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Abstract—We develop an active inference route-planning method for the au-
tonomous control of intelligent agents. The aim is to reconnoiter a geographical
area to maintain a common operational picture. To achieve this, we construct an
evidence map that reflects our current understanding of the situation, incorporat-
ing both positive and “negative” sensor observations of possible target objects
collected over time, and diffusing the evidence across the map as time progresses.
The generative model of active inference uses Dempster-Shafer theory and a
Gaussian sensor model, which provides input to the agent. The generative process
employs a Bayesian approach to update a posterior probability distribution. We
calculate the variational free energy for all positions within the area by assessing
the divergence between a pignistic probability distribution of the evidence map
and a posterior probability distribution of a target object based on the observa-
tions, including the level of surprise associated with receiving new observations.
Using the free energy, we direct the agents’ movements in a simulation by taking
an incremental step toward a position that minimizes the free energy. This ap-
proach addresses the challenge of exploration and exploitation, allowing agents
to balance searching extensive areas of the geographical map while tracking iden-
tified target objects.

Keywords—active inference, free energy principle, autonomous agents.

1 Introduction

This paper focuses on active inference [1, 2] for the autonomous control of an intelli-
gent agent (e.g., a reconnaissance Unmanned Aerial Vehicle (UAV)) aimed at achiev-
ing and maintaining the best possible situational awareness over time. Active inference
is a methodology for autonomous decision-making. This methodology is generic and
based on the concept that a system aims to minimize its surprise when receiving new
information. What is unique about active inference is that the method includes two par-
allel approaches for an agent to seek consistency between reality and the system’s de-
scription of the environment: either the system’s internal representation is updated as
new information is received, or actions are taken against the environment to change it
so that it is consistent with its perception.
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Minimizing surprise is inherently impossible. Instead, we aim for the best possible
action by choosing the one that minimizes free energy. Free energy is an information
theory concept that refers to the divergence between two probability distributions and
the element of surprise. One distribution reflects our perception of reality, often de-
scribed as a dynamic common operational picture, while the other is the probability
after a current observation. When these two distributions align closely, the free energy
is low. In active inference, the agent seeks to position itself so that its observations
correspond with its reality model.

Section 2 formulates the problem statement. Section 3 shows related works. Section
4 introduces the fundamentals of active inference and free energy. Section 5 provides a
brief overview of Dempster-Shafer theory, which updates the dynamic common oper-
ational picture. Section 6 describes the simulation environment and sensor model. In
Section 7, we mathematically describe how to control an agent using active inference
by minimizing free energy. Section 8 offers an overview of the implementation, and
finally, Section 9 presents the conclusions drawn from this work.

2 Problem Statement and Persistent Surveillance

2.1 Problem Statement

In the field of autonomous systems, the task of continuously monitoring a specific area
over an indefinite period is referred to as persistent surveillance. Real-world applica-
tions for persistent surveillance systems include surveillance of areas around critical
infrastructure and military facilities to detect potential intruders with malicious intent.
It can also be used for surveillance at popular beaches to prevent drowning incidents
and for monitoring wildlife in sensitive natural areas for preservation purposes. UAVs
are particularly well-suited for this type of surveillance task due to their wide-angle
views, speed, and the relative absence of obstacles in their operational environments,
which facilitates trajectory planning for the autonomous agents.

In this paper, we consider a scenario in which an autonomous agent is assigned the
task of continuously monitoring a designated area to maintain an accurate and up-to-
date dynamic common operational picture. The agent must be capable of detecting both
fixed and moving targets and should ideally be able to keep track of the approximate
locations of these targets, even when they are out of sensor range. Moving targets must
therefore be revisited as often as necessary to prevent losing track of them. Addition-
ally, it is requested that no part of the designated area should be left unobserved for
more than a specified time.

In persistent surveillance scenarios, the trajectory planning problem for autonomous
agents is usually defined by a set of specific goals and constraints, which may have
different priorities. Various methods can be employed to implement the actual trajec-
tory planning or motion control (as discussed in Section 7). This paper specifically aims
to investigate the feasibility of using active inference for trajectory planning and gen-
eration. The primary research question addressed in this paper can be formulated as
follows:
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Can active inference be used to solve the motion control problem for a single UAV
conducting multi-objective persistent surveillance over a predefined 2D area?

2.2 An Active Inference Approach to Persistent Surveillance

To effectively implement the active inference framework for motion control in a per-
sistent surveillance context, several key components must be defined.

A generative model describes all possible states and their transitions to address these
considerations. Information about these states is derived from observations made over
time, allowing us to update our understanding of the current state. We express uncer-
tainty in the model using Dempster-Shafer theory [3, 4]. In this model, the states are
represented stochastically; each possible transition of target basic belief from one state
(e.g., position) to the next is specified by transition probabilities. The states are dynam-
ically updated at each time step using a diffusion algorithm. This model indicates the
current basic belief of the existence of at least one target object within each possible
state (see Section 7.1).

A generative process complements the generative model by managing new observa-
tions made with the agent’s sensor. In the generative process, we use a Bayesian ap-
proach. This process updates the probabilities of all positions within the agent’s sensor
radius. This update calculates a new probability for each position based on the current
sensor model while considering the existing probabilities (see Section 7.2).

Since we cannot directly minimize the surprise an agent experiences when receiving
new observations, we focus on minimizing the free energy, which serves as an upper
bound for that surprise. The free energy is defined as the sum of the divergence between
two probability distributions and the level of surprise, and is our objective function to
direct the agents’ movements. For each location within the sensor radius, we compare
the probability obtained from the generative model with the probability derived from
observations, striving to minimize the divergence between the two (see Section 7.3).

At each time step, we calculate the free energy for all locations within the sensor’s
radius. The agent then takes a fixed-length step in the direction that minimizes free
energy. This approach enables the agent to control itself autonomously, ensuring it
achieves the best possible common operational picture. The agent’s control is modeled
by a Multi-Agent Dynamic Simulator (MADS) developed in-house.

3 Related Works

3.1 Persistent Surveillance and Motion Control

Over the years, different methods for addressing the control problem in persistent sur-
veillance (also referred to as persistent monitoring) have been proposed. This section
briefly describes some examples.

Hari et al. [S] examine a persistent monitoring mission for a single UAV, tasked with
repeatedly visiting n targets of equal priority. Since the targets are fixed, the problem
simplifies to a classic traveling salesman problem. Brown and Anderson [6] explore a



4 J. Schubert, F. Kamrani, and T. Gustavi

more complex maritime surveillance scenario that includes constraints on UAV dynam-
ics and formulate a multi-objective optimization problem aimed at maximizing infor-
mation gain and minimizing fuel consumption. Feasible and optimal solutions are found
using a trajectory generation method combined with a particle swarm optimization al-
gorithm. Similar to the problem discussed here (in this paper), Hiibel et al. [7] introduce
a dynamic “information map” subject to information decay and use it to derive a gradi-
ent-based control that drives a group of agents to continuously update their situational
awareness by surveilling an area. Additionally, the authors propose a time-varying den-
sity function that can be integrated into the control algorithm to model moving points
of interest. Another approach to increase the probability of autonomous agents observ-
ing moving targets during surveillance missions was proposed by Ramasamy and
Ghose [8]. Assuming that the probability of observing a target is non-uniformly distrib-
uted across a monitored area, Ramasamy and Ghose assign an “importance” degree to
each grid point in a discretized map where the UAV in the scenario has detected a
target. The importance of a grid point depends on the number of detections made there
and increases the chances of the UAV revisiting that location. Lastly, there is additional
work documented in the literature that employs reinforcement learning for persistent
surveillance control. Chen et al. [9] use a multi-agent reinforcement learning approach
to learn policies for each agent in a team, tasked with continuously monitoring a 2D
environment with stationary obstacles. To accomplish this, the problem is modeled so
that a penalty is applied at every time step if a point in the environment is left unmoni-
tored. Mishra et al. [10] present another example of a reinforcement-learning-based
method for persistent surveillance.

3.2 Active Inference for Estimation and Control

Active inference connects perception and action through variational free energy. The-
oretical links to classical estimation and control show that minimizing variational free
energy yields objectives that combine information-theoretic surprise with control costs,
leading to linear-quadratic-Gaussian behavior in linear-Gaussian environments [11]. In
practical terms, active inference has been employed for state estimation of a quadcopter
using dynamic expectation maximization (DEM). DEM is a perception scheme inspired
by the brain, based on a data-driven model-learning algorithm [12]. Additionally, active
inference has been used for adaptive manipulation control in the absence of detailed
environment models in industrial robots. This method has proven to be scalable even
when the dynamics of the environment are not explicitly modeled [13]. Active infer-
ence has also been applied to the adaptive control of robot arms using multimodal per-
ception-action and variational autoencoder (VAE)-based state representations. This ap-
proach does not require a dynamic or kinematic model of the robot [14]. Furthermore,
active inference has been used to develop a torque controller that integrates raw vision
and proprioception in a streamlined design for a 7-degrees-of-freedom Franka Emika
Panda robot, capable of online adaptation to changes in dynamics and human interfer-
ence [15]. It has also been employed for fault-tolerant control under sensor faults, de-
livering unbiased state estimation and simplifying action specification [16]. These re-
sults support our use of free energy for closed-loop control with a soft sensor model.
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3.3  Active Inference for Navigation, Exploration, and Bandit Problems

For mobile agents, active inference under hierarchical generative models enables
goal-oriented navigation with topologically consistent maps and practical robot deploy-
ments [17]. Modular active inference systems support flexible, goal-driven navigation,
avoiding obstacles and choosing high-confidence paths with strong zero-shot generali-
zation to new settings [18]. Curiosity-driven learning for robotic tasks, using the free
energy principle, employs Bayesian neural networks to represent epistemic uncertainty
and model complex behaviors [19]. Moreover, retrospective (residual) surprise has
been introduced as a computational element in active inference, serving as a lower
bound on the expected free energy [20]. In decision-making, contextual multi-armed
bandits (CMABs) extend the classical bandit problem by conditioning action selection
on observed contextual information. Recent active inference models of CMABs
[21, 22] use expected free energy to guide context-based action selection, balancing
exploration and exploitation under uncertainty—an effect we replicate in our approach
through minimizing a spatial free-energy field over the evidence map.

3.4  Multi-agent Active Inference, Organizational Adaptation, and Complex
Tasks

In multi-agent settings, active inference is used to design adaptive organizations, where
roles and structures change by minimizing team-level free energy [23-25]. For complex
robotic tasks, active inference combines with behavior trees to enable continuous plan-
ning and robust execution with fewer nodes [26]. Meanwhile, non-modular, cognitively
inspired active inference architectures are explored for robustness against unknown in-
puts [27]. Recent work extends active inference to autonomous driving by incorporat-
ing action-oriented priors that link perception and control, leading to more human-like,
collision-avoidant behavior [28]. In socially interactive and multi-agent scenarios, ac-
tive inference applies to human-robot kinesthetic interaction, where meta-priors adjust
compliance and counter-forces during physical contact [29], and to empathic, socially
compliant agents that adapt their movements to surrounding individuals and contextual
norms [30], demonstrating the flexibility of the free-energy framework for coordination
and interaction tasks. Active inference also applies to hierarchical, embodied percep-
tion-action loops, where multiple sensorimotor pathways associated with different body
parts are dynamically combined, enabling the robot to reconfigure control and activate
only the necessary joints for a given task [31]. Our method differs by operationalizing
free energy over a spatial Dempster-Shafer evidence map and a deterministic soft sen-
sor model, then guiding the agent to move in the direction that minimizes this per-cell
objective at each step.

3.5 Our Contribution

Compared to surveillance controllers [5-10], we introduce a Dempster-Shafer-based
evidence map with diffusion and a deterministic soft-output sensor model to generate
cell-wise evidential scores. Then, we steer the platform by minimizing a grid-based
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free-energy objective that compares a pignistic distribution [32] to a posterior derived
from the latest observation, including observation surprisal. Compared to active infer-
ence controllers and expected free energy-planning methods [13—31], our contribution
is a computationally lightweight free-energy minimization over the grid map that (i)
separates observation and state evidence, (i7) avoids Monte Carlo sampling by using
deterministic soft observations, and (iii) provides an effective exploration-exploitation
balance for persistent reconnaissance.

4 Active Inference and Free Energy

The generative model and the generative process are stochastic in nature. Let the out-
come space over all possible states be ® = {T, F}, where T denotes the presence of at
least one target object, and F represents the absence of a target object.

4.1 The Generative Model

The generative model outlines all possible states and transitions [1, 2]. In this context,
the states are represented by grid cells, indicating all possible positions on a map. The
agent and the target objects can transition between states, moving from any grid cell to
its nearest neighboring cells.

The probability in the generative model is denoted by gy, (89), where 9 is the state
and q,tcy is the probability for a grid cell c,,, at time t. In each grid cell, we have

Ay =T) +qy, O =F) = 1. €y

We determine the probabilities q,";y for all grid cells ¢y, in our stochastic common op-

erational picture based on all observations gathered throughout the scenario. These ob-
servations form our understanding of the situation. More about how g%, is calculated

when scouting with an agent can be found in Chapter 4.

4.2 The Generative Process

In the generative process, we handle new observations. At each time step, we have an
incoming a priori probability p%, (). This probability is equal to the posterior proba-
bility at the previous time step.

We set
Pry () = P2y F19). @
In addition, we initialize the a priori probability for time 0 according to
Py (®) = €. ©)

Using Bayes theorem, we can calculate the posterior probability p%, (9]¢) in the grid
cell ¢, for the current time step t based on the a priori probability.
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We have

Py (@]9)

FNON piy(9), 4)

P;";y(19|<l’) =

where pfcy (@]9) represents the likelihood, which indicates the detection probability for

an observation ¢ = T, as determined by the sensor model, when we have a target object
¥ =T in the grid cell ¢, at time t. In this context, p%, (¢) represents the probability

of obtaining an observation. The probability can be calculated according to
Piy(@) = piy (@19 =T) - py (9 =T) + psy (@9 =F) piy @ =F), (5)
where p%, (9 = T) denotes the a priori probability discussed earlier, and
Pry(® =F) =1-pg, 9 =T). (6)

Additionally, p%, (@]9 = T) represents the likelihood, which is the detection probabil-
ity of the sensor model, with

Pry (@l = F) =1 —pz, (9|9 =T). (7

4.3  The Free Energy

Based on the generative model’s g%, (9) and the generative process’s pi, (9]¢), we
can now calculate the free energy F, for all grid cells c,,, at time t.
We have

FL, = Dyt (9) 1l pty, O19)]| — In[pt, (9)]

NG ) e
at, () l"<—p§y(l9|<p) l In[pLy (@] (8)

Y€E{T,F}

here Dg; is the Kullback-Leibler divergence [33]. The term —ln[p,iy (go)] represents
the degree of surprise from an observation, q,";y (9) is the probability according to the
generative model, and p%,, (9|¢) is the posterior probability according to the generative
process, calculated at each time point based on Bayes theorem. Finally, py, (¢) is the
probability of an observation as derived in equation (5).

In active inference, the action that minimizes F,fy is chosen. This action may involve
moving to ¢y, or in its direction.

5 Dempster-Shafer Theory

In Dempster-Shafer theory [3, 4], belief is assigned to a proposition through a basic
belief assignment. The proposition is represented by a subset A of an exhaustive set of
mutually exclusive possibilities, referred to as a sample space 0.
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The basic belief function m is defined as a function from the power set of © to the
interval [0, 1]

m:2° = [0,1] C))
where m(®) = 0 and

Z m(4) = 1. (10)

ACO

Here, m(A) represents the basic belief assigned to A.

If we receive additional information about the same hypothesis from a different
source, we combine the two basic belief functions to create a more comprehensive un-
derstanding. This is achieved by computing the orthogonal combination using Demp-
ster’s rule. Let B be a subset of m; and C be a subset of m,. The combination of m,
and m, results in a new basic belief function m; @ m, where

m @my()=K- ) m(B)-m), (11)

BNC=A

where K is a normalization constant.

6 Simulation Environment and Sensor Model

6.1 Simulation Environment

The world is represented as a 2D map of a designated reconnaissance area. This map is
divided into a grid of m X n square cells indexed based on a coordinate system. Using
a 2D representation is a deliberate simplification justified by the fact that the scenario
being examined is much larger in its x and y dimensions compared to any variation in
its z dimension. Although the simulator can perform 3D movements, this feature was
disabled during the simulations conducted. The positions of both the agent and any
target objects are indicated using cell indices in the format c,,,, where x and y are inte-
gers. Each cell is assumed to be large enough to contain the agent or a target object
within the reconnaissance area.

We conduct experiments using active inference for UAV control in MATLAB. The
previously mentioned 2D map is the foundation for the generative model describing the
environment. The simulation environment includes both fixed and moving target ob-
jects. Two predefined movement patterns are available for the moving target objects:
stationary (no movement) or movement along a straight line.

We represent uncertainty in the model using Dempster-Shafer theory [3, 4]. This
uncertainty, at the map’s cell level, provides two evidence-based likelihood values. The
first is a basic belief, denoted as m,tcy (9 = T), which ranges from 0 to 1. It represents
the basic belief at time ¢ that the cell c,,, contains at least one target object. The second
is an estimated likelihood value, also between 0 and 1, denoted as mfcy (9 = F). This
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indicates the basic belief that, at time ¢, the cell does not contain any target objects. The
formulas for diffusing basic belief to neighboring cells in the generative model are de-
signed to be independent of the grid’s topology. For example, moving from a square
grid topology, used in this experiment, to a hexagonal topology only requires changing
the parameter N, which represents the number of neighboring cells in equations (12)
and (13) (see Section 7.1). This change adjusts N from eight to six.

6.2 Sensor Model

The sensor model serves as an intelligent image sensor designed for ground scouting.
Its detection radius lets it reliably identify and classify objects as targets or non-targets.
Each time an object is positively classified as a target, the method also provides a quan-
titative estimate, denoted as my,, (9 = T, representing the basic belief that this classi-
fication is correct. If an object is identified as a target, the sensor calculates an estimate
of its coordinates on a 2D map.

Since the sensor does not actively monitor or classify the absence of targets within
the search area, it is more challenging to quantify evidence for this condition. If an area
has been scanned without identified targets, it suggests no targets are present. In loca-
tions where no targets are detected, the sensor provides a default estimate, denoted as
mfcy (9 = F), for the basic belief of target absence. The terrain in the area can influence
this estimate; for instance, the likelihood of detecting targets is generally lower in for-
ests compared to open fields.

We implement a simplified version of the sensor model used in the simulations to
mimic its behavior as described above. The detection probability for target objects is
set to 1, meaning that all target objects are detected. However, the probability that a
detected target object is correctly classified is set to 0.7. Additionally, we assume the
sensor does not generate false detections of target objects. Therefore, the uncertainties
in the simulated sensor output arise exclusively from the classification process.

The implementation is based on the premise that a real sensor’s ability to classify
target objects primarily depends on the distance between the sensor and the potential
target object. The sensor operates most reliably when it is focused on objects directly
beneath the agent to which it is mounted. Consequently, the sensor’s capability to de-
termine whether an area is free of target objects is expected to decline as the distance
from the sensor increases. In the implementation, the default values of m,tcy @W=T)=
0.7 and mj, (¥ = F) = 0.3 are applied. These values correspond to the maximum ex-
pected levels of m%,, (9 = T) and m%, (9 = F) in real-world scenarios. During the sim-
ulation, these default values generate realistic outputs for mi, (¥ =T) and
m,tcy(ﬁ = F) as the simulated sensor moves across the 2D map. One-dimensional
Gaussian functions are used to model how these values decrease with increasing dis-
tance from the sensor.

When the sensor model is utilized in a simulation, two matrices, with basic beliefs
mi, (9 =T) and mi, (9 = F), are generated for all grid cells c, within the sensor
radius using two Gaussian functions. The first Gaussian function, which produces
higher values, is multiplied by a factor to set its maximum value equal to
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m,‘f;f ault(ﬂ = T) = 0.7. This function generates m%,, (9 = T) for grid cells that contain

target objects, while for these cells, my,, (9 = F) is set to 0. The second Gaussian func-
tion is employed similarly to create mj,, (9 = F) for grid cells that do not contain target

objects. This function is scaled so that its maximum value equals mg;f au”(ﬁ =F)=
0.3. In these grid cells, m,tcy (9 =T) is set to 0. In other words, in the simulation, our
sensor does not draw a stochastic categorical observation; instead, it produces a
deterministic soft output interpreted as the expected correctness of a positive detection
for each cell within the radius. We encode this soft observation as a score in [0, 1] and,
for brevity, we write it using the same m%, (¢) symbols as our map-based evidence.
Thus, when m%,, (9 = T) appears below in the context of the sensor, it should be read
as a soft observation score produced by the sensor model, not as a posterior belief about
the state.

To enhance the sensor model’s realism, we introduce an assumed standard deviation,
referred to as 0psition, Which represents the error in the sensor’s position estimate for
identified target objects. Considering the anticipated positioning uncertainty of a sen-
sor, the values for m%, (9 = T) and mj, (9 = F) in grid cells located within a distance
less than the sensor’s radius T(O'position) are adjusted: m,tcy (9 =T) is determined by
the distance to the estimated target position. A Gaussian function, with an appropriate
standard deviation, is applied for this calculation; mf, (9 = F) is set equal to 0.

The Gaussian sensor model is utilized in the generative Dempster-Shafer model to
quantify the observation basic belief m%, () and in the generative Bayesian process as
its likelihood ps,, (¢[9).

7 Controlling an Intelligent Agent

7.1 The Generative Model

This work presents the common operational picture using an evidence map, denoted as
G. This evidence map is structured as a grid composed of multiple cells. Each cell cor-
responds to a specific segment of the geographical area being monitored, as a grid is
overlaid on the map of that area. Thus, each cell represents a distinct portion of the
surveillance zone.

Each cell c,,, in the evidence map is associated with two basic beliefs: m}, (9 = T)
and m%,, (9 = F). Here, my, (¢ = T) indicates the basic belief that the cell at time ¢
contains at least one object of interest, while m%, (¥ = F) represents the basic belief
that the cell is empty. The following conditions apply to the basic beliefs:
mby, (9 =T),miy (¥ =F) 20, and mi, (¥ =T) + my, (¥ = F) < 1 for all cells cy,
at all times t. The basic belief for cell c,, at time t is represented by the pair
(mfcy(ﬂ =T),myy (¥ =F )), with uncertainty defined as 1—-mi, (¥ =T)—
mi, (9 = F).

In Fig. 1, the green area represents my, (9 =T), the red area represents
mi, (9 = F), and the white area indicates the uncertainty.
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miy (9 = T) méy (9 = F)

Fig 1. Tllustration of evidence and uncertainty in cell ¢y,,. Green indicates mf(y ® =T1), red in-
dicates m%,, (9 = F), and white shows residual uncertainty 1 —m%, (9 = T) —m&, (9 = F);
this per-cell Dempster—Shafer pair forms the basis of the evidence map G.

The uncertainty 1 —m%, (¥ = T) — my, (¥ = F) can be considered a genuine uncer-
tainty in cell ¢y, that the agent should strive to minimize across all cells ¢, and at all
times to maintain a current common operational picture.

Instead of assigning a single piece of evidence for a positive detection to one specific
set of grid cells within the assumed detection radius of the sensors, we opt to assign
evidence to each grid cell individually within that radius. This approach offers a more
detailed representation, as each grid cell c,, receives its value, while significantly re-
ducing the computational complexity involved in updating these values with new sen-
Sor measurements.

Our experiment utilizes a Gaussian distribution with a standard deviation equal to
the sensor radius, ensuring that the center cell is assigned the highest value. This method
results in a series of distinct basic belief distributions — one for each grid cell. The
outcome provides a satisfactory resolution and a relevant spread in the evidence-based
common operational picture. The diffusion model outlined in equations (12) and (13)
achieves a dynamic evidence-based common operational picture.

Given that the observed environment is assumed to be dynamic, the value of older
information diminishes over time. In the evidence map, this decreasing certainty about
the locations of already detected objects is represented by the spread of basic belief to
adjacent cells.

Regardless of whether the agent observed the state of cell ¢y, between times ¢ and
t + 1, the basic beliefs m}, (9 = T) and m},,( = F) in the cell are updated according
to equations (12) and (13). This is separate from fusion with new observations, which
is managed in equations (14) and (15). The update for the basic belief is given by:

my, (9 =T)\ 1J%w=”
N+1

m;;l(ﬂ=T)=1—(1— T
(12)

(i)) € {neighbors of cxy}

where N is the number of neighbors of the cell cy,,. This means that the basic belief
mi, (9 =T) of cell ¢, is shared among its neighbors and itself (i.e., among nine grid
cells in the case of a square grid) and then combined using Dempster’s rule. This causes
a diffusion of basic belief mfj (9 = T)over an increasingly larger area over time (in a
manner similar to an explosion).
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Suppose My, (9 = T) > 0 in cell cy,,, some of the basic belief m%,, (9 = T) will be
propagated to its N neighbors. Conversely, if mfj (¥ = T) > 0 in adjacent cells, some
basic belief is propagated into cell cy,,.

Furthermore, we have

1 1
mio = F) = mt, W9 = F) ﬂ mt, T = F) (13)

(i)) € {neighbors of cxy}

where m,tg,l (¥ = F) indicates that cell c,,, is empty at time t + 1. This suggests that if
cell ¢y, will be empty at the next time step (i.e., mi3' (9 = F)), then both its neighbor-
ing cells and the cell itself must currently be empty, meaning m%, (¥ = F). Equation
(13) contracts basic belief mfcy (9 = F) inward (in a manner similar to an implosion).

A sensor on an agent gathers information about one or more cells in the evidence
map. This gathering is influenced by the sensor’s detection radius and the agent’s flight
altitude. As the flight altitude rises, the likelihood of detecting interesting objects on
the ground decreases. In our simulations, we keep a constant flight altitude since we
only model the problem in 2D.

A positive observation occurs when the sensor detects an object of interest in a spe-
cific cell ¢y, at time t, represented as (mfg}l (9 =T),0), where mi3 (¢ = T) indicates
the basic belief that the positive detection is correct. Conversely, a “negative” observa-
tion, where the sensor does not detect any object of interest in cell ¢y, at time t, is

represented as (0, m3t(p =F )). Here, mi3* (¢ = F) represents the basic belief con-
firming that the negative result is accurate.

Both mi}' (¢ = T) and mi3,' (¢ = F) fall within the range of [0,1]. Sensor meas-
urements continuously update the evidence map according to equations (14) and (15)
below.

If we obtain a positive observation (m}! (¢ = T),0), it is combined with the exist-
ing basic belief pair mi}' (¥ = T) and mi}' (9 = F), which are derived using equa-
tions (13) and (14) with Dempster’s rule [3].

We have

mag@=T) =

mii @ =T)+mii e =T)- (1-mi @ =T)—m' @ = F)) »
) = mp = D) mEio = F) a

and

(1-m&ip =) mii® =F)
T-m3ip =T) - mzi @ =F)

mg W =F) = (15)

It is assumed that equations (14) and (15) are always applied after equations (12) and
(13), and at the same time, t. The basic beliefs mi}' (¥ = T) and mi3* (9 = F) on the

right-hand side represent the results from the diffusion update at time step t + 1. In
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contrast, the values mfc;l*(ﬂ =T) and m,tc;',l* (9 = F) on the left-hand side, indicated
with an asterisk (*), are the combined results from the two updates at the same time
stept + 1.

If a new “negative” observation is received in grid cell ¢, then (0, m3t(p =F ))
is combined with mi3' (¥ = T) and m{3' (9 = F) using Dempster’s rule.
We have

miio =T) - (1-mi(p = F))

t+1x* 9=T)= 16
M O =D S e e =) mi o = ) (o)
and
mar@W=F) =
mii® = F) +mii(p = F)- (1-m' @0 = T) - m' @ = F)) an

1-mEi0 = 1) miii(p = F)

A combined result of the two distributions mi3* (¥ = T) and mi3'* (9 = F) for 9 =
T is shown in Fig. 2. Here, the fused result in the figure shows the remaining basic
belief from positive observations after taking into account “negative” observations.

7.2 The Generative Process

In the generative process, we employ a Bayesian approach. When we receive a current
observation, our goal is to calculate the updated posterior distribution pi3*(9]¢). We
must determine this probability distribution across all grid cells, cy,, to achieve this.
This requires a sensor model in the form of a likelihood distribution pf3*(¢[9) and an
observation model p5$* (), as well as an a priori distribution pz* (9).

We begin with the a priori distribution. It is important to note that the a priori distri-
bution at each time step equals the posterior distribution from the previous time point.

We have

Pry' (9) = pry (1. (18)
Initially, we have set

# assumed targets in the current area

pY(®) =& = (19

# grid cells in the current area

Using a likelihood distribution and our sensor model, we assign probabilities to each
grid cell ¢y, within the sensor’s radius based on two Gaussian distributions.

To calculate the probability of an observation, denoted as pfcy (¢), we can express it
as follows:

Poy (@) =piy (019 =T) iyt (¥ =T) + pi3 ' (@ld = F) - pij* (¥ = F), (20)
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Y (m)

50 100 150 200 250 300 350 400 450 500 550
X (m)

0.6

Basic belief
o
S

o
)

0.0

300
200

100
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Fig. 2. Fused results, mfc;l*(ﬁ = T) derived from the generative model in a simulation scenario
at 50 seconds (2D on top and 3D below). Values reflect diffusion, equations (12)—(13), followed
by Dempster—Shafer fusion, equations (14)—(17); higher values indicate a stronger basic belief
that a cell contains > 1 target (axes in meters; black “+” marks show target locations).

t+1

where pgy* (¥ = T) is the a priori probability derived earlier in (18) and
Py (@ =F)=1-py'@ =T). 2D

Additionally, the likelihood distribution p%, (¢[9 = T) is calculated using a Gaussian

distribution, similarly to the method described in Section 6.2, starting from

misS 9 =1).
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Since the sensor returns a deterministic score, we define the likelihood directly from
it. Hence, the identification in (22) is just shorthand rather than an inference about the
state,

pot(@ld =T) 2mZ @O =T),
Pt (@9 =F) =1—-pit(eld =1). (22)

Using the three probability distributions (a priori px;l(ﬁ) likelihood pt+1(<p|19), and
observation px;l((p)) we can calculate the desired posterior distribution using Bayes

theorem.
We have

Pry (@l9)
t+1( )

Fig. 3 displays the posterior distribution concurrently with Fig. 2.

Py @) = Pay (©). (23)

7.3  The Free Energy

The basic belief distribution mt“*(ﬂ T) represents the distribution from the gener-

ative model that we aim to compare with the posterior distribution derived from the
current observation py$* (9]¢). Notably, mi}*(9 = T) encompasses values over all
subsets of the sample space 0, including © itself (where |2°| = 3), while p%, (9]¢p) is
limited to values associated with the elements of @ (where |®| = 2). Therefore, we
must convert the basic belief distribution into a probability distribution to facilitate a
comparison between these two distributions. This conversion is achieved through a
pignistic transformation [32], defined as follows:

m(X
BetP(w) = Q (24)
X1
wWEX
where w € ©® and X € 0.
We have
Pt @=T)=5 [1 +mGt @ =T)-mZG"® = F)] (25)
and
1
Pt @ =F) =c[1+mgZh @ = F) -m3h @ = 1) (26)
where p“l*(ﬁ) represents a pignistic probability derived from the pignistic transfor-

mation of the basic belief distribution mf3'* ().
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50 100 150 200 250 300 350 400 450 500 550
X (m)

Probability

200

100
Fig. 3. The posterior distribution pfc;l(ﬂ |@), calculated after the most recent observation, using

Bayes rule, equation (23), with the prior, equations (18)—(21), and Gaussian sensor likelihood,
equation (22), at the same timestep as Fig. 2, for comparison with the fused belief shown there.

We can now calculate the free energy of each grid cell c,,, within the sensor radius by
measuring the divergence between pif*(9) and pi3* (9]¢), along with the degree of
surprise represented by piy (¢).

Fig. 4 illustrates the divergence between the pignistic probability distribution

piy " (9) from the generative model and the posterior distribution py3* (9]¢) from the

generative process.
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50 100 150 200 250 300 350 400 450 500
X (m)

Divergence

100 200

550

Fig. 4. The divergence between the model and the actual observation. Cell-wise Dy, [pfc;l*(ﬁ =
B p,i}',l(ﬁl(p)], which is the first term of equation (27) within the sensor footprint (» = 100

meters), illustrating where the model’s belief and the posterior disagree.

Fig. 5 displays the degree of surprise, indicated as —ln[p,ﬂ;l(q))].
We have

oy = D [pi5 (0 = T) Il pi5* @le)] = In[ps3* (0)]

§+1* 19
S (©) - In (m_())l — In[p&'(9)),

pw' (Ole)

9€e{T,F}

where Dy, is the Kullback-Leibler divergence [33].

(27)
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g 200
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50

50 100 150 200 250 300 350 400 450 500 550
X (m)

Surprisal

200

100
Fig. 5. The level of surprise. Surprisal —In [pff}l((p)], which represents the second term of equa-

tion (27), is shown inside the sensor footprint. Outside the footprint, p(¢@) = 0, so surprisal di-
verges and is omitted.

The free energy Fy, is calculated for all grid cells within the sensor radius and mini-
mized across all grid cells. Finally, the variational free energy is presented in Fig. 6.
The agent’s position is updated with steps smaller than the sensor radius. Thus, using

active inference, we gradually move the agent’s position toward the grid cell, which
minimizes F,.
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Fig. 6. Free energy, denoted as Fyy,

the green “X” marks argmin F, which the agent uses to set the next waypoint.

for all grid cells ¢y, . Fyy is calculated using equation (27);

8 Implementation and Results for an Intelligent Agent

Implementing agent control using the free energy principle and active inference in-
volves calculations, as outlined in Section 7. However, several essential implementa-
tion details and design choices must be considered.

The generative model and process are evaluated at each simulation time step. Im-
portantly, the free energy is calculated only for positions within the sensor radius; for
this simulation, we use a sensor radius of 100 meters. This limitation is not merely a
design choice but a fundamental aspect of the model. According to equation (27), free
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energy is defined as the sum of the Kullback-Leibler divergence between two probabil-
ities, Dy, [pS51* (9 =T) Il p55*(9l)], and the surprise, which is calculated as
—In[pL}t(@)]. Here, p 1 () represents the probability of the observation. Outside the
sensor radius, pt31(¢) equals zero, causing —In[ptH!(¢)] to approach infinity. This
observation highlights the notion that surprise becomes infinite when faced with im-
possibilities.

The computational complexity per step of our planner is

O(NZjents + Npoidg + Ay + s?), (28)

where Nggents is the number of agents in the swarm, A4, is the number of grid cells,
Np,; is the number of points of interest (POI), and s, is the sensing radius expressed in
grid cells. In practice, for a 580 X 380 grid with ten agents, six POI, and a sensing
radius of 100 cells (i.e., 100 meters), each simulation step took on average 0.12 sec-
onds, which amounts to 36 seconds for a 300-step rollout (one minute wall-clock time
at five simulation ticks per second, i.e., faster than real time) on a standard laptop
(MATLAB; Intel i7; 32 GB RAM).

Another design choice focuses on how to select the new waypoint. Once the position
with the lowest free energy has been identified, we calculate a vector from the agent’s
current position to the minimum free energy position. The agent then takes an incre-
mental step toward that position. The next waypoint is placed at a fixed distance along
this vector, which in our simulation is set to half the sensor radius (i.e., a step length of
50 meters). This approach ensures a consistent distance between successive waypoints.

This section provides a qualitative analysis of the method’s behavior based on sim-
ulation observations. The findings indicate that the technique demonstrates favorable
behavior. After navigating the pre-programmed waypoints (the first three targets), the
agent continues to search the area in a balanced manner that integrates exploration and
exploitation.

An agent’s trajectory (shown as a red line) over a 500-second scenario (Fig. 7) illus-
trates a dynamic balance between tracking various target goals (indicated by black “+”
symbols) and exploring new areas. Black trajectories represent three moving targets,
while four targets are stationary. The green “x” indicates the minimum free energy at
the current time.

A qualitative analysis of the images using a stochastic model, along with probabil-
istic observations and their divergences, provides insights into the level of surprise ex-
perienced by the agent. This understanding and the concept of free energy help clarify
the reasons and timing behind the agent’s decision to scout or pursue a target. When
examining the sequence of images throughout a scenario, a behavior that is intuitively
and analytically coherent emerges.
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Fig. 7. The agent’s path entails both reconnaissance and target tracking. The trajectory, way-
points, and position of minimum free energy are illustrated. The agents, represented by red
crosses, select a new waypoint along a vector that points towards the minimum free energy point,
indicated by the green cross. The black crosses depict the exact locations of the targets from a
global perspective; these locations remain unknown to the agents except through sensor obser-
vations. The black “+” at the end of black trajectories indicates the final position of a target as it

exits the map and the simulation.

9 Conclusions

A simulation of an intelligent agent demonstrates its ability to autonomously decide
when to engage in scouting activities and when to track specific targets. This decision-
making process entirely depends on the data acquired through the agent’s sensors. As
the agent operates, it navigates from its current location towards the designated grid
cell that minimizes free energy. Free energy quantifies the degree of alignment between
the agent’s perception of reality and its current observations. The agent’s minimizing
free energy enhances its comprehension and adaptability to the external environment.
Additionally, the planner operates efficiently: in our prototype, each step takes approx-
imately 0.12 seconds on average, resulting in 36 seconds for a 300-step rollout using
standard hardware, which demonstrates its potential for near real-time operation. A
qualitative analysis of the agent’s behavior during the simulation reveals promising re-
sults. The agent’s ability to balance exploration and exploitation indicates significant
operational autonomy and efficiency. A quantitative analysis of the active inference
approach to the persistent monitoring problem has not yet been performed. To achieve
this, some mission goals need to be formulated, and appropriate metrics for measuring
goal fulfillment must be defined. Examples of performance metrics for a combined
tracking and area coverage scenario, similar to the scenario discussed in this paper, can
be found, for instance, in [8]. The performance of the implemented active inference-
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based control should be compared to that of a simple baseline control or, ideally, with
several other control algorithms from the literature, and for some different scenarios.

Disclosure of Interests. The authors have no competing interests to declare relevant to this arti-
cle’s content.
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