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Abstract - Complex networks has recently emerged

as an independent area of study. It has connec-

tions to random graph theory from mathematics as

well as to social network analysis and recent work by

physicists interested in understanding the behaviour

of large, interacting networks. Network models are

important for information fusion in two manners.

First, the command and control networks of dis-

tributed information fusion systems must be de-

signed in such a way that they are both robust against

failures and attacks and so that information spreads

quickly in them. Second, network models and social

network analysis is an important tool to use when

analyzing the opponents facing us in international

operations. In this paper, we describe the basics of

complex network models and point out how they can

be used for both these purposes. By simulating sev-

eral different network architectures, it will be possible

to choose the best.
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1 Introduction

In order to provide good decision support systems for
ths tasks that face the Swedish Defence forces today
and tomorrow, it will be necessary to integrate knowl-
edge of complex networks in the information fusion sys-
tems.

Information fusion [1] deals with filtering the infor-
mation avalanche from sensors that commanders will
face in the future network-based defence. The network
will consist of large numbers of sensor platform and
processing nodes. In order to ensure that the com-
mand and control networks are robust against enemy
attacks and component failures, it is necessary to de-
sign them so that they can withstand both enemy at-
tacks and component failure. Additionally, they must
be designed so that information, orders, and service-
requests are spread as fast as possible.

Future command and control systems will also need
to be designed to facilitate the use of distributed fusion.
There will be several local fusion nodes that gather and
fuse data collected at different places in the network

of platforms. This means that in addition to the ro-
bustness and communication requirements mentioned
above, the specific fusion algorithms chosen might also
impose constraints on the network used.

It is important to distinguish between the physical
and the logical communication networks. The physical
network consists of the actual hardware that transmits
information and will not be discussed here. The logical
communication network uses the physical to transmit
information between sender and recipient.

Knowledge of network models and methods for ana-
lyzing them is also needed in order to be able to model
the enemies that we are facing. In the international op-
erations that the Swedish defence forces are performing
today and in the future Nordic Battle Group, we face
new kinds of enemies and perform different kinds of
tasks. Instead of a technically advanced, hierarchically
organized enemy, our opponents will be gangs, clans,
guerillas, and other kinds of loosely organized groups.
In order to analyze the behaviour of such groups, it
is necessary to use methods from social network anal-
ysis [2, 3]. By modelling the groups and individuals
we are facing in a network, we can determine many
important properties of the opponents.

Here, we present various models of networks and dis-
cuss how they could be used for both modelling loosely
organised enemies and for improving the communica-
tion networks in a distributed information fusion sys-
tem.

For more information on complex network, we refer
to [4, 5, 6, 7]

This paper is outlined in the following way. Section
2 gives a brief overview of various types of network
models. Section 4 lists some of the most important so-
cial network measures and discusses how they could be
used to improve situational awareness, while section 5
presents suggestions for how to achieve increased syn-
chronization in command and control systems. The
paper concludes in section 6.

2 Network models

2.1 Simple networks

In order to properly describe a general network or
graph, two things are needed. First, we need a list



Figure 1: A square lattice.

of the nodes of the graph. The nodes can be named
and have various properties associated to them, but
for describing the graph it is enough that they can be
enumerated from 0 to N − 1. Second, we must know
which nodes are connected to which. This is most eas-
ily thought of as a list of edges (i, j) that are connected.
Each edge can have various properties associated to
it (e.g., a weight wij). Most often, the graph is de-
scribed using the neighbour matrix or contact matrix

Aij , whose entries are are non-zero if and only if nodes
i and j are linked. It is sometimes convenient to con-
sider the graph as a function φ(i) that gives a list of
the neighbours of node i.

Edges can be either directed (meaning, for example,
that an edge (i, j) can only transmit information from
i to j) or undirected. A graph is connected if there
is a chain of edges connecting any pair of nodes in
it. A natural generalisation of graphs is to replace the
edges by triples i, j, k or even n-tuples. Such structures
are called hypergraphs. An important application of
hypergraphs is to model sets of individuals that only
interact in a group, never individually, for example, a
group of rioters that meet at a certain place.

The simplest kinds of networks are regular, like the
one shown in figures 1.

%leavevmode

All regular lattices have some features in common.
By looking at the graphs in figure 1 it is for instance
apparent that these graphs are clustered, in the sense
that if we remove one node, its neighbours will still
have a short path between them. Another interesting
characteristic of regular lattices is that the average dis-
tance between nodes is quite large. For a lattice with
N sites in D dimensions1, it grows as N1/D.

A natural extension of the regular lattice is to con-
sider other graphs where all nodes are equivalent (i.e.,
have the same neighbourhood). The simplest example
of such a graph is the complete graph with N nodes,
KN . This consists of N nodes where each node is con-

nected to each of the other (so the graph has

(

N
2

)

edges).

2.2 Classical random graphs

Traditionally, two different models of random graph
processes have been used [8]. In the first model,
G(N, p), each possible edge (i, j) is considered and in-
cluded in the graph with a probability p. The other

1The simplest example to think of is Z
D
l , where nodes are

placed at integer coordinates and edges link nodes that whose

coordinates differ by ±1 in exactly one dimension. Choose l =

N1/D to get N nodes.

model, G(N, M), instead selects without replacement

M of the

(

N
2

)

possible edges. Note that these mod-

els are not completely equivalent. For the latter model,
the graph is guaranteed to have exactly M edges, while
the number of edges is a stochastic variable for the
former. In the thermodynamic limit of N, M → ∞,
choosing

M = p

(

N
2

)

gives graphs that should share all relevant properties.
An important quantity characterizing different random
graphs is their connectivity or average degree γ, which
measures the average number of neighbours that the
nodes have. For random graphs with N nodes and M
edges, this is given by γ = 2M

N = p(N − 1) for the two
ensembles.

Graph theory is a fascinating mathematical subject
with many deep results; see for instance [8, 9]. One of
the most interesting results is that there is a phase
transition as the connectivity γ of a random graph
grows. For small γ, the random graph consists of
many isolated trees2 of nodes. At γ = 1 this suddenly
changes and a giant component emerges. The size of
the giant component scales linearly with the number
of nodes, N . This percolating transition is somewhat
surprising — note that the graph can not be connected
until it has a connectivity of at least 2(N − 1)/N . An-
other important result is that the average path-length
between two nodes scales as log N for large N .

The random graph model, however, is not sufficient
to describe many naturally occurring networks.

2.3 Small world graphs

There are many different kinds of networks in Nature.
Perhaps the first that comes to mind is the social net-
work of a society. Here each node represents a per-
son, while there is an edge between two persons if they
know each other. What does this graph look like? It is
very unlikely that it would be a regular lattice — our
acquaintances are not ordered in such a simple way.
The social network however shares an important fea-
ture with regular lattices: they are clustered. Clus-
tering means that there is a high probability that two
neighbours of a given node also are direct neighbours
themselves. An alternative way to think about it is to
consider the average path length between two neigh-
bours of a node i. Since both nodes are neighbours of
i, this is obviously smaller than 2. If node i is now re-
moved from the graph, we have to find a new shortest
path between the nodes. If this new path length is still
small, the graph is clustered. All regular lattices are
obviously clustered, and social networks are clustered
too: if person A knows persons B and C, there is a high
probability that B and C will also know each other.

Real social networks are clustered in several ways:
everybody’s acquaintances can be divided into several
distinct clusters, i.e., the people one knows from work
all know each other, while the overlap between this

2A tree is a connected graph without loops.



Figure 2: Examples of clustering coefficients. We wish
to calculate the clustering coefficient of the grey node
on the left, which has three neigbours (indicated by
grey lines). The dark lines show the edges in the neigh-
bourhood of the grey node that actually appear in the
graph, while the dotted lines show all three possible
such edges.

group and one’s neighbours often is zero. This can
be modelled by allowing the network to have edges of
different kinds, or by superimposing several different
networks on top of each other.

Mathematically, we can measure the degree of clus-
tering in a graph by the clustering coefficient, C, de-
fined as the average over all nodes of the local cluster-
ing coefficient Ci. For a given node i, consider its im-
mediate neighbourhood, i.e., the set of nodes to which
it is linked. The local clustering coefficient is now given
by the fraction of all possible edges between nodes in
the neighbourhood that actually appear in the graph.
Figure 2 shows an example that should make the defi-
nition clear.

Another important feature of social networks is the
so called small world effect: When two strangers meet,
it sometimes happens that the two people turn out to
have mutual acquaintances.

The idea behind small world networks was first in-
troduced by Milgram [10] in 1967. Milgram’s exper-
iment consisted of studying the path of letters ad-
dressed to a stockbroker in Pittsburgh. The letters
were given to people in rural Nebraska with the rule
that the current holder of the letter must hand it over
to somebody with whom they were on a first-name ba-
sis. The average number of links in the chain of people
between Nebraska and Pittsburgh was six, hence the
term “Six degrees of separation”. The number is of
course not exact (a severe shortcoming of the experi-
ment was that only one third of the letters were actu-
ally delivered!), but the phenomenon that people are
linked via a small number of nodes has been verified
by later, more careful experiments (e.g, [11]).

The small world effect has later been popularised
by occurring in media, such as the movie “Six Degrees
of Separation”. There are also various amusing games
using the same concept, such as the web site
http://www.cs.virginia.edu/oracle/ where a user can

Figure 3: This figure shows the construction of a small
world starting from a 2D square lattice (left). In the
right figure, two edges have been rewired and are shown
as dashed lines.

find the distance between an arbitrary actor and Kevin
Bacon. Actors here represent the nodes of the graph,
and two actors are linked if they have participated in
the same movie. It should be noted that the actors
represented in the database are American and Euro-
pean ones. The network of actors in Indian movies, for
instance, probably has few connections to this.

Another example are the Erdös numbers. Named
after the famous mathematician Paul Erdös [12], these
are defined recursively: Erdös has Erdös number 0; a
person has Erdös number n+1 if they have co-authored
a paper with somebody who has Erdös number n (there
are at least 507 persons with Erdös number 1; see the
web site
http://www.oakland.edu/~grossman/erdoshp.html).

Regular lattices do get shorter and shorter distances
between nodes as the dimensionality increases (the di-
ameter scales as N1/d for a d-dimensional lattice with
N nodes, so it decreases if we increase d and keep N
constant), but this is still too large to explain the small
world effect. Instead, new graph models are needed.

A small world graph is intermediate between a regu-
lar lattice and a random graph — it has both clustering
(like a regular lattice) and short maximum distances
(like the random graph). It is constructed by consid-
ering in turn all the bonds (i, j) of a start graph (most
often a regular lattice) and with some probability p re-
placing them with (i, k), where k is a new, randomly
chosen, node. So by changing the rewiring probability
p we can interpolate between the regular lattice and a
random graph. An example of a small world obtained
by rewiring the square lattice is shown in figure 3. Note
that the small world for p = 1 differs slightly from a
random graph, since all nodes are guaranteed to have
a local connectivity of at least γ/2 where γ is the con-
nectivity of the regular lattice. The distribution of
connectivities is more broad for the small world with
p = 1 than for the corresponding random graph.

The advance of the Internet and other communica-
tions networks has highlighted the need to be able to
not only describe but also design networks that com-
municate efficiently. Efficiently here has two distinct
meanings — the obvious one that a message from A
to B should be transmitted along the shortest possi-



ble path, and also an equally important one that the
network should be fail-safe. If a node suddenly dis-
appears, it should be possible to quickly find alter-
nate paths between the rest of the nodes that don’t
involve the dead node. A very clear definition of small
world behaviour in terms of efficiency has been given
by Latora and Marchiori [13]. They measure the local
efficiency as the time needed to communicate in the
network, assuming unit velocity of signal propagation.
The efficiency between two nodes is thus

ǫij =
1

dij
(1)

where dij is the shortest distance between nodes i and
j and dij = ∞ if there is no path between the nodes.
The global efficiency is the average of this over all pairs
of nodes in the graph. A high global efficiency corre-
sponds to a small diameter of the graph. The local
efficiency for a node i is calculated as an average of ǫik

over all neighbours k of i, and the total local efficiency
of the graph is then the average of this over all nodes.
The local efficiency is a measure of the fault tolerance
of the network.

In addition to efficiency and clustering, there are a
large number of measures that can be used to char-
acterize a graph’s properties. Many of these measures
come from sociology, and have been used to determine,
e.g., the influence and power of individuals in different
social networks. Others come from computer science,
or have been suggested by physicists.

A small world graph still has the same poissonian
distribution of node-connectivities as random graphs.
A different class of networks are the so-called scale free
graphs, which instead have a power-law distribution.

3 Scale free and growing graphs

A network is called scale free if there is no char-
acteristic length scale in it. In contrast to lattices,
whose characteristic length scale is the lattice spacing,
a scale free graph divides its edges unequally among
its nodes: the degree distribution follows a power-law.
This means that there are a few nodes (called hubs)
that have very many edges, whereas most of the nodes
have very few. An important characteristic of scale
free networks is that while they are robust against ac-
cidental failures, they are very vulnerable to deliberate
attacks against hubs.

A deterministic model for generating scale free
graphs has been introduced by Barabási and
Ravasz [14]; this model generates the graph by iter-
atively replacing nodes with small graphs, in a manner
similar to the construction of self-similar fractals.

There are many models of growing networks. In
these models, one starts with a single node at time
t = 0. In each new time-step a new node is added to
the graph and a new edge is created that connects this
node to one of the older ones with a probability that
depends on the connectivity of that node. If this prob-
ability is simply proportional to the node’s connectiv-
ity (k), the model is reduced to the scale-free graph

Figure 4: This figure shows the difference between a
random network and a scale free network. Note the
presence of hubs (nodes with many neighbours) in the
right network.

model of Barabasi and Albert [15]; see also [16]. It
has been shown that the case where the probability is
proportional to the connectivity is the only case which
also leads to a power-law for the distribution of con-
necitivities in the entire graph [17]. If the probability is
proportional to kγ for any γ 6= 1, we get stretched ex-
ponential (if γ < 1) distributions or graphs where the
majority of the edges share a common central node (for
γ > 1).

The best example of a growing network is the In-
ternet — each node that is added could be interpreted
either as a new computer that is connected to it or a
new web-site that is created. The edges created be-
tween this node and the older ones are then the hyper-
links that the addition of a new site entails. It turns
out, however, that a more complicated model is needed
to model the Internet, see below.

So-called acquaintance networks, such as the Erdös
graph, have been studied, among others, by New-
man [18]. Such network have the characteristic that a
small number of nodes have many edges. These nodes
cannot be ignored when studying communication on
such networks.

The crucial point of Newman’s new model is that
the probability distribution of the number of neigh-
bours, that the neighbours of a specified node has, is
not independent of that node. In social networks, a
node with very few neighbours is likely to be linked
to other nodes that also have few neighbours; while a
node with many neighbours have similar nodes among
its neighbours.Clustering is important for this calcu-
lation. If we know both the degree distribution3 and
the clustering coefficient of a network, it is possible
to calculate the number of neighbours at distance two
from a given node. This is important to know when
conducting research on social networks.

For example, we might be interested in how a net-
work of terrorists grows in a country.

A very interesting approach to the problem of
analysing growing networks has recently been intro-
duced by Kleinberg and co-authors [19]. Perhaps the
most prominent example of a growing network today
is the Internet. The paper examines data represent-
ing routers on the Internet for a tvo year period, and

3
i.e., the probability that a node has a certain number of

neighbours



finds that the link-density of the network increases with
time, i.e., that the number of edges e(t) is related to
the number of nodes n(t) by a power-law

e(t) ∝ n(t)a, (2)

with a = 1.18.

Having such a relation between e(t) and n(t) means
that the connectivity γ = e

n is time-dependent, in
sharp contrast to most models of graphs and networks.
The authors find a similar relation (but with different
a’s) also for three different kinds of citation networks.
In addition to the super-linear scaling of edges with
nodes, they also find that the average distance (also,
somewhat non-standard, referred to as the effective di-
ameter) between nodes decreases as a function of time.
Recall that the average distance for a random graph
grows as the logarithm of the number of nodes. While
the two observations at first glance seem to be related,
the authors note that it is possible to construct graphs
that satisfy one of them but not the other. For large
graphs, it is not practical to compute the diameter
exactly. Instead, various approximate algorithms can
be used. Since the shrinking diameter propery is very
surprising, the authors check that their result is robust
by using several different such approximations to cal-
culate the diameter. They also check for errors due to
the presence of a giant component; the shrinking di-
ameter is present also if the calculation is restricted to
just the giant component.

The paper presents several simple models that ex-
hibit the densification property, and also give one
model, the Forest Fire model that possessess both it
and also displays shrinking effective diameters.

The Forest Fire starts from a graph with just one
node and then adds one additional node at each time-
step. At time t, let Gt be the current graph and v
the added node. A node w ∈ Gt is now selected ran-
domly, and an edge v → w is formed. Most graph
models would now continue by selecting another w and
possibly adding an edge to it. In contrast, the Forest
Fire model selects a random number of the nodes in
Gt that were linked to w, and adds edges from v to
these nodes. This process is then repeated recursively
for each of those nodes. (The process terminates if
it reaches a node that has already been encountered.
It is also possible to distinguish between out- and in-
links when selecting the neighbours of w; see the pa-
per [19] for details.) Intuitively, the graph is generated
in a similar way as friendships are formed: a newcomer
finds one friend and with a certain probability becomes
friends also with the friend’s friends, and so on. The
name Forest Fire comes from a certain similarity to lat-
tice cellular automata models used for studying Forest
Fires. A natural extension of the model is to select
several starting points w at each time-step.

4 Using social network analysis

methods for achieving situa-

tional awareness

Social network analysis [2, 3] was introduced by sociol-
ogists as a means of analyzing communications and re-
lations in groups. It is a quite mature area of research,
which has produced a large set of different measures to
be used when analyzing a network. Here we can only
discuss some of the various measures that can be used.
A more extensive list can be found in [20].

In order to achieve situational awareness, it is nec-
essary to have a clear picture of who the opponents
are. Level 2 information fusion is sometimes said to
deal with determining the relations between the ob-
jects that are output by the level 1 fusion system. In
conventional war, the relations between the observed
entities are given by a doctrine that the enemy fol-
lows. For example, the background knowledge that an
armoured company consists of four platoons, each pla-
toon having 3 tanks in it, allows us to automatically
aggregate sensor observations into situation pictures
of platoons and companies [21]. In operations other
than war, the old methods that relied on doctrinal in-
formation can no longer be used. One approach for
reducing the amount of information presented to the
user in these kinds of environments is to classify groups
of objects based on what capabilities or resources they
have [22]. In some situations, however, it might be
useful also to classify the observed entities based only
on their relations to other entities. This could be the
case, for example, if we in a peace-enforcing operation
are facing several different opponents whose alliances
between them shift from day to day. Such classifica-
tion could be performed by analyzing the social net-
works of the opponents. Commanders and analysts
could also be helped by including support for “what
if” exploratory analysis in the system. For example,
an analysts could use social network analysis methods
to determine the possible paths of communication be-
tween two currenly opposed groups. These paths could
then be put under surveillance, so that we would get
some warning if the two groups are negotiating.

The simplest measures that can be applied to a net-
work simply measure the number of connections that
each node has. Another approach is to determine the
minimum distance to other nodes in the network, i.e.,
determining how central the node is in the network.
For some networks (such as the scale free networks),
this can give a reasonably good measure of the impor-
tance of a node. However, for many social networks it
gives quite misleading results.

A class of more advanced measures instead look at
the flow in the network. In some networks, all links
are associated with a maximum capacity that can be
transported along it. This is the case, for example, for
communications networks — the bandwidth imposes
limits on the amount of data that can be sent along a
link. For other networks, the flow algorithms assume
that the capacity of each link is equal to 1.



The simplest flow-oriented measure simply deter-
mines the shortest paths between all nodes in the net-
work. A node’s importance is then given by the num-
ber of such shortest paths that pass it. This measure
is called the betweenness centrality measure.

Betweenness centrality, however, can also give mis-
leading results. By focusing on only the shortest path,
beteenness misses many cases where there are several
short paths between nodes. An improved measure is
the max flow centrality measure, which determines all
the possibly paths between all the nodes in the net-
work. Each node is then ranked according to the total
amount of flow that passes through it.

(The measures that measure flow can of course also
be used for determining the value of different edges in
the network.)

Yet another way characterizing a social network is
to look at the community structure in it. A commu-
nity is loosely defined as a part of the network whose
nodes have more connections within themselves than
to nodes that are outside it. It is related to the concept
of a clique, a maximally connected subgraph, but dif-
fers since it does not require full connectivity. (It must
be mentioned that the exact definition of a community
is of course application-dependent.) Recently, several
fast algorithms for determining the community struc-
ture of a network has been published [23, 24, 25, 26].
Such algorithms could be used when analyzing, for ex-
ample, the media network in a country in order to
determine which newspapers are independent of each
other.

By using such community finding algorithms, it is
possible to do classification of groups of rioters in real
time. By observing individuals in the crowd and deter-
mining which communities they belong to according to
data in known data bases, the situation pictures can
be augmented with information on the believed alle-
giances of the participants in the riots.

In addition to being useful when facing loosely or-
ganized opponents in international operations, the ap-
proach presented here can also be used for counter-
terrorism analysis or by police that are investigating
gangs of criminals.

A necessary future extension of standard social net-
work analysis is to include support for analysing net-
works that contain uncertain links. The uncertainty in
the links could arise from problems with getting accu-
rate data on the communication patterns of the oppo-
nent which we are trying to analyse. We believe that
random sets will prove useful for this. When analysing
dark networks, it will most likely be impossible to get
accurate representations of the social networks. Sim-
ulation will be an important tool in such cases. By
simulating all possible network structures that are con-
sistent with the known properties of the opponent, it
will be possible to provide the user with better situa-
tional awareness.

5 Synchronization

How we achieve synchronization of intent among own
units and coalition partners is an important and dif-
ficult question whose answer depends more on the or-
ganization and methodology used than on technical
innovations and systems. Nevertheless, it is interest-
ing to study how various technological system could
help facilitate such synchronization. For example, how
should the communication networks be constructed to
improve the speed by which commander’s intent and
situation pictures are spread?

One way of answering this question is by studying
simple models of fusion and command nodes on var-
ious networks. By using a simple model that can be
simulated (or possibly even solved exactly) on differ-
ent kinds of networks and study the differences in be-
haviour that arise, we can determine at least qualita-
tively what the differences between the networks are.

In order to use the results from such experiments for
designing the military networks, it is of course neces-
sary that the model is sufficiently similar to real fusion
system.

One possible model that could be used for such ex-
periments is the so-called voter model version of the
Ising model. The voter model consists of a number
of agents that vote either “yes” or “no”. How they
chose to vote depends on how their neighbours vote.
In the most simple version of the model, each agent
selects one of its neighbours randomly and adjusts its
vote to be the same. There are also versions with more
interesting interactions.

6 Discussion

Most suggestions for network-based defence system
rely on a service-based architecture. In such systems,
it is necessary to match the commander or analyst that
is requesting a service with the platform or fusion node
that can provide it. In order to do this as efficiently as
possible, it is necessary to design the logical commu-
nication networks so that this type of communication
is facilitated. Different network topologies can have
significantly different impact on the ease with which
information is found in a network.

As stated in the introduction, it is important to
know how to model networks for several different rea-
sons [27]. We must be able to analyze the enemy’s
social and organizational structures as well as their
communication networks. We must also be able to
model the interaction network that will emerge when
our commanders and operators communicate with each
other. Not all of this communication will emanate from
the hierarchical structure of the task-force: if two peo-
ple know each other, they will most likely communicate
(by phone, email, or instant messaging) even if they
are not supposed to. Instead of banning such commu-
nication, the network-based defence system needs to
exploit it and use it in order to achieve synchroniza-
tion and fast information spreading. In order to do
this as well as possible, it is necessary to model and



simulate the emerging networks.
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