I. Mahmood, R. Ayani, V. Vlassov and F. Moradi 7

Composability Test of BOM based models using
Petri Nets

Imran Mahmood!, Rassul Ayani!, Vladimir Vlassov!, and Farshad Moradi?

'Royal Institute of Technology (KTH), Stockholm, Sweden
2Swedish Defense Research Agency (FOI), Stockholm, Sweden

Abstract. Reusability is a widely used concept which has recently re-
ceived renewed attention to meet the challenge of reducing cost and time
of simulation development. An approach to achieve effective reusability
is through composition of predefined components which is promising but
a daunting challenge in the research community. Base Object Model
(BOM) is a component-based standard designed to support reusability
and composability in distributed simulation community. BOM provides
good model representation for component reuse however this framework
lacks capability to express semantic and behavioral matching at the con-
ceptual level. Furthermore there is a need for a technique to test the
correctness of BOM-compositions in terms of structure and behavior. In
this paper we discuss verification of BOM based model and test its suit-
ability for the intended purpose and objectives. We suggest a technique
through which the composed model can automatically be transformed
into a single Petri Net (PN) model and thus can further be verified using
different existing PN analysis tools. We further motivate our approach
by suggesting a deadlock detection technique as an example, and provide
a case study to clarify our approach.

Keywords: Verification, Model Based testing, Composability, Petri Nets

1 Introduction

Software reuse is the process of creating dynamic systems from existing com-
ponents instead of building them from scratch. Reusability has recently gained
renewed interest as an effort to minimize the cost and time associated with
the development process. Composability is one of the effective means to achieve
reusability. The concept of Composability was pioneered by Mike Petty in his the-
ory of composability in Modeling and Simulation (M&S) community|6], accord-
ing to which, “Composability is the capability to select and assemble simulation
components in various combinations into simulation systems to satisfy specific
user requirements”’. Composability is divided into syntactic and semantic levels.
Syntactic composability means that the components can be connected to each
other. Semantic composability refers to the fact that the coupling of components
is considered meaningful, computationally valid and conforms to the intended
objectives of the simulation. Semantic composability is broken down into two

Short Papers of the 22nd IFIP ICTSS, Alexandre Petrenko, Adenilso
Simao, Jose Carlos Maldonado (eds.), Nov. 08-10, 2010, Natal, Brazil.

8 Composability Test of BOM based models using Petri Nets

sub-levels namely Static Semantic, which means that the components have same
understanding of the concepts and the relations between them, and Dynamic Se-
mantic that deals with the behavioral correctness of the composition|[3]. There
are some other levels of composability such as Pragmatic composability which
we do not consider in this paper.

BOM (Base Object Model) represents an integrated framework that posses
the ability to rapidly compose simulation components. It provides a foundation
to define and characterize these components at a conceptual level. BOM encap-
sulates information needed to formally represent a simulation component. BOM
is a SISO standard and encapsulates information needed to describe a simulation
component. BOM was introduced as a conceptual modeling framework for HLA
(High Level Architecture) which is an IEEE standard for distributed simulation.
State-machine, which is an essential part of BOM provides means to formalize
the change in the state of an entity with respect to its corresponding actions,
thus in a way it depicts the abstract model of the behavior of the BOM towards
each action[2]. However external techniques are needed for the composability
verification of BOM based components.

PN is an effective graphical tool and mathematical formalism for modeling
concurrent systems and their behaviors. PN has existed for many decades and
has been used in modeling, analysis and verification of a large variety of systems
[5]. A PN is an algebraic structure of 3-tuple: PN = (P, T,¢) where:

— P is a finite set of places P = {p1, p2, ..., Pn}
— T is a finite set of transitions T = {t1, to, ..., ty}
— pisaset of arcs p C (PxT) U (TxP) | PNT = ¢ and PUT#¢

A major strength of PN is its support for analysis of many properties and prob-
lems associated with concurrent systems. Some of the important PN properties
are briefly defined as follows:

Reachability A marking p is said to be reachable from a marking pug if
there exists a sequence of firings that transforms pg to p. The set of all pos-
sible markings reachable from p in a net P(N, 1) is denoted by R(N, puo).
The reachability property determines whether px € R(N,). Reachability is a
fundamental basis for studying the dynamic behavior of a system [4].

Liveness A PN P(N, pp) is said to be live if, no matter what marking has
been reached from pg it is still possible to make further progress by firing an
enabled transition of the net. A live PN guarantees deadlock-free operation, no
matter what firing sequence is chosen [4]

In this paper we employ the well-suited analytical strength of PN tools to
test various system properties such as deadlock freedom. We propose a verifica-
tion process and a framework to allow the assessment of a composed model by
transforming it into a PN model and apply suitable analytical methods which are
commonly being practiced by the PN community. As compared to our previous
approach|[3| in which we used Finite State Automata, using PN for verification
proves to be more fruitful due to the broader range of verification tools and tech-
niques that are available. The remainder of this paper is organized as follows:
Section 2 contains the major contribution of this work covering the proposed

Short Papers of the 22nd IFIP ICTSS, Alexandre Petrenko, Adenilso
Simao, Jose Carlos Maldonado (eds.), Nov. 08-10, 2010, Natal, Brazil.

I. Mahmood, R. Ayani, V. Vlassov and F. Moradi 9

methodology for the verification. A case study is presented in section 3 to sup-
port our concept whereas section 4 concludes this paper.

2 Test and Verification of a composed model

In this section we discuss our proposed verification process and the framework
in which this process has been implemented. Our approach for the verification
of BOM based composed models is essentially based on the conversion of a
composed model to PN model and applying different analytical techniques to
verify the required system properties. We use the Platform Independent PN
Editor (PIPE) as an underlying layer for PN analysis [1|. PIPE is an open source
Java based PN graphical editor and analysis tools library. It not only provides
a graphical preview and editing facility for PN models, but also supports visual
simulation (commonly known as Token game animation) and analysis techniques.
Our verification framework is integrated with PIPE environment to utilize these
facilities. Following are the two main steps in our proposed verification process:

2.1 Transformation of BOM to Petri

In this step, BOM is transformed into PN model. In the preparatory phase
a composed BOM model is parsed using our BOM parser and the objects of
state-machines, and corresponding events of all the members of composition
are collected. Then the composition is analyzed to check completeness of model
in terms of structure of state-machines and the presence of associated events
for each state to be able to exit. In case of no such association it is verified
whether the particular state is a final state or not. The event pairs are also
matched among the member components so that for each receiver component a
corresponding sender of an event is present. This procedure is applied to ensure
that the composition is structurally correct and suitable to proceed with. For
more details see [3].

Finally the BOM model is automatically transformed into a PN model. A
PN model is ideally represented using PNML (PN Markup Language) which
is an XML-based standard interchange format for PN. We propose the basic
transformation algorithm as given in figure 2a. The input for this procedure is
a BOM object C of the composed model which is generated by the parser. In
order to meet the requirements of PNML, we also assume default values such
that tokens at each place are set to zero and arc weights are set to 1. As we are
not considering Timed PN in this work so we also set the timed Boolean variable
to false. These settings can be modified later for experimentation at the time of
execution & analysis.

In this algorithm for each state-machine in the composed model (line 2) every
state is traversed one by one (line 3) and its corresponding place is created! in

! Create functions are used to write XML code to a file according to the PNML
notation.

Short Papers of the 22nd IFIP ICTSS, Alexandre Petrenko, Adenilso
Simao, Jose Carlos Maldonado (eds.), Nov. 08-10, 2010, Natal, Brazil.

10 Composability Test of BOM based models using Petri Nets

Algerithm: Transformation of BOM to PNML
Data BOM C, Input

Result PNML P BOM
1 Begin

2for each sfalemachine S € C do : § :

3 for each slale s, ¢ S do Entity; E"tlt}/ .| Entity, =

4 P, = Create Place(s) 2 » Statemachine

5 for each nexisiale sn; e 5, next]] do I Fi State; *T7
6 Py= Create Place (sn)) SMy | SMy | SWg \'Statemachi'ne

7 &= 5; exitevent]] Exit Event

8 T, = Create Transition{e;) 5 [
9 A= Creats Arc (Fy1oT) Euenty | Event; |..| Event, Entity]

10 A= Create Arc (T 10 F) ./ Next Statey o
11 end |sction, | Action; | | Action,, | | Statey [State; | State, ul
12 end e

13 end
14 end

Fig. 1. a) Our Algorithm b) Transformation from BOM to PN

PNML format (line 4). Since a state may have multiple next states and their
associated exit events so for each next state (line 5), a place is created (line
6) provided it does not already exist. Then a transition is created for the exit
event associated with the next states (line 8). After that an input arc is created
from the place to transition (line 9) and an output arc is created from the
transition to the next place (line 10). Duplication is avoided in the entire process.
This procedure can be graphically viewed in figure 2b, (assuming that the two
state-machines have a common exit event) Also the graphical placing (X and Y
positions) for each place, transition and arc is handled automatically in such a
way that all the places of each member component are aligned in a vertical lane
and their transitions are created between the lanes to show the interaction among
different components in order to facilitate visibility. When the entire BOM model
is traversed, a PNML file is generated that corresponds to the PNML standard
and can be used in any PN simulation tool for execution.

2.2 Petri Net Analysis

In the analysis step, we perform Reachability analysis on the PNML model
generated in the previous step with user given input parameters. To initiate this
procedure we use PIPE library to construct a reachability tree and populate it
with our PNML model generated in the previous step. We perform this operation
programmatically to facilitate automation. After the initialization of the root
marking, the tree recursively expands by constructing further markings until all
the markings of the model have been created. If no more marking can be created,
i.e., no further transition is enabled it reaches a dead marking. By detecting a
dead marking in the tree, we assert that a deadlock is detected provided that it
is not a final marking. We propose a minor change in the original definition of
deadlock in a Dead (or LO-live) PN as some models may have terminal points
e.g., when a Final State in a finite State-machine is reached. So we define a
“Final Marking” as a successful termination point which is not considered as a
dead marking even though no further transitions could be fired. Thus we propose
a deadlock detection method in which we find at least one dead marking from

Short Papers of the 22nd IFIP ICTSS, Alexandre Petrenko, Adenilso
Simao, Jose Carlos Maldonado (eds.), Nov. 08-10, 2010, Natal, Brazil.

I. Mahmood, R. Ayani, V. Vlassov and F. Moradi 11

where no further transitions could be fired, provided it is not a final marking.
We input the final marking as a parameter for reachability analysis.

3 Case Study

In this section we discuss a restaurant case study to test our verification ap-
proach. This is a simple composed model of two BOM components namely Cus-
tomer and Waiter. In step 1, Restaurant BOM is parsed and the corresponding
objects are generated and the model is transformed into PNML format using our
proposed algorithm. Figure 2a represents the sequence diagram of the restau-
rant. Statemachines of customer and Waiter are presented in Figure 2b where
as the generated PN is illustrated in 2c.

OrderFood

ServeFood

PayEil

GiveReciept

4‘;4 I:AAIZAAI:AAA

Fig. 2. a) Sequence Diagram b) Statemachine ¢)PN

When PN model is executed in PIPE simulator, a token is dispatched from
the Arrive place representing the arrival of a customer who orders food. But it re-
quires an available Waiter from Ready place to proceed. After Order Food transi-
tion is fired, one token will be produced to Waiting and the other will be produced
to Preparing Food, place. In the same way, all the interactions between customer
and waiter will continue, until the customers have reached Leaving whereas the
waiter goes back to Ready. In step 2, the reachability analysis module is initiated
and the final marking parameter [0,0,0,5,1,0,0] (i.e., all five customers leave the
restaurant and the waiter is back to ready) is given as input to distinguish it
from the dead markings. When the module completed the execution, it verified
that the model is deadlock free as only one dead marking was detected in the tree
which was exempted by the final marking parameter. The Reachability Tree can
be viewed at: http://web.it.kth.se/ imahmood/SimpleRestaurant.html. In
the tree each node (in blue) represents a marking and is denoted by a number
and transitions are the arrows connecting next marking. From the tree it can
be seen that node 50 (in green) is the only dead marking from where no further
transition is possible. Thus we verify that although the model terminates it does
not have a deadlock.

Short Papers of the 22nd IFIP ICTSS, Alexandre Petrenko, Adenilso
Simao, Jose Carlos Maldonado (eds.), Nov. 08-10, 2010, Natal, Brazil.

12 Composability Test of BOM based models using Petri Nets

In a different experiment we introduced another component Kitchen in the
composed model. Same procedure was applied however it was noted that few
dead markings were detected because, there are some situations in which kitchen
is in the cooking place and can be released only when waiter takes food to serve,
whereas waiter is waiting for the kitchen to take more orders. This results in
a potential deadlock which may or may not occur depending on the sequence
of transitions fired. This potential deadlock is detected by our framework. The
figures of the PN model and reachability tree of this experiment cannot be
shown due to space limitations and can be viewed at: http://web.it.kth.se/
~“imahmood/Restaurant.html . We also encourage interested readers to view
more case studies at our web site: http://web.it.kth.se/~imahmood

4 Summary and Conclusion

In this paper we discuss composability test of BOM based compositions using
PN. We suggest an algorithm to transform a composed BOM model into a stan-
dard PN format known as PNML which can further be used with any PN analysis
tool that conforms to this standard. We however suggest using PIPE tool in our
framework and provide a technique to detect deadlocks in the composed model.
Finally we explain the entire process using a Restaurant case study.

We are further interested to consider alternative techniques in the PN to
extend the capability of our verification process, such as Timed PN and Colored
PN to test and verify more realistic system models. We also are inclined to apply
different state space reduction techniques to our framework in order to solve the
state explosion problem and optimize the verification process.

References

1. Chung, E., Kimber, T., Kirby, B., Master, T., Worthington, M.: Platform indepen-
dent petri net editor. Tech. rep., Imperial College, London, Project Report (2007)

2. Gustavson, P.: Guide for base object model (bom) use and implementation.
Tech. Rep. SISO-STD-003-2006, Simulation Interoperability Standard Organiza-
tions (SISO), Orlando, FL USA (2006)

3. Mahmood, I., Ayani, R., Vlassov, V., Moradi, F.: Statemachine matching in bom
based model composition. In: Proc. 13th IEEE/ACM Int. Symp. Distributed Sim-
ulation and Real Time Applications DS-RT ’09. pp. 136-143 (2009)

4. Murata, T.: Petri nets: Properties, analysis and applications 77(4), 541-580 (1989)

5. Peterson, J.L.: Petri nets. Computing Surveys vol. Vol 9, no. No. 3 (September
1977)

6. Petty, M.D., Weisel, E.-W.: A theory ofsimulation composability. Tech. rep., Virginia
Modeling Analysis & Simulation Center, Old Dominion University, Norfolk, Virginia
(2004)

Short Papers of the 22nd IFIP ICTSS, Alexandre Petrenko, Adenilso
Simao, Jose Carlos Maldonado (eds.), Nov. 08-10, 2010, Natal, Brazil.

