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Abstract⎯We construct alternative frames of discernment
from input belief functions. We assume that the core of each
belief function is a subset of a so far unconstructed frame of
discernment. The alternative frames are constructed as
different cross products of unions of different cores. With the
frames constructed the belief functions are combined for each
alternative frame. The appropriateness of each frame is
evaluated in two ways: (i) we measure the aggregated
uncertainty (an entropy measure) of the combined belief
functions for that frame to find if the belief functions are
interacting in interesting ways, (ii) we measure the conflict in
Dempster’s rule when combining the belief functions to make
sure they do not exhibit too much internal conflict. A small
frame typically yields a small aggregated uncertainty but a
large conflict, and vice versa. The most appropriate frame of
discernment is that which minimizes a probabilistic sum of
the conflict and a normalized aggregated uncertainty of all
combined belief functions for that frame of discernment.

Keywords: Dempster-Shafer theory, belief function,
representation, frame of discernment, induction.

I. INTRODUCTION

In this paper we develop a problem representation that
allows us to construct possible frames of discernment from
a set of belief functions [1−4]. We assume that the core of
each belief function is a subset of a so far unconstructed
frame of discernment. The possible frames are constructed
by partitioning the set of all cores into subsets. We
continue by taking the union of each subset and then
construct the possible frames by making cross products of
these unions.

Each possible frame of discernment is evaluated on how
well it yields focused and specific conclusions from the
combination of the available belief functions without
exhibiting too much internal conflict.

With this methodology we may work in a natural
iterative way with the problem of frame construction and
the problem of belief combination. As we receive more
evidence we will adjust our frame, possibly enlarging it
from the previously one used. This changes probable
reasoning from a linear approach of frame construction
followed by belief combination (Figure 1), into an update−
construct−combine−evaluate loop approach, where we
simultaneously reason about the framing of the problem at
hand and the solution to this problem, Figure 2.
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Figure 1. A simplistic workflow model.

Figure 2. An iterative workflow model of constructing
frames of discernment and combining evidence.

In Sec. II. we investigate constructing frames of
discernment from incoming belief functions. In Sec. III.
we develop a measure for evaluating each frame on the
grounds of its dual appropriateness in facilitating
interesting results from combination of all belief functions
without too much internal conflict. This is what Shafer
calls “the dual nature of probable reasoning” [4, ch. 12]. In
Sec. IV. we develop an algorithm for constructing an
appropriate frame of discernment using the results of the
previous two sections. Finally, in Sec. V. conclusions are
drawn.

II. CONSTRUCTING FRAMES OF DISCERNMENT

Assume we have a set of evidence

(1)

that originates from one problem with yet undetermined
representation. The focal elements of each belief function
mi contain pieces of that representation.

Our task is to find the most appropriate frame of
discernment that lets our evidence “interact in an
interesting way” without “exhibit too much internal
conflict” in the words of Glenn Shafer [4, p. 280].

This will usually not be the union of all cores of mi as
different cores may hold non-exclusive elements. For
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example, one belief function may assign support to a focal
element “Red” in relation to the color of a car. Another
belief function may assign support to a focal element
“Fast” in relation to speed of that car. Obviously, “Red”
and “Fast” are not both elements of the frame of
discernment as they are not exclusive. However, the “(Red,
Fast)” pair might be an element of the frame.

Our task of finding the most appropriate frame of
discernment becomes finding the most appropriate cross
product of different unions of cores, where each core Ci of
mi is included in one of the unions exactly once.

The most appropriate frame of discernment is the cross
product of different unions of cores that maximizes a
measure of frame appropriateness (FA), equal to one minus
the probabilistic sum of the conflict of Dempster’s rule and
a normalized aggregated uncertainty (AU) of all combined
belief functions.

Let us begin by introducing the representation needed to
induce a frame of discernment from input data. After
which, we will give an example and demonstrate how the
frame of discernment can be modified by abridgment or
enlargement [4].

A. Representation

Assume we have a set of evidence χ. We observe the
core Ci of each available belief function mi. We assume
that the core of each belief function is a subset of exclusive
but not exhaustive elements of a so far unconstructed
frame of discernment.

1) The set of cores

Let

(2)

be the set of all cores of χ, where Ci is the core of mi, the
ith piece of evidence.

We have

(3)

where Aj is a focal element of mi.

2) Partitioning the set of cores

Let

(4)

be the set of all possible set partitions of C (the set of all
cores), where Ωk is the kth possible partition of C. The
number of partitions of C is called a Bell number1, B|C|,
where

(5)

We have

(6)

where the ωl’s are disjoint subset of C, i.e.,

(7)

such that

(8)

and

(9)

whenever .

3) Constructing frames from partitions of cores

Let

(10)

be the set of all possible cross products relating to Ω, such
that Θk is the cross product of all unions of elements of the
partition Ωk, Eq. (6).

We have

(11)

where θl is the union of the elements in ωl, , and θl
must be an exclusive set of elements.

We have

(12)

such that

(13)

where all θl’s observe two different crucial type
conditions:

Type Condition 1. No element of any θp may belong to
any other cross product elements θq, i.e.,

(14)

whenever .

This will eliminate any frame that obviously distributes
elements of the same type over different cross product
elements. It is possible to strengthen type condition 1
further by going beyond checking intersections and doing
type control between all pairs of cross product elements.
This, however, is outside the scope of this paper as it can
not be decided within the field of statistics, i.e., there is no
way within statistics to decide if “Fast” and “Red” are
exclusive elements.

Type Condition 2. Every cross product element θl must
be an exclusive set, i.e.,

(15)

whenever

. (16)

As above, the exclusivity of θl must be verified by
methods outside of statistics, and thus, outside the scope of
this paper.

The Θk’s constructed where all θl meet exclusivity are
the alternative frames of discernment. Our task is to find
the most appropriate frame that let our evidence “interact
in an interesting way” without “exhibit too much internal
conflict”. This will be examined in Sec. III.1. The first few Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140,

21147, 115975.

C Ci{ }=

Ci A j mi A j( ) 0>{ }
j
∪=

Ω Ωk{ }=

Bn Bk
n 1–

k⎝ ⎠
⎛ ⎞ ,

k 0=

n 1–

∑=

B0 1.=

Ωk ωl{ }=

l∀ . ωl C⊆

ωl
l
∪ Ci{ } C≡=

ωm ωn∩ ∅=

m n≠

Θ Θk{ }=

Θk θl{ }×=

ωl Ωk∈

l∀ . θl ωl∪ Ci Ci ωl∈{ }
i
∪= =

θl
l
∪ ωl∪{ }

l
∪ Ci{ }

i
∪ C∪= = =

θ p θq∩ ∅=

p q≠

em en∩ ∅=

m,n∀ l .∃ em en, θl∈



B. An example

Let us assume we have three belief functions available
and we want to construct all alternative frames of
discernment.

1) The set of cores

The set of evidence of the three belief functions is χ =
{m1, m2, m3} with

(17)

where is the set of focal elements of
m1. Assume that

(18)

We find the core of m1 using Eq. (3),

. (19)

Furthermore, assume

(20)
and

(21)

with and ,
respectively, where C = {C1, C2, C3} is the set of all cores
of χ.

2) Partitioning the set of cores

The set of all cores C can be partitioned in five different
ways.

We have a set of all possible partitions Ω = {Ω1, Ω2, Ω3,
Ω4, Ω5} of C where

(22)

with

(23)

3) Constructing frames from partitions of cores

From Ω = {Ωk} we construct the set of all possible
frames of discernments Θ = {Θk} where each Θk
corresponds to Ωk. Using Eq. (10) and Eq. (11) we obtain
Θ = {Θ1, Θ2, Θ3, Θ4, Θ5} where

(24)

with, using Eq. (12),

(25)

However, Θ1, Θ2 and Θ4 violate type condition 1, Eq.
(14), and are not allowed as frames. This is determined by
verifying that some intersections between different θl’s for
the same frame Θk are non-empty. For example,

(26)

Furthermore, Θ2, Θ4 and Θ5 presumably violate the
exclusivity condition of Eq. (15) and are not allowed as
frames. We have

(27)

For example, e211 and e214 of θ21,

, (28)

are presumable non-exclusive elements and can not both
be elements of the same frame of discernment, although it
may well be that the pair “(Red, Fast)” is an element of the
frame. That something may be both “Red” and “Fast”
making these elements non-exclusive must be established
by other means.

m1: A11 m1 A11( ) 0.4=,[ ]{

A12 m1 A12( ) 0.4=,[ ]

A13 m1 A13( ) 0.2=,[ ] }

F1 A11 A12 A13, ,{ }=

A11 Red Green,{ },=

A12 Red Blue,{ },=

A13 Red{ }.=

C1 A1 j
j
∪ Red Green Blue, ,{ }= =

m2: Fast VeryFast,{ } m2 Fast VeryFast,{ }( ) 0.8=,[ ]{

Fast{ } m2 Fast{ }( ) 0.2=,[ ] }

m3: Red Black,{ } m3 Red Black,{ }( ) 0.3=,[ ]{

Red{ } m3 Red{ }( ) 0.7=,[ ] }

C2 Fast VeryFast,{ }= C3 Red Black,{ }=

Ω1 ω11 ω12 ω13, ,{ },=

Ω2 ω21 ω22,{ },=

Ω3 ω31 ω32,{ },=

Ω4 ω41 ω42,{ },=

Ω5 ω51{ },=

ω11 C1{ },= ω12 C2{ },= ω13 C3{ },=

ω21 C1 C2,{ },= ω22 C3{ },=

ω31 C1 C3,{ },= ω32 C2{ },=

ω41 C2 C3,{ },= ω42 C1{ },=

ω51 C1 C2 C3, ,{ }.=

Θ1 θ11 θ12 θ13,××=

Θ2 θ21 θ22,×=

Θ3 θ31 θ32,×=

Θ4 θ41 θ42,×=

Θ5 θ51,=

Θ1: θ11 C1 Red Green Blue, ,{ },= =

θ12 C2 Fast VeryFast,{ },==

θ13 C3 Red Black,{ },= =

Θ2: θ21 C1 C2∪=

Red Green Blue Fast VeryFast, , , ,{ },=
θ22 C3 Red Black,{ },= =

Θ3: θ31 C1 C3∪ Red Green Blue Black, , ,{ },==

θ32 C2 Fast VeryFast,{ },= =

Θ4: θ41 C2 C3∪ Red Black Fast VeryFast, , ,{ },==

θ42 C1 Red Green Blue, ,{ },= =

Θ5: θ51 C1 C∪
2

C3∪=

Red Green Blue Black Fast VeryFast, , , , ,{ }.=

Θ1: θ11 θ13∩ Red{ } ∅,≠=

Θ2: θ21 θ22∩ Red{ } ∅,≠=

Θ4: θ41 θ42∩ Red{ } ∅.≠=

Θ2 θ21, : i 1 2 3, ,=( )∀ j 4 5,=( ).∀ e21i e21 j∩ ∅,≠

Θ4 θ41, : i 1 2,=( )∀ j 3 4,=( ).∀ e21i e21 j∩ ∅,≠

Θ5 θ51, : i 1 2 3 4, , ,=( )∀ j 5 6,=( ).∀ e21i e21 j∩ ∅.≠

e211 e214∩ Red Fast∩ ∅≠=



From this frame construction process only Θ3 comes
through a possible frame of discernments. We have

(29)

4) Reformulating belief functions given constructed
frames

The one remaining thing to do is to reformulate our
three belief functions given Θ3.

We get χ = {m1, m2, m3} with

(30)

where

(31)

and similarly for the two remaining belief functions m2 and
m3.

Thus, we have successfully constructed a frame of
discernment Θ3 from a set χ of three input belief functions.
Using this frame we have reformulated the three belief
functions in the terms of the adopted frame.

C. Abridgment

For all possible frames of discernment {Θk}, where |Θk|
> 1, we may include further assumptions that make the
frames tighter. This may lead to more interesting
interaction between the belief functions and lead to firmer
conclusions provided that the conflict does not increase in
any significant way. Every frame is based on assumptions.
The frame we begin with is based on the assumption that
the elements of that frame are all disjunct possible
alternatives, and that no other possibilities exists. Whether
a tighter or looser frame is to be preferred is a matter of
appropriateness. Most often this will be a point of balance
where meaningful interaction is weighted against too much
conflict.

Let us study one particular frame of discernment Θi
from the remaining set of possible frames Θ that observe
both type condition 1 and 2, Eq. (14) and Eq. (15),
respectively. We have

. (32)

For each cross product element there are
possible abridgments as each cross product element θl may
be replaced by any smaller element of its own power set,

except ∅. At least one cross product element θl must be
abridged to construct a new abridged frame of Θi. We have
a set of all possible abridgments of Θi,

(33)

where

(34)

and  is the power set of θl, , and .
Thus, the set of all possible abridgments in addition

to Θi itself, are possible frames of discernment that need to
be evaluated for appropriateness.

1) The example

In Sec. II.B. we studied an example and found a possible
frame of discernment

(35)

From Θ3 we may construct several different
abridgments, where Θ3 may be replaced by

(36)

and

, (37)

respectively, where . Except that not both
 and  is allowed.

As |θ31| = 4 and |θ32| = 2 we have |{ }| = 15 and
|{ }| = 3. Thus, the number of possible abridgments to
Θ3 is 44 (= |{ }| . |{ }| − 1 = 15 . 3 − 1).

When an abridged frame is adopted, all belief functions
must be reformulated to eliminate those elements that do
not belong to the new frame. For example, if θ31 is
replaced by = {Green, Blue, Black} excluding “Red”
from θ31 we must reformulate m1 as

(38)

where

(39)

and similarly for m2 and m3.

D. Enlargement

We may make enlargements to any frame of
discernment in the set of all constructed frames Θ = {Θk}.
As the frames are constructed from available input belief
functions, using all elements that appear in those belief
functions, we do not have any further specific elements
that are not already included in the frames. The only form
of enlargement we can perform is to enlarge a particular
cross product element θl with an element of unstated
meaning. Let us denote these elements Λl, one for each θl.

Let us again take a look at frame Θi. We have

. (40)

Θ3 θ31 θ32× ω∪ 31( ) ω∪ 32( )×= =
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Fast VeryFast,{ }( )×
Red Green Blue Black, , ,{ } Fast VeryFast,{ }×=

Red Fast,( ) Red VeryFast,( ) Green Fast,( ),, ,{=

Green VeryFast,( ) Blue Fast,( ) Blue VeryFast,( ),, ,
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For each cross product element θl there is one possible
enlargement: enlarging θl by Λl. At least one cross product
element θl must be enlarged to construct a new enlarged
frame of Θi. The set of all possible enlargements of Θi
becomes

(41)

where

(42)

and . We have possible enlargements
of Θi, as each cross product element may or may not be
enlarged.

Enlarging frames of discernment in this manner will
partially remove any conflict within the cross product
element where Λl is included. Including Λl in every θl will
eliminate all conflict.

Thus, the set of all possible enlargements are
possible frames that need to be evaluated for
appropriateness.

1) The example

We return to the example of Sec. II.B. and the frame

(43)

We may construct three different enlargements of Θ3,
where θ31 and θ32 may be replaced by

(44)

and

, (45)

respectively. Except that not both and
 is allowed.

If, for example, θ32 is replaced by = {Fast,
VeryFast, Λ32} we must reformulate m1 as

(46)

where

(47)

and similarly for m2 and m3.

III. APPROPRIATE REPRESENTATION

In this section we will study how to evaluate the
alternative frames of discernment on the grounds of being
appropriate for yielding interesting interactions among the
available belief functions without exhibiting too much
internal conflict.

We will develop an overall measure of frame
appropriateness FA that takes both considerations into
account simultaneously. This measure must be a function
of two other measures:

• one that measures the degree of interesting interaction
among the belief functions by means of measuring
how focused and specific the conclusions are that may
be drawn from their combination. We prefer to see
basic belief masses that are focused on as few and as
small focal elements as possible. This can be
measured by generalizing Shannon’s entropy [5] and
Hartley’s information [6] measures, respectively. We
will use a measure of aggregated uncertainty that takes
both types of uncertainty into account,

• another that directly measures the conflict in
Dempster’s rule when combining the belief functions,
to make sure they do not exhibit too much internal
conflict.

A small frame typically yields a small aggregated
uncertainty but a large conflict, and vice versa. The most
appropriate frame of discernment is that which finds a
good balance between the two measures by maximizing
the frame appropriateness FA.

Definition 1. Let Θk be a frame of discernment and let
{mj} be a set of all available belief functions defined on
Θk. We define a measure of frame appropriateness of Θk,
denoted as FA(Θk), by

, (48)

where Con is the conflict in Dempster’s rule and AU is the
functional called the aggregated uncertainty. We have Con
∈ [0, 1], AU ∈ [0, log2|Θk|] and FA ∈ [0, 1].

The measure of frame appropriateness FA is identical to
one minus the probabilistic sum of conflict and normalized
aggregated uncertainty.

The aggregated uncertainty functional AU is defined as

(49)

where {px}x ∈ Θ is the set of all probability distributions
such that px ∈ [0, 1] for all x ∈ Θ,

(50)

and

(51)

for all . AU was independently discovered by several
authors about the same time [7−9].

Abellán, Klir and Moral [10] suggested that AU could be
disaggregated in separate measures of nonspecificity and
scattering that generalize Hartley information [6] and
Shannon entropy [5], respectively. Dubois and Prade [11]
defined such a measure of nonspecificity as

(52)

Θi
″ Θij

″{ } j θlj
″{ }×{ } j= =
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θ32
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″ θ31=

θ32
″ θ32=

θ321
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m1: A11 m1 A11( ) 0.4=,[ ]{

A12 m1 A12( ) 0.4=,[ ]

A13 m1 A13( ) 0.2=,[ ] }

A11 Red Fast,( ){ Red VeryFast,( ) Red Λ32,( ), ,=

Green Fast,( ) Green VeryFast,( ) Green Λ32,( ), , },

A12 Red Fast,( ){ Red VeryFast,( ) Red Λ32,( ), ,=

Blue Fast,( ) Blue VeryFast,( ) Blue Λ32,( ), , },

A13 Red Fast,( ) Red VeryFast,( ) Red Λ32,( ), ,{ },=

FA Θk m j{ }( ) =

1 Con ⊕ m j Θk{ }( )– 1
AU ⊕ m j Θk{ }( )

log2 Θk
----------------------------------------–=

AU Bel( ) max

px{ }
x Θ∈

p x( )log2 p x( )
x Θ∈
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⎨ ⎬
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p x( )
x Θ∈
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where F ⊆ 2Θ is the set of focal elements. From Eq. (49)
and Eq. (52) we may define a generalized Shannon entropy
[10] as

. (53)

A. An algorithm for computing AU

An algorithm for computing AU was found by
Meyerowitz et al. [12]. For the sake of completeness we
cite the algorithm here, in the way it is described by
Harmanec et al. [13], Figure 3. The computational time
complexity of AU is .

Input: a frame of discernment X, a belief function Bel on X.
Output: AU(Bel), {px}x∈X such that AU(Bel) = − ∑x∈X

pxlog2 px, pi ≥ 0, ∑x∈X px = 1, and Bel(A) ≤ ∑x∈X px
for all ∅ ≠ A ⊆ X .

Step 1. Find a non-empty set A ⊆ X, such that Bel(A) / |A| is
maximal. If there are more than such sets A than one, take
the one with maximal cardinality.

Step 2. For x ∈ A, put px = Bel(A) / |A| .
Step 3. For each B ⊆ X−A, put Bel(B) = Bel(B ∪ A) −Bel(A).
Step 4. Put X = X − A .
Step 5. If X ≠ ∅ and Bel(X) > 0, then go to Step 1.
Step 6. If Bel(X) = 0 and X ≠ ∅, then put px = 0 for all x ∈ X .
Step 7. Calculate AU(Bel) = − ∑x∈X pxlog2 px .

Figure 3. An algorithm for computing AU(Bel).

IV. AN ALGORITHM FOR CONSTRUCTING AN
APPROPRIATE FRAME OF DISCERNMENT

Using the results of the preceding sections we develop
an algorithm for constructing and evaluating all possible
frames of discernment. This algorithm will first generate
the possible frames using different partitions of the set of
all cores. From these possible frames we generate
abridgments and enlargements. The frames are evaluated
using the measure of frame appropriateness FA, Eq. (48).
From the output of the algorithm the most appropriate
frame that maximize FA may be selected, Figure 4.

Input: a set of belief functions χ.
Output: Possible frames of discernment {Θi}, { }, { }.

Frame appropriateness FA(Θi|χ), FA( |χ),
FA( |χ).

Step 1. generate Ci using Eq. (3). Set C = {Ci}.
Step 2. generate Ωk using Eq. (6)−Eq. (9). Set Ω = {Ωk}.
Step 3.  generate Θk using Eq. (10)−Eq. (11). Set Θ = {Θk}.
Step 4. generate { ,

}j using Eq. (33)−Eq. (34).
Step 5. If then generate .

Set  = { }j.
Step 6. Compute evaluations of frame appropriateness

FA(Θi|χ), FA( |χ), FA( |χ) using Eq. (48).

Figure 4. An algorithm for generating and evaluating
appropriate frames of discernment.

The frames of discernment { } generated in step four
may be generated recursively as long as all super sets has a
conflict less than one.

Brute force implementation of FA has a computational
time complexity of . Implementing step 2−4 in
an iterative way may reduce the term of the time
complexity.

If more belief function arrive over time we must update
the set of belief functions χt+1 = χ

t + {mj} with the new belief
functions {mj}, Figure 2, and recompute the evaluation of frame
appropriateness, Figure 4.

A. Revisit the example

Let us revisit our small example one last time. As the
example we have studied is conflict free it is possible to
abridge Θ3 to a singleton subset {(Red, Fast)} with a frame
appropriateness of 1.0 and support from the three belief
functions of 1.0. There are also three possible frames with
cardinality two, three frames with cardinality three and one
frame with cardinality four, all of them with frame
appropriateness of 1.0. The other 37 possible frames all
have a frame appropriateness of less than 1.0. As this small
example is conflict free no enlargements of Θ3 are
generated in step 5 of Figure 4.

V. CONCLUSIONS

We have developed a problem representation with which
we can construct possible frames of discernment from
incoming belief functions. These frames of discernment
can be evaluated by a measure of frame appropriateness
given the available evidence as to how well the frame
yields interesting interaction among the available belief
functions without exhibiting too much internal conflict.

With this methodology we are able to automate or semi-
automate the most important part of probable reasoning:
constructing the frame of discernment.
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