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ABSTRACT

Traditional machine learning techniques for vehicle detection and classification requires large amounts of anno-
tated images. For applications in defence and public security, obtaining this is usually not possible, e.g., because
it is difficult, or even impossible, to get access to the relevant environments and vehicles. Few-shot learning is
a research area which aims to design models that can perform well with only a few training examples and can
therefore be useful for these types of applications.

In this work, we evaluate how few-shot learning can be used to solve the problem of limited data for a UAV-
based vehicle detection scenario. Two few-shot learning methods, Meta-DETR and CD-ViTO, are evaluated
with respect to their performance given different numbers of training examples. Their performance is compared
to a traditional baseline, Faster R-CNN, that is instead trained on large amounts of data. We use a synthetically
generated dataset, and further describe how this dataset is designed.

We show that Meta-DETR has solid performance on our dataset given the small amounts of data, but does
not reach the performance of the traditional baseline method Faster R-CNN. In contrast, CD-ViTO performed
very poorly on our dataset and our analysis shows that this is likely because the DINOv2 features used for
prototypes are not expressive enough to distinguish between the different vehicle classes.
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1. INTRODUCTION

Object detection in images is one of the main uses of machine learning in defence and public security. Examples
of applications are munitions guidance, autonomous navigation, and surveillance. Current deep learning-based
approaches to image object detection can typically perform very well in a wide range of scenarios [1].

These object detection models are traditionally trained using large amounts of data which should cover
the variations that are expected for the intended application, e.g., weather, sensor characteristics, and target
distances. For defence applications it is often difficult or expensive to collect the amounts of data that is required
to train robust object detection models. This is especially true when the objects of interest, e.g., military vehicles,
are operated by an adversary. In defence, the reality is thus that machine learning models need to be trained
using datasets that are very small compared to many civilian applications. Few-shot object detection attempts
to tackle this issue by first training on many labelled samples on some classes, called base classes, and then
leverage these to learn previously unseen, or novel, classes using only a few samples. The number of samples per
novel class is called number of shots (e.g. 10 shots is equivalent to 10 samples per novel class) and this will be
the naming convention used in this paper.

Few-shot object detection can be divided into three phases. First, the model is trained on the base classes
using a dataset that is not constrained by the amount of data. Next, the model is fine-tuned on a more limited
few-shot dataset which contains both the base classes and novel classes. This way, the model can utilise the base
objects to compensate for the smaller amount of novel objects. Finally, the model is evaluated with a test set
containing both base and novel classes [2].
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Figure 1: The UAV surveillance scenario.

While few-shot object detections algorithms differ in model architecture, the methods can be divided into
two primary paradigms: meta-learning and prototype-based learning. The former evolves around optimising a
model into a task-agnostic predictor, so that it can more easily be fine-tuned for the specific data. In comparison,
prototype-based learning relies on foundation models as its backbones. These are large models that have been
trained on a large, diverse dataset to create meaningful image representations that can be used for, among many
things, object detection [2].

This work concerns a scenario where an Unmanned Aerial Vehicle (UAV) is used for surveillance. The sensor
operator can not only view output from the onboard sensor (more specifically, camera images in the visual
spectrum), but is also supported by object detections provided by a machine learning model. The machine
learning model has been trained on a set of vehicles which it is supposed to detect. Figure 1 shows a storyboard
of how the system is operated: (a) The UAV is operating in an area and observes a vehicle which is part of the
library of known vehicles; (b) A new vehicle which is not in the library, and is thus not recognized by the model,
enters the field of view of the sensor; (c) The operator marks the new vehicle and captures a small set of training
images that is then used to update the model; (d) After the model is updated the new vehicle type is detected
along with the previously known vehicles. Here the time between discovery (c) of a new interesting vehicle type
to deploying an updated model (d) is shown as an instant process, while in reality this could take anywhere
between minutes to days depending on, e.g., the detection model, available compute infrastructure and policies
regarding quality control.

In this work we investigate how few-shot learning can be used to solve the issue of limited data availability in
this particular scenario. We evaluate two different approaches to few-shot learning and compare their performance
to a more traditional baseline method that has access to large amounts of data. In order to perform a systematic
evaluation, and since the traditional baseline requires large amounts of data, we choose to generate synthetic
data. In addition to the object detection evaluation we also cover the design and generation of this dataset.
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Table 1: Statistics for our synthetic data partitions, where some are reported as mean ± one standard deviation.
Pixels per instance corresponds to the object size with the surrounding bounding box annotation.

Partition name Images Classes Instances per image Pixels per instance

Base training data 100 000 18 3.8± 1.9 26.52 ± 12.82

Novel training data 2 426 9 1± 0 27.92 ± 14.42

Test data 5 000 27 4.9± 1.4 26.52 ± 13.12

Baseline training data 100 000 27 4.8± 1.4 26.52 ± 12.92

(a) Example of novel training data. (b) Example of base training data.

Figure 2: Example images of the training environments.

2. METHOD

The objective of this work was to evaluate the use of synthetic data and few-shot learning for the UAV-based
vehicle detection scenario described in Section 1. This was performed by generating a synthetic dataset on which
three different algorithms for object detection were evaluated: A traditional baseline to indicate the level of
performance that can be reached when plenty of data is available, and two few-shot algorithms.

2.1 Synthetic Data

Collecting representative data for our application in volumes that constitute a solid foundation for evaluating
object detection algorithms is not feasible. In a frugal data setting, the evaluation process is data-scarce since
it constitutes a part of the development process. However, sufficient evaluation data is necessary for conducting
algorithmic research.

Our data consists of images from a simulated environment rendered with physics-based models, e.g., scattering
and reflectance, with vehicles inset using SE-Workbench [3]. The environment studied in this work consists of
Swedish rural terrain with mainly fields, forests, and roads, as well as sparsely populated areas. Further variations
in the simulations include, but are not limited to, the time of day and weather conditions such as varying degrees
of cloudiness and sunlight. As a result of the simulation process, the data are accompanied by perfect ground-
truth metadata and annotations. All images are annotated with COCO-format [4].

Although the rendered images are not perfect replicas of naturally collected images, we consider that our syn-
thetic images are representative surrogates for the purpose of studying how different few-shot learning algorithms
perform under varying conditions.

Our dataset consists of four partitions: base training data, novel training data, baseline training data, and
test data. All images have a resolution of 640 × 480 pixels, and further specifications are listed in Table 1.
Example images are provided in Figure 2. The base, novel, and test partitions are generated to support the
evaluation of the few-shot object detection models.
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Figure 3: Dataset vehicle classes. Vehicles that are part of the novel classes are marked with a star. The vehicles
are grouped into A, tracked armoured vehicles; B, trucks; C, wheeled armoured vehicles; D, rocket artillery; and
E, air defence.

Table 2: Vehicle classes used in our synthetic dataset. Star indicates a novel class.
(1) BMP-1 (7) BMP-3 (13) M142 (19) ⋆ BM-21 (25) ⋆ BMD-3
(2) Tigr (8) BMP-2 (14) Marder (20) ⋆ VPK-7829 (26) ⋆ M270 MLRS
(3) T-14 (9) Ural-4320 (15) Flakpanzer Gepard (21) ⋆ T-15 (27) ⋆ Leopard 2
(4) 2S3 (10) M1A2 (16) Mercedes-Benz Zetros (22) ⋆ BRDM-2
(5) T-90 (11) M2A3 (17) M270 MARS II (23) ⋆ BTR-82
(6) ZIL-131 (12) M109A6 (18) Panzerhaubitze 2000 (24) ⋆ 2K12

To contextualize the few-shot learning results for our application, the separate baseline training data partition
includes all classes to enable the use of traditional learning algorithms. All the training data partitions (base,
novel and baseline) are simulated in a joint geographical environment, whereas the test data partition is simulated
in a separate nearby area. In general, the training data partitions consist of variations (e.g., object placement,
weather, and lighting conditions) for each generated image. For the novel training data partition, which is
designed to replicate the surveillance scenario described in Section 1, multiple camera viewpoints are included
for each variation to simulate observations during a UAV overflight.

The dataset consists of 27 different military vehicles which are listed in Table 2, and visualized in Figure 3.
The vehicles were divided into a fixed training split of 18 base and 9 novel classes, the latter indicated by a star
in both Table 2 and Figure 3. Given the division of the vehicles into categories A-E, the split was motivated
as follows. All vehicles in group C are used as novel classes, which means that the few-shot algorithms need to
be able to learn a whole new category of vehicles (wheeled armoured vehicles). The 2K12 vehicle in group E
was chosen to represent a novel class which is very dissimilar from any of the base classes. The rest of the novel
vehicles, in group A and D, are all examples of vehicles of which the same type are already present in the base
classes.
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2.2 Evaluation Protocol

To put results from the few-shot learning algorithms in context, we benchmarked our dataset using a traditional
object detection method as a baseline. This is described in Section 2.2.1, followed by Section 2.2.2 where we
introduce the evaluation metrics used and how they are applied.

2.2.1 Traditional Baseline

The role of the traditional baseline is to provide an indication on the upper bound of performance of the few-shot
methods. This is achieved by training the traditional baseline model on the baseline training data partition,
which contains a large amount of images for all classes, both base and novel.

As a traditional baseline we chose the Faster R-CNN [5] object detection model with a ResNet-101 [6]
backbone pre-trained on ImageNet-1k [7]. It has a Region Proposal Network (RPN) which first detects regions
of interest, which are then processed by a Fast R-CNN [8] module to produce the final detections. The entire
model was fine-tuned on all classes for approximately 27 epochs, with a batch size of 12 and a learning rate of
0.001, on the baseline data. The traditional baseline was trained using the Detectron2 framework [9].

2.2.2 Metrics and Analysis

Average Precision (AP) [10] is a summarization metric for the precision-recall curve, and is the standard metric
for object detection. In our experiments, we specifically report AP50, which correspond to a Intersection over
Union (IoU) threshold at 50%. This choice is motivated with our dataset consisting of relatively small objects and
the bounding-box (localization) accuracy is not critical for our application. According to the COCO standard,
our dataset (based on bounding box sizes) contains only small objects (fewer than 322 pixels) and medium
objects (at least 322 but fewer than 962 pixels). For size dependent evaluation, we report AP50 as AP50s for
small objects and AP50m for medium objects.

Our analysis includes different number of shots, and to estimate how sensitive the few-shot learning models
are to the images chosen for training, we repeat our experiments to report both mean and standard deviation.
For more in-depth analysis of classification results, we use accuracy [11], the percentage of correct classifications,
and confusion matrices, the distribution of predicted class versus actual class.

Reported confusion matrices are constructed using an IoU threshold and model confidence threshold of 50%
each. For each ground truth box, the prediction with the highest confidence is selected, given the IoU and
confidence thresholds. If there are no predictions given the thresholds, it is assumed that the model predicted
the region as ”background”.

2.3 Few-Shot Algorithms

We chose to evaluate two different approaches to few-shot learning: meta-learning and prototype-based networks
built on foundation models. The two models chosen are Meta-DETR [12] and CD-ViTO [13]. Both models
have reported well-performing results and have explicit approaches to deal with fine-grained object detection.
One major advantage of prototype-based methods like CD-ViTO over meta-learning methods is their ability
to quickly adapt to novel classes. Their disadvantage is however that they are limited by the ability of the,
typically frozen, feature extraction model that creates the prototypes. In comparison, meta-learning approaches
like Meta-DETR learns and fine-tunes a feature extraction algorithm. Compared to prototype-based methods,
this allows the model to more greatly adjust to the task specific data. The disadvantage, however, is that there
is a higher risk of forgetting or neglecting base classes as the feature extraction is fine-tuned on novel classes. In
our setup, all novel classes are added simultaneously from the novel training data for both models.

The two models also differ in that Meta-DETR is a one-stage detector, while CD-ViTO is a two-stage detector.
Meta-DETR reports an increase in inter-class correlation and thus model generalization using their approach.
However, the model is less modular compared to a two-stage detectors, where parts of a model can be reused or
rebuilt. This is the case for CD-ViTO, where the authors use a traditional Faster R-CNN [5] and keep its core
localization ability while replacing the classification module.
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2.3.1 Meta-DETR

Meta-DETR [12] incorporates meta-learning into the Deformable End-to-end Detection Transformer (DETR)
framework [14]. This is a one-stage detector that performs both classification and localization as one task rather
than separating the two, dismissing the need of region proposals. The model takes one query image and multiple
support images, extracting query features and support features. When the model performs feature correlation on
a target, it uses multiple representations of the query and support features simultaneously and can thus exploit
inter-class information better by mapping them to the same feature space. This allows Meta-DETR to increase
its ability to perform fine-grained classification. Finally the model uses a transformer architecture to detect
objects by predicting their location and feature encoding.

We trained Meta-DETR using a ResNet-101 backbone, pre-trained on ImageNet-1k. The hyperparameters
for fine-tuning were chosen based on the results by the authors of Meta-DETR [12]. The algorithm was domain-
adapted by fine-tuning on base training data for 600 epochs and a learning rate of 0.0001. Using 10 % of the base
training data as validation data, the initial hyperparameters where determined to achieve satisfactory result and
the optimal epoch was determined to be 199. After the pre-training phase, the model was adapted to the novel
vehicle classes by fine-tuning using the novel training data. To prevent decreasing the performance for the base
classes, the fine-tuning process also contains a random sample from the base training data as support instances
to balance the novel classes.

Fine-tuning for 600 epochs, with a batch size of 16 and a learning rate of 0.0001, demonstrated well-balanced
results. The experiments were repeated 20 times with identical settings apart from different random sampling
of the training data partitions for novel and base classes.

2.3.2 CD-ViTO

CD-ViTO [13] is a two-stage detector built upon DE-ViT [15]. By separating the localization and classification,
the model is able to perform few-shot object detection with minimal fine-tuning on the localization module for
a Faster R-CNN model generates proposals bounding boxes around areas of interest. Next, these proposals
are fed through DINOv2 [16] and are then compared to a gallery of support prototypes of both class objects
and background objects that can be generated in advance. DINOv2 is a Vision Transformer (ViT) trained by
self-supervision that is used to create meaningful representations based on image content. It can thus act as
a foundation model to be used as a task-agnostic feature extractor suitable for few-shot learning. Thus, the
prototypes for novel objects can be replaced with new ones and the model configuration and weights can be
reused under the premise that the novel objects have similar shapes as the base objects and can thus be found
using the RPN.

The authors of DE-ViT identified limitations regarding accurately localizing objects when using a region-
based detector. This was addressed by adding a voting system for the different proposals, which enhanced
the model’s localization performance. Following that, the authors of CD-ViTO targetted the challenge of cross
domain adaptation. They approached this by introducing learnable instance features to the class prototypes to
improve fine-grained classification. This process involves first training on a general dataset such as COCO [4]
and then fine-tuning the model on the target dataset.

We trained a Faster R-CNN [5] model with a ResNet-50 [6] backbone (pre-trained on ImageNet-1k [7]) for
16 epochs on the base training data. Next, the weights checkpoint from the Faster R-CNN model was used in
combination with the weights of DINOv2 (ViT-large with a patch size of 14). The combined checkpoint was
used as input to base train CD-ViTO on the base training data for one epoch. For this step, a subset of the base
training data of 40 shots per class was used to generate prototypes for the model. To improve the classification,
background prototypes were generated as in the original paper on CD-ViTO. This was done by taking randomly
selected patches from the base training data and parse them through DINOv2.

For the few-shot scenario, novel and base classes were selected from their respective datasets. These were
uniformly sampled, with an equal number of shots for novel and base classes. The same background prototypes
were used as in the base training. The models were fine-tuned for 60 epochs for 1 shot, 30 epochs for 5 shots, 30
epochs for 10 shots, and 30 epochs for 20 shots, inspired by the authors of CD-ViTO and their fine-tuning for
the DIOR [17] dataset. DIOR is an air-to-ground dataset containing 20 classes of various sizes and shapes and
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is benchmarked in CD-ViTO. The DIOR dataset was chosen due to having similar properties to our dataset in
terms of object sizes, number of classes and domain.

3. RESULTS AND ANALYSIS

The trained models, as described in Section 2, were evaluated on the test data partition, as seen in Table 1,
identifying strengths and weaknesses of each model in relation to our dataset.

3.1 Traditional Baseline

Faster R-CNN achieved AP50 of 90.9%, and AP50s and AP50m scores of 89.0% and 96.9%, respectively. When
measuring foreground prediction the model achieves an AP50 score of 98.0%. Figure 4 shows the corresponding
confusion matrix. The traditional baseline shows good performance on our dataset, however, the results are only
used as an indication of an upper bound on the few-shot object detection performance.

Figure 4: Confusion matrix for the traditional baseline (Faster R-CNN), IoU threshold 50%, score threshold
50%. White represents a count of zero, and 0 in the predicted class represents Background.

3.2 Meta-DETR

Meta-DETR achieved a maximum AP50 of 63.4% for base classes (10 shots) and 38.2% for Novel classes (50
shots). Figure 5a shows the averaged AP50 result where the shaded area shows the first standard deviation. It is
evident that more data for the novel classes improves the performance for the novel classes on average. The most
significant improvement is from 2 shots to 5 shots, and for more than 20 shots (i.e. 50 shots) the AP50 plateaus
for novel classes and the performance for the base classes is reduced. Meta-DETR has solid performance on our
dataset given the small amounts of data, but does not reach the performance of the traditional baseline.

When manually changing the predictions to foreground predictions to check localization accuracy, the model
has an AP50 of 76.2% at 10 shots, indicating that the model struggles with classification rather than localization.
The standard deviation in Figure 5a, and the difference between small and medium sized objects in Figure 5b,
indicates a possible performance gain depending on the distance and view-angle of the objects in each selected
shots. Investigating which distances and view-angles are more beneficial is left for future works.

The dependence of the object sizes, measured as the pixels per image, is depicted in Figure 5b. The size-
based partitioning generally reflects the overall trend (Figure 5a), but the difference in performance is significant
between small and medium size instances. The model achieves at best AP50m of 90.0% for the base classes at 10
shots, and 67.4% for the novel classes at 50 shots. For small objects the best AP50s for the base classes is 55.1%
at 10 shots, and 28.8% for the novel classes at 50 shots. Additionally, the performance for medium size objects
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(a) All objects. (b) Size-divided objects.

Figure 5: Meta-DETR AP50 score over 20 seeds. The shaded area indicates first standard deviation.

(a) Ground truth. (b) Detections.

Figure 6: Qualitative object detection result from a Meta-DETR model fine-tuned with 20 shots. Ground truth
labels are blue and prediction labels are red. Base classes (red box): M270 MARS II (17), BMP-1 (1), and
Panzerhaubitze 2000 (18). Novel class (green box): 2K12 (24).

is not only notably better, the novel classes also improves more with additional shots. Notably, the maximum
score of AP50m base classes is close to baseline performance.

Figure 6 shows an example of detection performance for a model trained on 20 shots. In the example, three
out of four vehicles are successfully detected, and the missing detection is likely due to the vehicle being almost
totally occluded by vegetation.

The confidence in correct detections increases with more shots, which is evident when comparing confusion
matrices for models with different number of shots in Figure 7a-7d. Compared to the baseline model (Figure 4),
the Meta-DETR models misclassify a significant portion of objects as background. This could be due to the
poor performance on small objects. According to Figure 7, the weakest performing novel classes suffer from
confusion with the base classes. Additionally, each grouping of classes, as described in Figure 3, have a single
higher performing class with a lower rate of confusion. This is evident in Figure 7c, when looking at group C (20,
22, 23), where VPK7829 (20) is less likely to be confused with base classes than BRDM-2 (22) and BTR-82 (23)
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(a) 1 shot. (b) 5 shots.

(c) 10 shots. (d) 20 shots.

Figure 7: Meta-DETR confusion matrices for 1 – 50 shots, IoU threshold 50%, score threshold 50% for a random
seed. White represents a count of zero, and 0 in the predicted class represents Background.

are. Further, the model is more likely to guess VPK7829 (20) when it sees the other two classes within the same
group while the inverse is not true. This indicates that the model can differentiate one novel class from several
similar base classes well, but has a worse performance overall if the novel classes are similar to each other.

3.3 CD-ViTO

Our experiments showed that CD-ViTO reached at best 1-2% in AP50 on our dataset. Since the results are
too poor to be operationally useful, further analysis of performance, similar to what we did for Meta-DETR
in Section 3.2, is irrelevant. Instead we opted for an extended analysis in order to investigate why the method
failed on our dataset, while results on public datasets have been state of the art for few-shot object detection.
Therefore, as a first experiment, the predictions were manually changed into foreground predictions to give an
indication of the localization ability of the model. The 10 shots AP50 then reached 29.4%. This indicates an
issue with the classification rather than the localization.
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(a) Our dataset. (b) DIOR.

Figure 8: CD-ViTO confusion matrices for the two datasets. IoU threshold 50%, score threshold 50% for a
random seed. White represents a count of zero, and 0 in the predicted class represents Background.

Therefore, to further evaluate the results, the model was trained on the DIOR dataset as reference, with the
model weights pre-trained on COCO as with our dataset. The DIOR dataset was chosen as it has already been
benchmarked in the original CD-ViTO paper. To give comparable results, the DIOR dataset was split into 14
base classes and 6 novel classes. The novel classes were chosen arbitrarily and 20% of the dataset was set aside
for testing while the rest was used for bulk and few-shot training. For the DIOR dataset, CD-ViTO reached
38.9% in AP50 for 10 shots and 36.1% in AP50 for 5 shots. However, it is clear that the AP differs between
classes. Base classes may reach as high as 76.1% in AP50 (for class 6, ”chimney”) and as low as 3.6%, while
novel classes range from 4.2% to 51.7% (for class 19, ”vehicle” and class 13, ”stadium” respectively). Moreover,
when performing foreground predictions the model only reaches 16.1%. This means that the model is able to
localize the objects more easily for our dataset, but classification is an easier task for the DIOR dataset.

This phenomenon is even more apparent when the misclassifications for the two datasets are compared using
a confusion matrix. As seen in Figure 8, the model behaves differently for the two datasets. For DIOR even with
the two worst performing classes, the base class 12 (”ship”) and novel class 19 (”vehicle”), the model is not likely
to mistake them for another class. Rather, the model either misses the class completely or predicts it correctly,
apart from class 12 (”ship”) sometimes being misclassified as class 10 (”harbor”) and ”vehicle” being interpreted
as class 12 (”ship”). In comparison, the model appears to choose class at random for our dataset, with low
confidence, on a few selected classes based on no obvious characteristic. Furthermore, there is no indication as
to any bias to choose base over novel classes. The selected classes show no patterns of favour for specific groups
(see Figure 3) and roughly half of the classes were simply ignored by the model.

The classification ability was further investigated by using linear probing with DINOv2, as it is closely tied
to CD-ViTO’s classification performance. In this setting, images were cropped using the ground truth bounding
boxes and then fed to DINOv2 to extract the objects’ feature embeddings. This allowed the analysis to be centred
around the classification task while the overall object detection task remained unchanged. With the embeddings
as input, a linear classification layer with a Softmax activation was trained using cross-entropy loss to perform
classification among the 27 classes for our dataset and the 20 classes for DIOR. The model was trained for 12 500
iterations of mini-batch gradient descent with a batch size of 32, inspired by the linear probing proposed by the
authors of DINOv2. The training procedure was repeated 10 times with different image samples. The inference,
however, was performed with the full respective test data to ensure consistency between training runs. The
results are shown in Figure 9 for the two datasets.
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Figure 9: Classification accuracy of DINOv2 averaged over 10 seeds. The shadowed region represents one
standard deviation.

As seen in Figure 9, the classification ability of DINOv2 is significantly higher for the DIOR dataset than
for our own dataset. While they have a similar relative performance increase with the number of shots, our
dataset needs more than 20 shots per class before attaining a result on par with the 1 shot performance on
DIOR. Naturally, the datasets are not completely comparable due a differing number of classes, but even so it
is apparent that DINOv2 lacks the ability to easily distinguish between the classes, in our dataset. This raises
the question of whether this originates in the object sizes, the fine-grained difference between certain classes, or
a domain shift to synthetic data. Due to our dataset being limited by the scenario, an analysis with data that
uncover these characteristics is left for future work.

4. CONCLUSION

For fine-grained object detection, this work investigated the capability of few-shot algorithms on previously
unseen military vehicles. The use of synthetic data enabled statistical results for algorithms on objects that are
generally difficult to study otherwise.

Meta-DETR achieved competitive performance for the base classes while being robust to the performance of
the novel classes, although it was sensitive to few-pixel objects. For the novel classes, the results are promising
with very few examples, but the performance plateaus beyond 20 instances per novel class.

CD-ViTO underperformed in our application despite demonstrating strong localization capability. Extended
experimentations implied performance limitations due to low classification accuracy with DINOv2 on our objects,
including the base classes.

In summary, we have shown that few-shot object detection can be successfully applied to military relevant
scenarios with fine-grained classes. However, future work should address the reduced performance on few-pixel
instances, as this is especially common in the military domain.
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