 and m1ðHÞ ¼ 3=4, and one ISSF A4=3

2 , i.e., m2(A) = �1/3 and
m2(H) = 4/3. Combining these two functions A3=4

1 � A4=3
2 ¼ A3=4

1 � A3=4
2 ¼ A1 (i.e., m1�2(H) = 1) yields a vac-

uous belief function. Here, Belx � Ay
1 ¼ Belx � A1=y

1 , where � is Dempster’s rule, and � is the decombination
operator absorbing belief [11]. Thus, the ISSF A4=3

2 can be interpreted as 1/4 reason not to believe in A, since
it precisely eliminates the 1/4 support in A expressed by A3=4

1 . It means that if you previously had some 1/4
belief in A you should now delete it. That cannot be achieved by supporting the complement of A. This
makes A3=4

1 and A4=3
2 into two unique components called confidence and diffidence, respectively, by Smets

[11]. Now, if you start out with only one ISSF Aw, w > 1, and nothing more, this is interpreted as if you
have no reason to believe in A and that you need more than 1/w additional reason before you will start
believing in it. At precisely 1/w additional reason you will become completely ignorant m(H) = 1. This is
different than having some belief in A and some in Ac whose combination can never be reduced to complete
ignorance.

All belief functions can be decomposed into a set of SSFs and ISSFs using the method developed by Smets
[11]. The decomposition method is performed in two steps (Eqs. (1) and (2)). First, for any non-dogmatic
belief function Be10, i.e., where m0(H) > 0, calculate the commonality number for all focal elements A by
Eq. (1). We have
Q0ðAÞ ¼
X
B�A

m0ðBÞ: ð1Þ
Secondly, calculate mi(C) for all decomposed SSFs and ISSFs, where C � H including C = ;, and i is the ith
SFF or ISSF. There will be one SSF or ISSF for each subset C of the frame unless mi(C) happens to be zero. In
the general case we will have j2Hj SFFs and ISSFs. We get for all C � H including C = ;
miðCÞ ¼ 1�
Y
A�C

Q0ðAÞ
ð�1ÞjAj�jCjþ1

;

miðHÞ ¼ 1� miðCÞ:
ð2Þ
For dogmatic belief functions assign m0(H) = e > 0 and discount all other focal elements proportionally.
For fast computation, take the logarithm of the product terms in Eq. (2) and use the fast Möbius transform

[17].
Let us study a simple illustrative example of decomposing a general belief function Be10 into SSFs and

ISSFs. Assume a frame H ¼ fx; y; zg and random assignment for all focal elements,
m0ð;Þ ¼ 0

m0ðfxgÞ ¼ 0:0505

m0ðfygÞ ¼ 0:1399

m0ðfx; ygÞ ¼ 0:1176

m0ðfzgÞ ¼ 0:1840

m0ðfx; zgÞ ¼ 0:1877

m0ðfy; zgÞ ¼ 0:2668

m0ðHÞ ¼ 0:0535:

ð3Þ
We calculate the commonality numbers for all subsets A of the frame, A � H, using Eq. (1). We get,
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Q0ð;Þ ¼ 1

Q0ðfxgÞ ¼ 0:4093

Q0ðfygÞ ¼ 0:5777

Q0ðfx; ygÞ ¼ 0:1711

Q0ðfzgÞ ¼ 0:6920

Q0ðfx; zgÞ ¼ 0:2412

Q0ðfy; zgÞ ¼ 0:3202

Q0ðHÞ ¼ 0:0535:

ð4Þ
From these commonality numbers we can calculate the support for each subset C of the frame, C � H, for
all seven SSFs and ISSFs excluding m(H) using Eq. (2). We get,
m1ð;Þ ¼ 0:3379 m1ðHÞ ¼ 0:6621

m2ðfxgÞ ¼ �0:8856 m2ðHÞ ¼ 1:8856

m3ðfygÞ ¼ �0:7739 m3ðHÞ ¼ 1:7739

m4ðfx; ygÞ ¼ 0:6875 m4ðHÞ ¼ 0:3125

m5ðfzgÞ ¼ �1:0876 m5ðHÞ ¼ 2:0876

m6ðfx; zgÞ ¼ 0:7783 m6ðHÞ ¼ 0:2217

m7ðfy; zgÞ ¼ 0:8330 m7ðHÞ ¼ 0:1670:

ð5Þ
We notice four SSF m1; m4; m6 and m7 and three ISSF m2; m3 and m5. The three ISSF can be written
fxg1:8856

2 ; fyg1:7739
3 and fzg2:0876

5 using the terminology of [11].

3. Combining simple support functions and inverse simple support functions

When combining two decomposed parts from two different belief function we face three different situations:
the combination of two SSFs, one SSF and one ISSF, or two ISSFs. These situations are studied below.

3.1. Two SSFs

In this situation we have two SSFs where m1ðAÞ 2 ½0; 1� and m2ðBÞ 2 ½0; 1�. When the two simple support
functions are combined we receive a conflict c12 2 ½0; 1� whenever A \ B = ;. A weight of conflict is calculated
by
J�ij ¼ � logð1� cijÞ ð6Þ
where
cij ¼
miðAÞmjðBÞ; A \ B ¼ ;
0; otherwise

�
ð7Þ
and J�ij 2 ½0;1Þ but will be constrained to J�ij 2 ½0; 5� in our neural clustering process [2,10] for computational
reasons. This will ensure convergence. The weight J�ij will work as repellence between mi and mj in the clus-
tering process. We use the notation J�ij for a weight of conflict to differentiate it from Jþij , a weight of attraction
that will be introduced in Section 4.

This is the usual situation. It is proper that two propositions referring to different conflicting hypotheses are
not combined when they are highly conflicting. Using the conflict we obtain such a graded measure (see [3]).

3.2. One SSF and one ISSF

The situation when combining one SSF m1 with one ISSF m2 is interesting and unproblematic. Here, we
have Aw

1 where w 2 ½0; 1� as usual, and Bw
2 where w 2 ð1;1Þ, i.e., in terms of mass functions m2ðBÞ 2 ð�1; 0Þ.
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Thus, when we combine a SSF Aw
1 with an ISSF Bw

2 we receive a generalized conflict c12 2 ð�1; 0� whenever
A \ B=;. Using Eq. (6) we get a generalized weight of conflict J�12 2 ð�1; 0� which will serve as a weak attrac-
tion between m1 and m2. As before we will constrain the generalized weight of conflict for computational rea-
sons, here to J�ij 2 ½�5; 0�.

The weak attraction is proper and rather immediate. If you believe in a proposition A ðAw
1 ; 0 6 w 6 1Þ and

you receive further evidence indicating you have some reason not to believe in B ðBw
1 ;w > 1Þ; A \ B ¼ ;, that

is an indirect weak support of A as some alternatives of the frame not supported by m1 are disbelieved.
A simple example will demonstrate this. Suppose you have an SSF A1=2

1 and an ISSF B3=2
2 such that

A \ B = ;. Combining them will result in a new type of object, henceforth called a pseudo belief function [11].
In standard notation A1=2

1 is
m1ðX Þ ¼
1=2; X ¼ A

1=2; X ¼ H

�
ð8Þ
and B3=2
2 is
m2ðX Þ ¼
�1=2; X ¼ B

3=2; X ¼ H:

�
ð9Þ
A straightforward combination of m1 and m2 yields a pseudo belief function
m1�2ðX Þ ¼

3=4; X ¼ A

�1=4; X ¼ B

3=4; X ¼ H

�1=4; X ¼ ;

8>>><
>>>:

ð10Þ
without normalization and
m1�2ðX Þ ¼
3=5; X ¼ A

�1=5; X ¼ B

3=5; X ¼ H

8><
>: ð11Þ
after normalization. This is an increase of m1’s support for A from 1/2 to 3/4 and 3/5, respectively, after com-
bination with m2. Note the interesting effect of normalization. Usually mass on the empty set is distributed
proportionally among all focal elements by weighting up the support of the focal elements through normal-
ization. When m(;) < 0, then instead the support for each focal element is weighted down to distribute sup-
port to the empty set so as to make m(;) = 0.

This support for the focal elements of is m1�2 is different from the one we would have if we instead had
received support for Bc of 1/2, A \ B ¼ ;. Assume we have
m3ðX Þ ¼
1=2; X ¼ Bc

1=2; X ¼ H;

�
ð12Þ
then combining m1 and m3 yields
m1�3ðX Þ ¼
1=2; X ¼ A

1=4; X ¼ Bc

1=4; X ¼ H;

8><
>: ð13Þ
i.e., support for A of 1/2, or 3/4 if Bc � A.
When two conflicting belief functions are decomposed, each into several SSFs and ISSFs, the total conflict

for all pairs of two SSFs originating from different belief functions will be higher than that between the two
belief functions. This is because the SSFs have higher masses on their focal elements than the corresponding
belief function, now that we also have ISSFs with negative mass.

A simple example will demonstrate the situation. Let us assume two belief functions ma and mb whose basic
belief assignments are
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maðX Þ ¼
1=2; X ¼ fx; yg
3=10; X ¼ fx; zg
1=5; X ¼ H

8><
>: ð14Þ
and
mbðX Þ ¼
1=2; X ¼ fx; yg
3=10; X ¼ fy; qg
1=5; X ¼ H:

8><
>: ð15Þ
The combination of ma and mb yields a conflict in the intersection of each function’s second focal element
fx; zg \ fy; qg ¼ ; of ma�b(;) = 9/100.

Using the decomposition algorithm, ma can be decomposed into three functions. We get two SSFs fx; yg2=7
a1

and fx; zg2=5
a2

, and one ISSF fxg7=4
a3

, where ma1
� ma2

� ma3
¼ ma.

Similarly, mb can be decomposed into two SSFs fx; yg2=7
b1

and fy; qg2=5
b2

, and one ISSF fyg7=4
b3

. Of the four
pairs of SSFs (one from each decomposed belief function) only ma2

and mb2
are in conflict; fx; zg\

fy; qg ¼ ;, see Fig. 1.
Combining ma2

and mb2
(or for that matter all four SSFs ma1

;ma2
;mb1

, and m b2
) yields a conflict

ma2�b2
ð;Þ ¼ 9=25, i.e., four times as much conflict as in the combination ma � mb. This will be compensated

for by a negative generalized conflict when including the two ISSFs ma3
and mb3

in the picture. We observe
(in Fig. 1) generalized conflicts between ma2

and mb3
, and between ma3

and mb2
, respectively, i.e.,

ma2�b3
ð;Þ ¼ ma3�b2

ð;Þ ¼ �9=20.

3.3. Two ISSFs

The situation when combining two inverse simple support functions (ISSFs) m1 and m2 is perhaps the most
interesting case. Here, we have two ISSFs Aw

1 and Bw
2 where w 2 ð1;1Þ, i.e., in terms of mass functions

m1ðAÞ 2 ð�1; 0Þ and m2ðBÞ 2 ð�1; 0Þ.
Assuming A \ B = ;, we receive a generalized conflict c12 2 ð0;1Þ when combining m1 and m2 that will

serve as a repellence. This is proper but perhaps not immediately intuitive. Let us again look at an example.
Let us combine A3=2

1 and B3=2
2 , i.e., m1(A) = m2(B) = �1/2 or in other terms you have some (1/3) reason not to

believe that the actual world is A and B, respectively, since Belx � A3=2
1 ¼ Belx � A2=3

1 , where � is the decom-
bination operator [11]. We have
m1ðX Þ ¼
�1=2; X ¼ A

3=2; X ¼ H

�
ð16Þ
and
m2ðX Þ ¼
�1=2; X ¼ B

3=2; X ¼ H:

�
ð17Þ
Combining m1 and m2 gives us
x y,{ }a1

2 7⁄
x y,{ }b1

2 7⁄

x z,{ }a2

2 5⁄
y q,{ }b2

2 5⁄

x{ }a3

7 4⁄
y{ }b3

7 4⁄

9/25

9/16

-9/20

Fig. 1. Generalized conflicts between SSFs and ISSFs originating from ma and mb.
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m1�2ðX Þ ¼

�3=4; X ¼ A

�3=4; X ¼ B

9=4; X ¼ H

1=4; X ¼ ;

8>>><
>>>:

ð18Þ
without normalization and
m1�2ðX Þ ¼
�1; X ¼ A

�1; X ¼ B

3; X ¼ H

8><
>: ð19Þ
after normalization.
The positive conflict c12 = 1/4 will serve to repel m1 and m2 which is proper since m1 and m2 contradict each

other. This is observed in the decrease of belief in X = A and X = B where m1�2(A) < m1(A) and
m1�2(B) < m2(B), i.e., the reason to doubt that X = A increases.

When the generalized conflict is greater than 1 we cannot use Eq. (6) to calculate a generalized weight of con-
flict as the logarithm is not defined for values less than 0. We call this hyper conflicting. We note, however, that
the ‘‘1’’ in Eq. (6) is just a way to map a mass in the [0,1] interval to a weight in the ½0;1Þ interval. As there is
nothing special about the ‘‘1’’ in Eq. (6) other than being an upper limit for a traditional conflict we can choose
any other value greater than 1 to map hyper conflicts onto weights. One radical alternative would be to adjust
the value to each application by choosing to map the interval ½0;maxfcijj8i; jg� to the interval ½0;1Þ in the case
with two ISSFs or ð�1;maxfcijj8i; jgÞ to ð�1;1Þ in the general case. We could redefine Eq. (6) as
J�ij ¼ � logðmaxfcklj8k; lg � cijÞ: ð20Þ
However, we will not do so. While this would work there are some drawbacks involved in choosing such a
solution. Firstly, if the maximum value is very high compared to most other generalized conflicts, most gen-
eralized weights of conflict would be very small which would lead to a slow convergence in the clustering pro-
cess. Secondly, having a generalized conflict mapped into different generalized weights of conflict depending
on the application is not attractive. Thirdly, we would like to maintain consistency with clustering only SSFs
where two SSFs that flatly contradict each other for a conflict of 1 also receive a weight of conflict of 1 and
nothing less.

Thus, we will map any hyper conflicting generalized conflict greater than one to a weight of1. For general-
ized conflicts less than 0 there are of course no problems. From this we may redefine Eq. (6) as
J�ij ¼ � logð1�minf1; cijgÞ; ð21Þ
where J�ij 2 ð�1;1Þ. As before we will, however, for computational reasons restrict the generalized weight of
conflict to J�ij 2 ½�5; 5�.

4. Clustering SSFs and ISSFs from decomposed belief functions

In order to be able to cluster all belief functions we begin by decomposing each belief function into a set of
SSFs and ISSFs. We then calculate generalized weights of conflicts for all pairs in the set of decomposed SSFs
and ISSFs, except when they both originate from the same belief function. Weights of attraction are assigned
when they do originate from the same belief function.

At this stage all SSFs and ISSFs may now be clustered based on their pairwise generalized weights of con-
flict where the weights of attraction are used as constraints, forcing SSFs and ISSFs that originate from the
same belief function to end up in the same cluster. This can be achieved using the Potts spin [18] neural clus-
tering method extended with attractions [10].

The Potts spin problem consists of minimizing an energy function
E ¼ 1

2

XN

i;j¼1

XK

a¼1

ðJ�ij � Jþij ÞSiaSja ð22Þ
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by changing the states of the spins Sia’s, where Siaf0; 1g and Sia = 1 means that mi is in cluster a. N is the num-
ber of SSFs and ISSFs, K is the number of clusters and Jþij 2 ½0;1Þ is a weight of attraction formally calcu-
lated as
Jþij ¼ � logð1� pijÞ; ð23Þ
where pij is a basic belief assignment that mi and mj originate from the same belief function. This model serves
as a clustering method if J�ij is used as a penalty factor when mi and mj are in the same cluster.

However, if mi and mj originate from the same belief function we assign cij :¼ 0 and an attraction pij :¼ 1,
otherwise pij :¼ 0. To assure smooth convergence of the neural network J�ij is restricted to ½�5; 5�, while Jþij is
restricted to f0; bg in this application, b > 0.

Let us calculate the generalized weight of conflict between mi and mj, taking the restriction into account,
Fig. 2 as
J�ij ¼

0; 9x:mi;mj 2 Belx

�5; 8x:mi;mj 62 Belx;

cij 6 1� e5

� lnð1� cijÞ; 8x:mi;mj 62 Belx;

1� e5 < cij < 1� e�5

5; 8x:mi;mj 62 Belx;

cij P 1� e�5;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð24Þ
where 9x:mi;mj 2 Belx means there exists at least one belief function such that both mi and mj are decomposed
from it, while 8x:mi;mj 62 Belx means that there is no belief function such that both mi and mj are decomposed
from it. We assign weights of attraction as
Jþij ¼
b; 9x:mi;mj 2 Belx

0; 8x:mi;mj 62 Belx

�
; ð25Þ
where b > 0, enforcing the constraint that SSFs and ISSFs originating from the same belief function end up in
the same cluster.

In the next section we will investigate suitable values for b in order to achieve a good balance between the
repellency of the conflicts and the attractions from the constraints in the clustering process.
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Fig. 2. The generalized weight of conflict J�ij in Eq. (24) as a function of the generalized conflict cij when mi;mj 62 Belx.
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The clustering of all SSFs and ISSFs is made using the Potts spin neural clustering method extended with
attractions. The minimization of the energy function, Eq. (22), is carried out by simulated annealing. In sim-
ulated annealing temperature is an important parameter. The process starts at a high temperature where the
Sia change state more or less at random taking little account of the interactions (Jij’s). The process continues
by gradually lowering the temperature. As the temperature is lowered the random flipping of spins gradually
comes to a halt and the spins gradually become more influenced by the interactions (Jij’s) so that a minimum
of the energy function is reached. This gives us the best partition of all evidence into the clusters with minimal
overall conflict.

For computational reasons we use a mean field model in order to find the minimum of the energy function.
Here, spins are deterministic with V ia ¼ hSiai 2 ½0; 1� where Via is the expectation value of Sia. The Potts mean
field equations are formulated [19] as
V ia ¼
e�Hia ½V �=TPK
b¼1e�Hib ½V �=T

ð26Þ
where
H ia½V � ¼
XN

j¼1

ðJ�ij � Jþij ÞV ja � cV ia ð27Þ
and T is a temperature variable that is initialized to the critical temperature Tc, see Table 1, and then lowered
step-by-step during the clustering process.

In order to minimize the energy function, Eqs. (26) and (27) are iterated until a stationary equilibrium state
has been reached for each temperature. Then, the temperature is lowered step-by-step by a constant factor
until 8i; a: V ia 2 f0; 1g in the stationary equilibrium state, Table 1. We have two input parameters: K is
the number of clusters and N the number of SSFs/ISSFs. Output is the set of all clusters {va} where va is clus-
ter number a with all the SSFs and ISSFs that belong to it.

After clustering, SSFs and ISSFs originating from the same belief function may be replaced by the original
belief function. The belief functions within each cluster can then be combined as a series of independent
subproblems.
5. An example

In this section we will first go through a simple qualitative example to facilitate understanding of the
mechanics of the clustering process. After this we will look at a larger quantitative experiment in order to
assess the performance of the clustering process.

5.1. A qualitative discussion

Let us revisit the example in Section 3.2. We have two belief functions ma and mb, Eqs. (14) and (15), respec-
tively. Let us duplicate ma so that we now have three belief functions for this example (call the new belief func-
tion mA). In Fig. 3, we have calculated the generalized weights of conflict J� between all SSFs and ISSFs, and
in Fig. 4 we have assigned the weights of attractions J+ that will enforce the constraints. Only generalized
weights of conflicts not equal to zero are included in Fig. 3, and only weights of attractions not equal to zero
are included in Fig. 4.

The Potts spin neural clustering process will gradually decide which SSFs and ISSFs belong together. The
convergence of the Potts spin neural net is fastest where the absolute value of the weight |J� � J+| are largest.
First, all SSFs and ISSF from the same belief function will be brought together due to the high weights from
the constraints. Secondly, the conflict between the second SSF of mb; fy; qg2=5

b2
, towards the second SSFs of ma

and mA, as well as that between the ISSF of mb; fyg7=4
b3

, towards the ISSFs of ma and mA will overwhelm the
attraction between the SSFs and ISSFs, Fig. 3. Thus, the four SSFs and two ISSF from ma and mA are brought
into one cluster and mb will be left alone in a second cluster, assuming two clusters.



Table 1
Clustering algorithm

INITIALIZE

K (number of clusters); N (number of SSFs/ISSFs);
Calculate J�ij 8i; j using Eq. (24);
Assign Jþij 8i; j using Eq. (25);
s = 0; t = 0; e = 0.001; s = 0.9; c = 0.5;
T0 = Tc (a critical temperature)
¼ 1

K 	maxð�kmin; kmaxÞ,
where kmin and
kmax are the extreme eigenvalues of M,
where Mij ¼ J�ij � Jþij � cdij;
V 0

ia ¼ 1
K þ e 	 r and ½0; 1� 8i; a;

REPEAT

•REPEAT-2
"i Do:

H s
ia ¼

XN

j¼1

ðJ�ij � Jþij ÞV

sþ1; j<i

s; jPi

�
ja � cV s

ia 8a;

F s
i ¼

XK

a¼1

e�Hs
ia=T t;

V sþ1
ia ¼

e�Hs
ia=T t

F s
i

þ e 	 r and ½0; 1� 8a;

s ¼ sþ 1;

UNTIL-2

1

N

X
i;a

jV s
ia � V s�1

ia j 6 0:01;

•Tt+1 = s Æ Tt;
•t = t + 1;

UNTIL

1

N

X
i;a

ðV s
iaÞ

2 P 0:99;

RETURN

fvaj8Si 2 va 	 8b 6¼ a V s
ia > V s

ibg;
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5.2. A quantitative experiment

Let us now study a larger quantitative experiment. While it is possible to cluster thousands of belief func-
tions [10] with the Potts spin clustering method, we will study a smaller yet challenging problem where we eas-
ily can observe the characteristics of clustering SSFs and ISSFs and in detail study the interaction between
conflicts and constraints in the clustering process.

We assume a frame of discernment with four focal elements H ¼ fx; y; z; qg and a problem with four belief
functions with uniformly drawn random mass assignments for all 15 focal elements in a way such that
X

;6¼X�H

mðX Þ ¼ 1; ð28Þ
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with m(;) = 0. Each of these four belief functions is then decomposed into 16 SSFs or ISSFs, one for each
subset of the frame. This is done using the decomposition algorithm available in TBMLAB [20]. Here one
of the 16 SSFs or ISSFs support m(;).

The 64 SSFs and ISSFs resulting from the decomposition of the four belief functions are clustered into four
clusters using the Potts spin neural clustering method. In the illustration in Fig. 5 the four clusters are placed
on a circle with radius 1. Each output signal of a neuron is represented by a vector from the center of the circle
pointing towards the corresponding cluster position at the edge of the circle (not shown). The vector is scaled
by the absolute value of the output signal. As each SSF and ISSF have partial memberships with four clusters
during the clustering process four such vectors correspond to one SSF or ISSF. At every iteration of the neural
network each SSF and ISSF is plotted as a point in the normal plane of the cylinder’s symmetry axis as the
sum of these four vectors and by iteration step on the vertical axis. Together these points from different iter-
ations make up a path shown as a line in Fig. 5 (starting from the center of the circle at iteration step 1 and
terminating at one of the four cluster positions at the final iteration step). A point along the path is a visual-
ization of the weighted average of the four partial cluster memberships for the SSF or ISSF during the con-
vergence. One such path is plotted for each of the 64 SSFs or ISSFs. As seen in Fig. 5 most of the convergence
take place at the tenth iteration step. This was done with a b = 0.17, the lowest b to achieve one or more per-
fect clusterings from 100 trials.

In Fig. 6 we see a top view of the same clustering process. Notice that most of the 64 SSFs and ISSFs head
directly for an appropriate cluster, only a handful have to change course from one cluster to another as the
process converges.

In Fig. 7 we observe the convergence of the process. The curve in the figure is an entropy-like measure
�
X

ia

V ia lnðV iaÞ ð29Þ
summed up over all output signals from the 256 neurons, corresponding to the partial memberships of the 64
SSFs and ISSFs in each of the four clusters at each iteration step. The entropy starts at 88.723
ð64
 4
 ½�0:25 ln 0:25�Þ and drops quickly from the ninth to the tenth iteration followed by a final steady
convergence.
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Fig. 5. The clustering process of 64 SSFs and ISSFs into four clusters using both conflicts and constraints as attractions. Here b = 0.17
and convergence is achieved in 15 iterations. There are no clustering errors in this example, i.e., all SSFs and ISSFs decomposed from one
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Fig. 6. A top view of Fig. 5. Most of the 64 SSFs and ISSFs head straight from the center towards their corresponding cluster.

J. Schubert / Internat. J. Approx. Reason. 48 (2008) 466–480 477
In Fig. 8 we measure the average clustering error over 100 runs as a function of b. While the earlier obser-
vations and figures were aimed at understanding the behavior of the clustering process, this is a measure of
overall performance of the process. The average clustering error is calculated as the number of SSFs and
ISSFs that are misplaced into another cluster relative to its corresponding belief function. The cluster corre-
sponding to the belief function in question is determined as the cluster with the most SSFs and ISSFs from this
belief function. This is always determined in this indirect way as no clusters are pre-labeled before the cluster-
ing has taken place. When all 16 SSFs and ISSFs that were decomposed from one belief function end up in the
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Fig. 8. Clustering error as a function of b (average over 100 runs).
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same cluster, one gets a clustering error of zero for that belief function. When this is achieved for all four belief
functions, one gets an overall clustering error of zero. The maximum clustering error is when the 16 SSFs and
ISSFs are evenly distributed among the four clusters. Any cluster may now be said to correspond to the belief
function for a clustering error of 12 (3 · 4) for this belief function, and a maximum overall clustering error of
48 (4 · 12).

We observe in Fig. 8 that the average clustering error over 100 clustering processes for each value of b
quickly drops from 24.64 for b = 0.01 towards zero for b values around 1. The lowest b with clustering errors
of zero for all 100 runs is 0.62. For b P 1.07 there are never any clustering errors.

In Fig. 9 we observe the average clustering computation time over 100 runs for all b values from 0.01 until
5.00. The highest computation time was 0.1039 s for b = 0.01. At b = 1 we obtained a computation time of
0.0456 s. The computation time is quite stable for larger b values.

For larger problem sizes we have shown [2] that the Potts spin clustering computation time scales as n2k2,
where n are the number of SSFs and ISSFs and k the number of clusters. If the number of belief functions are
k with n = 2k SSFs and ISSFs, this yields a computational complexity of O(22kk2) when measured by the num-
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ber of belief functions or O(n2log2n) when measured by the number of SSFs and ISSFs, i.e., in the number of
inputs to the clustering process.

Finally, in Fig. 10 we observe the final remaining entropy after convergence is achieved. We notice a slightly
better convergence with less remaining scattering for higher b values above three, although the results are
fairly good for any b P 1.

Thus, from both a clustering performance and a computational point of view we should prefer b values
larger than 1. Although of lesser importance, we also notice the slightly better convergence of the clustering
process itself when b P 3.

6. Conclusions

In this paper, we have developed a methodology which makes it possible to cluster belief functions that are
mixed up. The belief functions are first decomposed into simple support functions and inverse simple support
functions. We then adopt a neural clustering algorithm intended for simple support functions to handle both
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SSFs and ISSFs while recording their decomposition for postclustering recomposing. With this method we
may cluster any type of belief function, and in particular non-consonant belief functions.

Acknowledgements

I wish to express my sincere appreciation to the late Prof. Philippe Smets. The idea to decompose mixed up
belief functions into SSFs and ISSFs in order to cluster all pieces was suggested by him [21].

References

[1] J. Schubert, Managing decomposed belief functions, in: Proceedings of the 11th International Conference on Information Processing
and Management of Uncertainty in Knowledge-based Systems, Paris, France, 2006, vol. 2, pp. 1428–1435.

[2] M. Bengtsson, J. Schubert, Dempster–Shafer clustering using Potts spin mean field theory, Soft Computing 5 (3) (2001) 215–228.
[3] J. Schubert, On nonspecific evidence, International Journal of Intelligent Systems 8 (6) (1993) 711–725.
[4] J. Schubert, Specifying nonspecific evidence, International Journal of Intelligent Systems 11 (8) (1996) 525–563.
[5] J. Schubert, Managing inconsistent intelligence, in: Proceedings of the 3rd International Conference on Information Fusion, Paris,

France, 2000, vol. 1, pp. TuB4/10–16.
[6] A.P. Dempster, A generalization of Bayesian inference, Journal of the Royal Statistical Society Series B 30 (2) (1968) 205–247.
[7] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, NJ, 1976.
[8] P. Smets, R. Kennes, The transferable belief model, Artificial Intelligence 66 (2) (1994) 191–234.
[9] J. Schubert, Clustering belief functions based on attracting and conflicting metalevel evidence, in: B. Bouchon-Meunier, L. Foulloy,

R.R. Yager (Eds.), Intelligent Systems for Information Processing: From Representation to Applications, Elsevier, Amsterdam, 2003,
pp. 349–360.

[10] J. Schubert, Clustering belief functions based on attracting and conflicting metalevel evidence using Potts spin mean field theory,
Information Fusion 5 (4) (2004) 309–318.

[11] P. Smets, The canonical decomposition of a weighted belief, in: Proceedings of the 14th International Joint Conference on Artificial
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