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a b s t r a c t

In this article we develop a method for conflict management within Dempster–Shafer
theory. The idea is that each piece of evidence is discounted in proportion to the degree
that it contributes to the conflict. This way the contributors of conflict are managed on
a case-by-case basis in relation to the problem they cause. Discounting is performed in a
sequence of incremental steps, with conflict updated at each step, until the overall conflict
is brought down exactly to a predefined acceptable level.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In this article we develop a method for conflict management within Dempster–Shafer theory [2–8] where it is assumed
that all belief functions are referring to the same problem or alternatively that they are false.

In general a high degree of conflict is seen as if there is a representation error in the frame of discernment, while a small
conflict may be the result of measuring errors.

One type of representation error resulting in high conflict is when belief functions concerning different subproblems that
should be handled independently are erroneously combined [9,10]. When this is the case the assumption that all belief func-
tions combined must refer to the same problem (not different subproblems) is violated.

We may interpret the conflict as metalevel evidence stating that at least one piece of evidence in the combination should
not be part of that combination. By temporarily removing (and replacing) each belief function from the combination, one at a
time, we induce a drop in conflict. This is used to derive metalevel evidence regarding each individual belief function indi-
cating that this particular belief function does not belong to the problem in question.

When assuming that there is only one problem at hand, such metalevel evidence must be interpreted as a proposition
about the falsity of this belief function. A normalization of the drop in conflict will be shown to be the degree of falsity of
that belief function.

However, instead of directly discounting each piece of evidence to its individual degree of falsity we take an incremental
step in that direction for all belief functions. Based on these initial discounts we recalculate conflict and update all degrees of
. All rights reserved.
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falsities. The process is performed sequentially until a predefined level of maximal acceptable conflict is reached. With this
sequential approach we obtain a smooth discounting process (compared to if we would have fully discounted each belief
function to its degree of falsity) and we are able to exactly match any level of acceptable conflict without risk of
overshooting.

An alternative way to manage the conflict is to assume that there are different subproblems where the set of basic belief
assignments (bbas) may be distributed to different clusters that should be handled separately [9–18].

Another approach also using meta-knowledge regarding the reliability of the source is contextual discounting [19]. It is
also possible to develop alternative distance measures between bodies of evidence [21,22]. In [22] Jousselme and Maupin
compare several different distance measures. It is important to observe that different measures may measure different types
of distances. Some distance measures measure the degree to which two bodies of evidence are different, while others such as
conflict, measure the degree to which they are incompatible. For example, two propositions (corresponding to two focal ele-
ments) ‘‘a red car’’ and ‘‘a fast car’’ are different, but may be fully compatible if there is a red fast car in the frame of
discernment.

A recent paper [23] also uses the idea of sequential discount to manage the conflict when combining belief functions.
However, they use a distance measure by Jousselme et al. [20] that measures dissimilarity.

A recent overview of different alternatives for conflict management when combining conflicting belief functions was gi-
ven by Smets, see [24].

In Section 2 we investigate the degree of falsity of a piece of evidence. In Section 3 we develop a method of sequential
incremental discounting using the degree of falsity. We perform an experiment to investigate the behavior of an algorithm
for conflict management in Section 4. Finally, conclusions are drawn in Section 5.

2. Degree of falsity

Let us recapitulate the interpretation of conflict as if there is at least one piece of evidence that violates the representation
given by the frame of discernment, and thus can be said not to belong to the set of bbas that refer to this problem v [10].

A conflict in v is thus interpreted as a piece of metalevel evidence that there is at least one piece of evidence that does not
belong to the subset
mv 9j: ej R v
� �

¼ cð0;0Þ;

mvðHÞ ¼ 1� cð0;0Þ;
ð1Þ
where c(0,0) is the initial conflict in v.
Let us observe one piece of evidence eq in v. If eq is taken out from v the conflict c(0,0) in v decreases to c(0,q). This decrease

in conflict can be interpreted as follows: there exists some metalevel evidence indicating that eq does not belong to v
mDvðeq R vÞ;
mDvðHÞ;

ð2Þ
and the remainder of the conflict c(0,q) after eq has been taken out from v is metalevel evidence that there is at least one other
piece of evidence ej, j – q, that does not belong to v � {eq}
mv�feqg 9j – q: ej R v� feqg
� �� �

¼ cð0;qÞ;

mvðHÞ ¼ 1� cð0;qÞ;
ð3Þ
We will derive the basic belief number (bbn) mDv(eq R v) by stating that the belief in the proposition that there is at least one
piece of evidence that does not belong to v, $j. ej R v, should be equal no matter whether we base that belief on the original
piece of metalevel evidence, before eq is taken out from v, or on a combination of the other two pieces of metalevel evidence
mDv(eq R v) and mv�feqg 9j – q: ej R v� feqg

� �� �
, after eq is taken out from v, i.e.:
Belvð9j: ej R vÞ ¼ BelDv�ðv�feqgÞð9j: ej R vÞ: ð4Þ
We have, on the left hand side (LHS)
Belvð9j: ej R vÞ ¼ mvð9j: ej R vÞ ¼ cð0;0Þ; ð5Þ
and, on the right hand side (RHS)
BelDv�ðv�feqgÞ 9j: ej R v
� �

¼ mDv�ðv�feqgÞ ðeq R vÞ ^ 9j – q: ej R v� feqg
� �� �� �

þmDv�ðv�feqgÞ 9j – q: ej R v� feqg
� �� �

þmDv�ðv�feqgÞðeq R vÞ
¼ mDvðeq R vÞmðv�feqgÞ 9j – q: ej R v� feqg

� �� �
þmDvðHÞmðv�feqgÞ 9j – q: ej R v� feqg

� �� �
þmDvðeq R vÞmðv�feqgÞðHÞ
¼ mDvðeq R vÞcð0;qÞ þ 1�mDvðeq R vÞ

� �
cð0;qÞ þmDvðeq R vÞ 1� cð0;qÞ

� �
¼ cð0;qÞ þmDvðeq R vÞ 1� cð0;qÞ

� �
: ð6Þ



J. Schubert / International Journal of Approximate Reasoning 52 (2011) 449–460 451
Setting LHS = RHS, we get
mDvðeq R vÞ ¼ cð0;0Þ � cð0;qÞ

1� cð0;qÞ
;

mDvðHÞ ¼
1� cð0;0Þ

1� cð0;qÞ
:

ð7Þ
This is the degree of falsity of eq under the assumption that we are dealing with one problem, not several different
subproblems.

3. Sequential incremental discounting

In this section we investigate how to manage the conflict on an individual case-by-case basis using the degree of falsity.
If mDv(eq R v) = 1 then eq is certainly false and must not be used in the combination. This becomes the situation when

c(0,0) = 1, for any c(0,q) < 1. For c(0,q) = 1 we define mDv(eq R v) = 0 as the proposition is not supported when conflict remains
unchanged, equal to 1. When mDv(eq R v) = 0 then we have no indication regarding the falsity of eq and will take no addi-
tional action. This is the situation when we observe no change in conflict c(0,0) = c(0,q). When 0 < mDv(eq R v) < 1, then eq con-
tributes to the overall conflict and its conflict contribution must be managed. We would then like to pay less regard to a piece
of evidence the higher the degree is that it is false, pay no attention to it when it is certainly false, and leave it unchanged
when there is no indication as to its falsity. This can be done by using the discounting operation.

The discounting operation was introduced to handle the case when the source of some piece of evidence is lacking in
credibility [4]. The credibility of the source, a, also became the credibility of the piece of evidence. The situation was handled
by discounting each supported proposition other than H with the credibility a and by adding the discounted mass to H;
m%ðAjÞ ¼
amðAjÞ; Aj – H;

1� aþ amðHÞ; Aj ¼ H:

�
ð8Þ
We will use the same discounting operation in this case when there is a direct indication for each separate piece of evidence
regardless of which source produced it.

As the degree of falsity of eq is proportional to the conflict that eq contributes to the overall conflict we discount it using its
credibility. The conflict in Dempster’s rule when combining all pieces of evidence regarding eq, as identical to one minus the
credibility of the evidence;
aq ¼ 1�mDvðeq R vÞ: ð9Þ
At step d, c(d,0) represents the conflict in v after d sequential discounts of all bbas, and c(d,q) is the remaining conflict we would
have in v after d sequential discounts of all bbas if eq is taken out from v at this stage before combining.

Using the credibility (degree of falsity) we may derive a set of incrementally discounted bbas md
q

n o
q

as
mdþ1
q ðAÞ ¼ 1� e

cðd;0Þ � cðd;qÞ

1� cðd;qÞ

� �	 

md

qðAÞ;
8A � H;

A – £;

mdþ1
q ðHÞ ¼ 1�

X
A�H

mdþ1
q ðAÞ;

ð10Þ
where e� 1 and m0
q

n o
q

is the initial set of bbas.

Alternatively, we can also rewrite Eq. (10) as
mdþ1
q ðAÞ ¼

Yd

i¼0

1� e
cðd;0Þ � cðd;qÞ

1� cðd;qÞ

� �	 

m0

qðAÞ;
8A � H;

A – £;

mdþ1
q ðHÞ ¼ 1�

X
A�H

mdþ1
q ðAÞ;

ð11Þ
where
cðd;0Þ ¼ md
vð£Þ ¼ � md

j

n o
j
ð£Þ;

cðd;qÞ ¼ md
v�feqgð£Þ ¼ � md

j

n o
j
� md

q

n o� �
ð£Þ:

ð12Þ
The combinations of all bbas in Eq. (12) using Dempster’s rule is carried out by first converting all bbas to commonality func-
tions [4]
Q d
j ðAÞ ¼

X
B�A

md
j ðBÞ; 8j; A # H: ð13Þ



Fig. 1. The process of sequential discounting and combination. Red arrows are sequential discounting. Blue arrows are combination.

452 J. Schubert / International Journal of Approximate Reasoning 52 (2011) 449–460
Secondly, we multiply all commonality functions
Q d
vðAÞ ¼

Yn

j¼1

Q d
j ðAÞ; 8A # H;

Q d
v�feqgðAÞ ¼

Yn

j¼1
– q

Q d
j ðAÞ; 8A # H;

ð14Þ
to obtain the unnormalized Dempster’s rule.
Finally, we convert back to bbas in order to register the received conflict. We get
md
vðAÞ ¼

X
B�A

ð�1ÞjB�AjQd
vðBÞ;

md
v�feqgðAÞ ¼

X
B�A

ð�1ÞjB�AjQ d
v�feqgðBÞ:

ð15Þ
When A �£, this can be simplified to
md
vð£Þ ¼

X
B

ð�1ÞjBjQ d
vðBÞ;

md
v�feqgð£Þ ¼

X
B

ð�1ÞjBjQ d
v�feqgðBÞ;

ð16Þ
i.e., when we are only interested in the conflict. Here, cðd;0Þ ¼ md
vð£Þ and cðd;qÞ ¼ md

v�feqgð£Þ. Using Eq. (10) we now obtain the
sought after discounted bbas at the next step d + 1.

In each situation the bbas are sequentially discounted by repeated use of Eqs. (10) and (12), followed by combination
using Eqs. (13)–(15), see Fig. 1.

In Algorithm 1 we describe an algorithm for performing sequential incremental discounting of all bbas.
The maximum conflict allowed is considered to be a domain dependent parameter.

4. An experiment

In this section we conduct an experiment with ten bbas over a frame of discernment with three elements and seven pos-
sible focal elements. We study the combination of the bbas and the use of conflict management through their sequential
discounting using the degree of falsity and a gain factor of e = 0.1. In an experiment with higher gain factors (not shown),
e.g., e = 0.3, the curves of md

v evidently become step-wise linear.
Each bba has a random number of focal elements nq 2 [1, j2Hj � 1], where the number nq is drawn with a uniform prob-

ability within the interval. The nq focal elements are then drawn with an uniform probability p = 1/(j2Hj � 1) from the set
2H � fHg. With probability 1 we include H in the bba. Each focal element is given a random bbn drawn uniformly from
[0,b], b 6 1, where b is chosen such that the bbns sum up to 1. As these bbas are constructed randomly, they are not con-
structed with any particular problem in sight; they are bound to be highly conflicting and a challenging test case.

Let us observe the process of sequential incremental discounting. At each step d in the sequential discounting we calcu-
late the degree of falsity for all bbas. However, instead of discounting each bba to its full degree of falsity
að0;qÞ ¼ 1�mDvðeq R vÞ; ð17Þ
as was done in [10], we take an incremental step in that direction by assigning
aðd;qÞe ¼ 1� emDvðeq R vÞ; ð18Þ
where e is a gain factor, e� 1. In our experiments we use Algorithm 1 with e = 0.1, Fig. 2. We have
aðd;qÞe ¼ 1� e
cðd;0Þ � cðd;qÞ

1� cðd;qÞ

� �
; ð19Þ
at step d, where c(d,0) and c(d,q) are calculated using Eq. (12).



Fig. 2. Algorithm 1: Algorithm for sequential incremental discounting.
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In Fig. 3 we observe the conflict when we combine the ten bbas with Dempster’s rule after different numbers of succes-
sively performed incremental discounts.

We notice an initial steady decline in conflict which is later somewhat moderated. As the conflict may be interpreted as a
piece of metalevel evidence that there is something wrong with the representation of the problem we should at least request
a conflict less or equal to 0.5. This level is reached after 42 incremental discounts.
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In Fig. 4 we observe the sequential incremental discounting factor aðd;qÞe for different bbas eq. The initial discounting varies
strongly between 1% and 7% where the discounting aðd;qÞe is proportional to the degree of credibility a(d,q) = 1 �m(eq R v).

As examples of how the bbas are changed by the sequential discounting, let us observe this for four different bbas in Fig. 5.
In each case the blue line corresponds to md

qðHÞ and the other lines correspond to other focal elements A �H. From these
examples we notice especially the increase of nonspecificity in the bbas as support for md

qðHÞ increases with discounting.
The successive combinations of the ten bbas are shown in Figs. 6 and 7, without and with normalization, respectively. At

each step d each bba is first discounted. After discounting, all bbas are combined. This process is illustrated in Fig. 1. In Fig. 6
we observe at each step the combined result, where the bbns are shown in blue (except for md

vð£Þ, red, and md
qðHÞ, green).

The bbns for identical focal elements at different steps are shown as curves.
In Fig. 7 we notice how the preferred hypothesis changes with sequential discounting as bbas which are highly conflicting

have a high degree of falsity and are more strongly discounted than others. Here, the two hypotheses that initially were 1st
and 3rd, become 2nd and 1st at the 42nd sequential discount (the 50% conflict level). We notice that this change in prefer-
ence order takes place at the 20th sequential discount around the 70% conflict level. Thus, in practice k can be fairly high.

In Fig. 8 we observe for comparison direct discounting of each piece of evidence to its individual degree of falsity. In com-
parison with the sequential approach in Fig. 7 we notice that this corresponds roughly to the 20th sequential discount with a
rather high 70% remaining conflict. In this example, this is also the point where the preferences order change. Thus, using
sequential discounting that brings down the overall conflict somewhat further, e.g., towards the 50% level, obtains a stable
preference order among the different alternatives.

Thus, sequential discounting is superior to direct discounting in that it can bring down the conflict to any predefined level,
or be observed during the discounting process in order to find a stable preference order among alternatives.

In Table 1 we compare discounting with basic averaging of all mass functions. In column 2 we find � m0
qðAÞ

n o
q

where all

mass functions are combined without any discounting, in column 3 we perform a 1-step discount to each mass functions

degree of falsity before combining � mdirect
q ðAÞ

n o
q
. In column 4–8 we tabulate the combination of all mass functions

� ma
qðAÞ

n o
q

that are sequentially discounted 10–50 times before combination with e = 0.1. In the last column we compare

this to basic averaging of all mass functions, where
m0
average ¼

X
q

m0
qðAÞ: ð20Þ
Let us (in Table 2) observe the preference order of the top three preferred focal elements tabulated in Table 1.
We notice a small change in preference order between discounting and no discounting. However, the fundamental dif-

ference is noticed between that of all combination vs. averaging where the preference order is completely different. With
combination of belief functions (with or without discounting) we prefer a singleton, with averaging H is the preferred focal
element.
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qðHÞ blue line.
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In an experiment with 2500 sequential discounts we notice that when d ?1 then md
qðHÞ ! 1 slowly in a logarithm-like

way, Fig. 9.
As information is lost by discounting it may be viewed as a necessary evil in order to manage the conflict (when this is

high). Obviously, if a poor representation of the problem at hand (through the frame of discernment) is the cause of the con-
flict rather than poorly represented input data, we should change the frame of discernment. We measure the information
lost by studying entropy measures as the sequential discounting progresses.

We prefer to see basic belief masses that are focused on as few and as small focal elements as possible. This can be mea-
sured by generalizing Shannon’s entropy [25] and Hartley’s information [26] measures, respectively. We will use a measure
of aggregated uncertainty (AU) that takes both types of uncertainty into account.

The aggregated uncertainty functional AU is defined as
AUðBelÞ ¼ max
fpxgx2H

�
X
x2H

pðxÞlog2pðxÞ
( )

; ð21Þ
where {px}x2H is the set of all probability distributions such that px 2 [0,1] for all x 2H
X
x2H

pðxÞ ¼ 1; ð22Þ
and
BelðAÞ 6
X
x2A

pðxÞ; ð23Þ
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for all A # H. AU was independently discovered by several authors about the same time [27–29].
Abellán et al. [30] suggested that AU could be disaggregated in separate measures of nonspecificity and scattering that

generalize Hartley information [26] and Shannon entropy [25], respectively. Dubois and Prade [31] defined such a measure
of nonspecificity as
I md
x

� �
¼
X
A2F

md
x log2jAj; ð24Þ
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Fig. 8. Single step direct discounting to each piece of evidence individual degree of falsity.

Table 1
A comparison of initial combination direct and sequential discounting with averaging.

No discount Direct discount Sequential discount (a) Averaging

10 20 30 40 50

{e1} 0.211 0.314 0.324 0.303 0.279 0.259 0.242 0.079
{e2} 0.367 0.226 0.264 0.241 0.224 0.211 0.199 0.096
{e1,e2} 0.001 0.034 0.018 0.036 0.050 0.060 0.068 0.136
{e3} 0.415 0.312 0.334 0.302 0.277 0.256 0.238 0.070
{e1,e3} 0.003 0.065 0.036 0.065 0.086 0.102 0.113 0.186
{e2,e3} 0.003 0.038 0.020 0.040 0.055 0.068 0.077 0.144
H 0.000 0.011 0.003 0.013 0.028 0.045 0.063 0.289

Table 2
Preference order of discounting vs. averaging.

Preference order No discount Direct discount Sequential discount at a = 50 Averaging

1st {e3} {e1} {e1} H
2nd {e2} {e3} {e3} {e1,e3}
3rd {e1} {e2} {e2} {e2,e3}
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where F # 2H is the set of focal elements. From Eqs. (21) and (24) we may define a generalized Shannon entropy [30] as
GS md
x

� �
¼ AU md

x

� �
� I md

x

� �
: ð25Þ
An algorithm for computing AU was found by Meyerowitz et al. [32]. For the sake of completeness we cite the algorithm here,
in the way it is described by Harmanec et al. [33], Fig. 10.

This measure reduces to Shannon’s entropy [25] when md
v represents a probability distribution (i.e., "A. jAj = 1) and to

Hartley’s information [26] when md
v is certain (i.e., 9A: md

vðAÞ ¼ 1). Obviously, the aggregated uncertainty reaches its mini-

mum AU md
v

� �
¼ 0 when both conditions apply, i.e., 9A: md

vðAÞ ¼ 1 & jAj ¼ 1.

In Fig. 11 we observe the entropy of md
v at different stages d of the sequential discounting. We observe a rapid increase in

aggregated uncertainty in the unnormalized case as mass is transferred towards H as discounting progresses, red line. For
the normalized case we observe entropy quickly reaching close to its theoretical maximum of log2(jHj) which is 1.585 for
jHj = 3.
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We observe an increase in Hartley information I md
v

� �
(blue line) as mass is transferred towards the frame as a whole

md
vðHÞ as the sequential discounting progresses. As the aggregate uncertainty AU md

v

� �
(black line) is close to constant

throughout much of the discounting process we observe an early peak in generalized Shannon’s entropy GS md
v

� �
, Eq.

(25), followed by a counterintuitive decrease in generalized Shannon’s entropy as Hartley’s information increases with dis-
counting. In other test cases with other random belief functions where the aggregate uncertainty has a more gradual increase
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throughout the discounting process we observe the same effect but with a later peak for GS md
v

� �
followed by the same de-

crease as Hartley’s information increases more than the aggregated uncertainty AU md
v

� �� �
.

As is apparent from Fig. 7 the loss of information by discounting does not make the analysis difficult. Rather it makes the
conclusions that may be drawn from the combination of discounted belief functions more reliable, as the conflict is reduced.
For instance, after 20 sequential discounts (see Fig. 7) the preference order of supported focal elements becomes stable (in
the region of reasonable discounting).

5. Conclusions

We have demonstrated that we can successfully manage the conflict of Dempster’s rule by making well motivated and
precise discounting of all belief functions. Such discounting is made individually for each belief function in proportion to
its degree of falsity. We show that by performing the discounting process in a series of incremental steps we can reach
any predefined acceptable level of conflict. In an experiment we find that this discounting does not normally make it more
difficult to identify the most supported proposition. Rather it makes the selection process of the preferred proposition more
robust when highly conflicting pieces of evidence are discounted down to a level they deserve.
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