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Abstract—Plan recognition addresses the problem of inferring
an agent’s goals from its actions. Applications range from
anticipating caretakers’ needs to predicting volatile situations.
In this contribution, we describe a prototype plan recognition
system that is based on the well-researched theory of (weighted)
finite tree automata. To illustrate the system’s capabilities, we
use data gathered from matches in the real-time strategy game
StarCraft II. Finally, we discuss how more advanced plan opera-
tors can be accommodated for in this framework while retaining
computational efficiency by taking after the field of formal model
checking and over-approximating the target language.

I. INTRODUCTION

The field of plan recognition is devoted to algorithms for
inferring an agent’s goals, starting from observations of the
agent’s actions, or the effects of those actions [1], [2]. The
agent can (for instance) be a caretaker at a nursing home, an
opponent in a game of chess, or an enemy in an armed conflict.
The aim is not only to determine what situation the agent is
working towards, but also by what means he or she means to
bring it about, leading to the related question of what can be
done to help or hinder its efforts.

Plan recognition systems typically build on the notion of a
plan library, a collection of known plans that can be effectuated
by the agent. These plans have as a rule a hierarchical
structure, with the agent’s long-term goals at the highest level
and intermediate goals at lower levels. Furthest down in the
hierarchy we find concrete actions and observable effects,
which may come from a variety of different sources such as
sensors, cameras, text, reports or news media.

When the system is executed, a plan recognizer is used
to match observations to specific plan steps in the library
and eventually also to top-level plans. Plan recognition is
therefore a suitable technique for fusing information from
several different information sources. However, the formalisms
used to specify plans can only be moderately complex, because
they must admit efficient parsing to be of any practical value.
Plan recognition is thus of greatest use for closed world
situations where the agent’s number of choices is limited and
can, at least to some degree, be anticipated.

In previous work [3], we modeled the unobstructed keyhole
plan recognition problem within the framework of weighted
unranked tree automata (WUTA). In this framework, a node
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in a plan tree is allowed to have an unbounded number of
children. By using weighted devices, the plans in the library
were prioritized by an impact factor, or by the likelihood of
activation with respect to a given sequence of observations.
A downside of weighted devices is however that they require
prior knowledge, or at the very least informed guesses about
the likelihood and impact of a certain event.

In this paper, we describe a prototype of the system in [3]
and demonstrate its capabilities using events in the real-
time strategy game StarCraft II for illustration. Our second
contribution is a discussion of how the complexity introduced
by more expressive plan operators can be manged by allowing
the system to over-approximate the language of potentially
threatening patterns. In particular, we consider what we call
concurrent and restricted logical ’or’. Concurrent ’or’ lets us
express several events which happen simultaneously (or within
the same time frame). Restricted ’or’ capture situations in
which a certain number of events must be present to realize a
plan or subplan. To make the presentation accessible to a larger
community, we again restrict ourselves to unweighted devices,
but the argumentation can be lifted to weighted automata in a
straightforward fashion.

The choice to represent plans as trees and sets of realisations
of plans by tree automata stems from the inherent hierarchical
structure in plans. Tree automata were originally motivated
by applications in computational linguistics, but have since
been re-purposed for tasks in natural language processing,
formal verification, and model checking. Their theory is now
well-studied [4], [5], [6], [7], [8], [9], [10], [11], and in part
implemented in toolkits such as Treebag [12] and Tiburon [13].

II. PRELIMINARIES

Automata that deal with tree structures are called finite
tree automata. The theory of finite tree automata arises as an
extension of the theory of finite (string) automata [14]. Even
though the two devices are used in different settings, they are
closely related because finite automata can be seen as a special
case of finite tree automata.

Tree automata can be classified as bottom-up or top-down,
depending on the order in which they traverse their input trees.
A top-down tree automaton starts its computation at the root of
the tree and then processes in parallel the paths spreading from
the root of the tree, level by level. A bottom-up tree automaton,
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moves in the reverse order and starts its computation at the
leaves of the input tree, and then works its way up towards the
root. In this work we will consider bottom-up tree automata,
because they better reflect the deduction from sequences of
observations to long-term goals.

A ranked alphabet Σ is a finite set of symbols together
with a function # : Σ → N where N is the set of all natural
numbers. For f ∈ Σ, the value #(f) is called the rank of f .
For any n ≥ 0, we denote by Σn the set of all symbols of
rank n from Σ.

Definition II.1 (Tree). A tree t over an alphabet Σ is a partial
mapping t : N∗ → Σ that satisfies the following conditions:

• dom(t) is a finite, prefix-closed subset of N∗, and
• for each p ∈ dom(t), if #(t(p)) = n > 0, then

{i | pi ∈ dom(t)} = {1, . . . , n}} .

Each sequence p ∈ dom(t) is called a node of t. For a node p,
we define the ith child of p to be the node pi, and we define the
ith subtree of p to be the tree t′ such that t′(p′) = t(pip′) for
all p′ ∈ dom(t′). The root of t is the unique node ε ∈ dom(t).
A leaf of t is a node p which does not have any children, i.e.
there is no i ∈ N with pi ∈ dom(t).

We denote by T (Σ) the set of all trees over the alphabet Σ,
and write a tree t as f [t1, . . . , tk], where f = t(ε), k = #(f),
and ti is the ith subtree of ε in t. If k = 0, then we simplify
this expression as f .

Definition II.2 (Tree Automata). A finite bottom-up tree
automaton (TA) is a quadruple A = (Q,Σ,∆, F ) where

• Q is a finite set of states,
• Σ is a ranked input alphabet,
• ∆ is a finite set of transition rules, and
• F ⊆ Q is a set of accepting (final) states.

Each transition rule is a triple of the form ((q1, . . . , qn), f, q)
where q1, . . . , qn, q ∈ Q, f ∈ Σ, and #(f) = n. We use
(q1, . . . , qn)

f−→ q to denote that ((q1, . . . , qn), f, q) ∈ ∆.
In the special case where n = 0, we speak about the so-

called leaf rules, which we abbreviate as
f−→ q.

If a tree automaton can choose more than one transition
rule for an input symbol, it is called a non-deterministic finite
tree automaton (NFTA). Otherwise it is called a deterministic
finite tree automaton (DFTA).

Definition II.3 (Tree Automata Semantics). A run of a FTA
A = (Q,Σ,∆, F ) on a tree t ∈ TΣ is a mapping r :
dom(t) → Q such that if v ∈ dom(t), and t(v) = f ∈ Σk,
then

(r(v1), . . . , r(vk))
f−→ r(v) ∈ ∆ ,

where f = t(v). The run is accepting if r(ε) ∈ F . A tree t
is accepted by A if there is an accepting run of A on t. The
language accepted by A is the set of all trees that it recognises.

III. THREAT MODELS AND PLANS

Threat models are used to model and foresee possible
threats. A common way to represent a threat is to use an
hierarchical intelligence model where the root node represents
the actual threat and the leaves are indicators. If several
indicators are present, then there is a risk that the modeled
threat is about to happen. There is an array of intelligence
models with different properties that can be used to represent
and reason about various kinds of threats.

In our setting, plan recognition is very similar to threat
recognition and plans to threat models. The difference is that
a plan contains information about dependencies. A plan may
for example contain information about in what order actions
need to be performed to complete the plan. Another aspect of
plan recognition is that one of the objectives is to recognize
the actual plan being executed, not just the goal of the plan.

A. Plans and Operators

A plan is a tree where the leaves are labeled with indicators
and the internal nodes are labeled with plan operator symbols.
The plan operator symbols (or simply plan operators) provide
the ability to model dependencies among nodes in the plan
tree. In a plan tree, the internal nodes represent intermediate
goals (or equivalently; subplans) and the indicators correspond
to (abstract classes of) observable activities. We say that the
subplan represented by the node t is completed if either:
• the indicator representing t is present, or
• t’s children are completed according to the plan operator

that labels t.
Similarly, we say that a plan is realized if its top-most node
is completed.

In this framework we use a set of plan operators

Θ = {∃,∃n,∀,∀,≈} ,

the constituents of which are defined as follows:

Definition III.1 (OR). If a plan t is of the form ∃[t1, . . . , tn],
then t is realized if at least one of the subplans t1, . . . , tn is
realized.

Definition III.2 (RESTRICTED OR). If a plan t is of the form
∃m[t1, . . . , tn], then t is realized if at least m of the subplans
t1, . . . , tn is realized.

Definition III.3 (UNORDERED AND). If t = ∀[t1, . . . , tn],
then t is realized if each of the subplans t1, . . . , tn are realized,
in any order.

Definition III.4 (ORDERED AND). If t = ∀[t1, . . . , tn], then
t is realized if each of the subplans t1, . . . , tn are realized, in
that particular order.

Definition III.5 (CONCURRENT). If t =≈ [t1, . . . , tn], then
t is realized if all of t1, . . . , tn are realized, within the same
time frame.

Using the set of plan operator symbols as described above,
the definition of a plan tree reads accordingly:
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Figure 1: An example of a plan tree.

Definition III.6 (Plan tree). Let Θ = {∃,∃n,∀,∀,≈} be the
set of plan operator symbols and Λ a set of indicators. A tree
t ∈ TΘ∪Λ is a plan (over Θ and Λ) if p is an internal node
then t(p) ∈ Θ, but otherwise t(p) ∈ Λ.

Figure 1 shows an example of a plan tree containing the
different operators. For the plan that it represents to be realised,
we first have to make the observations I1 and I2 within the
same time frame, thereafter we must make the observation I3,
and finally at least one of the observations I4 and I5.

The operators allows a plan t to be realized in several
different ways, and to reason about them we need to think
about how information about the observations that are made
is propagated upwards through the tree. This will then allow
us to identify a particular realisation of t with a selection of
subplans (i.e., nodes of the plan tree).

Definition III.7 (Completed set). Let t be a plan tree and I
be a subset of the leaves of t. We denote by completedI(t)
the subset of dom(t) that is completed (as described in
Definitions III.1 through III.5) when the set of observations
{t(i) | i ∈ I} are made and the information is propagated
upward through the tree. If the root of t is in completedI ,
then we say that the completion of the nodes in I leads to the
realisation completedI of t.

It is sometimes informative to view a realisation S of a plan
tree t as the tree obtained by (i) first re-labelling every node t
in t with the label p̂, and (ii) then deleting every node in t that
is not in S. What remains is tree representation of a particular
way of realising the plan t.

Figure 2 shows the realisation completeI(t) of the plan tree
t in Figure 1 that is happens when we make the observations in
I = {I1, I2, I3, I4}. In practice, one would rather use unique
but informative names for the subplans than the integer strings
that index them in the plan tree.

IV. TREE AUTOMATA AND PLAN RECOGNITION

Given a set of plan trees, there is a tree automaton that
accepts precisely the set of all possible realisations of the plans

that they encode. However, the translation of the operators UN-
ORDERED AND and CONCURRENT would with n arguments
would be mapped into 2n transitions, so a naive translation
between the two formalisms is not practical. Instead, we shall
adopt the technique of over-approximating the target language
from the field of model-checking.

The idea is thus to generate a relatively small tree automaton
that recognises a superset of the target plans. This will lead
to false positives when the automaton is used to filter large
datasets in the search for evidence of potential threats, but a
number of unwarranted alerts may be acceptable if we can
catch all cases that we are interested in, without sacrificing
efficiency. If the number of false positives become too large,
then one solution is to use a cascade of increasingly more
restrictive automata. This means that most input sequence will
be disregarded immediately, and the invocations of the larger
and more precise automata can be postponed until they are
actually needed.

Let us now turn to the actual construction, and assume that
we have a plan tree of the form t = X[t1, . . . , tn], where X is
a plan operator symbol from the set Θ. We shall use the nodes
of t both as alphabets and as states in our automaton, so as
to recognise the tree representations of different realisations
of t. To distinguish these separate uses, we write p̂ if p ∈
dom(t) is to be seen as an alphabet symbol, and reserve the
plain use of p for when we are viewing it as a state. We also
allow the automaton to change states without reading an input
symbol, and label the transitions it which this happens with
the auxiliary symbol λ. The encoding of a plan tree t into a
tree automaton, is the union of the encoding of each of its
subplans. The translation of the subplan X[t1, . . . , tn], rooted
at the vertex p ∈ dom(t), depends in turn on the plan operator
X as follows:

ε

1

11 12

2

21

3

31

Figure 2: A realisation of the plan tree in Figure 1.
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Figure 3: The user works with a modeling tool to create and edit plans. The plans are stored in a plan library and compiled
upon demand into a wuta. The wuta can the be used to parse observations streams and produce a list of the k plans that are
most likely to be active in a given moment.

A. OR

If X = ∃, then the subplan is represented as a sequence of
transition rules

(p1)
p̂−→ p, (p2)

p̂−→ p, . . . , (pn)
p̂−→ p .

The set thus contains n transition rules, each with a left-hand
side of length 1.

B. RESTRICTIVE-OR

The operator RESTRICTIVE-OR generalises the operator
OR, in that we obtain the latter operator when m = 1.
However, whereas an operator OR with n arguments only
results in n transitions in the output automaton, the operator
RESTRICTIVE-OR requires

(
n
m

)
transitions. For this reason,

we now introduce the first construction that leads to an over-
approximation.

If X = ∃m, then the subplan is represented as a sequence
of transition rules

(p1)
λ−→ q, (p2)

λ−→ q, . . . , (pn)
λ−→ q ,

where q is an auxiliary state not in dom(t). To enforce the
constraint that at least m of subplans must be realized, we
also add the transition rule

(q, q, ..., q)︸ ︷︷ ︸
m

p̂−→ p

to the automaton.

C. UNORDERED-AND

The encoding of the AND operator also leads to an over-
approximation: If X = ∃m, then the subplan is represented as
a sequence of transition rules It consists of the set of transition
rules of length one:

(p1)
λ−→ q, (p2)

λ−→ q, ..., (pn)
λ−→ q

To obtain the constraint that at all n of the transition rules
needs to be completed, we need to add an extra transition rule
to the tree automaton. On the left hand side we add a rule of
length n that contains n number of qs

(q, q, ..., q)︸ ︷︷ ︸
n

p̂−→ p

1) ORDERED-AND: If X = ∀, then we need only the
single transition

(p1, . . . , pn)
p̂−→ p

2) CONCURRENT: If X = ≈, then we add the transitions
rules

(p1)
λ−→ qt, (p2)

λ−→ qt, ..., (pn)
λ−→ qt

where qt is an auxiliary state depending on the time frame t.
To capture the fact that all subplans are executed within the

same time frame, an abstract transition of the form

(qx, qx, ..., qx)︸ ︷︷ ︸
n

p̂−→ p

is added to the tree automaton. This transition fires whenever
there are n states qt where t is one-and-the-same time frame
to activate it.
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Figure 4: The proof of concept software, displaying a plan tree, warning notifications and an observation log.

The loss of precision that follows from these approximations
is as substantial as the computational efficiency gained by
them, so whether or not they are appropriate must be decided
by the analyst who operates the system. It remains an inter-
esting open question whether there is a satisfactory middle
ground between expressiveness and ease of computation.

V. IMPLEMENTATION AND DEMONSTRATION

In [3], we sketched an implementation of this framework
which has now been realised as a software prototype [15].
Let us recall the overall outline of this system, which is
shown in Figure 3. The core components of the system are an
XML-based plan editor, a plan library, a chart parser, and an
information engine. In the prototype, the information engine
is not fully realised. Instead, information is ingested from a
time-stamped text file provided by the user.

The idea is that plans are created and edited by a human
analyst using the plan editor, and stored in the plan library,
which is typically a relational database. To perform threat
detection, the plan library is compiled into a tree automaton,
against which a stream of time-stamped observations are
parsed by the chart parser by means of an adapted version of
the Cocke-Younger-Kasami algorithm. For efficiency reasons,
the system maintains a table of partial parses that can be reused
throughout the computation [16].

The plan editor is a simple, graphical tool that visualizes
plans as trees and provides easy, intuitive ways to modify
both their structure and their properties. A host of vertex-
related commands are readily available by right-clicking on
a vertex, for example labelling them, changing plan operator,
disconnecting them from the tree and so forth. The editor lets
the user scale and move the tree using the mouse, so even
complex trees can be examined easily.

Apart from the main workbench, the plan editor has two
additional widgets – an observation log and a notification area.
In the observation log, the incoming observations are tracked
in order to provide an overview of incoming data. Whenever
a new observation arrives, it is appended to the input string
which is again parsed as described in [3]. If the new string

of observations parses correctly, a warning is displayed in the
notification area, as is evident from Figure 4.

To demonstrate how the system functions, we perform a
number of test runs on data from the real-time computer
strategy game StarCraft II. in this context, two agents compete
using game mechanics similar to the rock-paper-scissors hand
game. With players not having access to perfect information,
they must observe what actions their opponent takes and
discern what they are planning in order to win.

Figure 5a shows an in-game situation where a player is
sending a scouting unit (circled) to gather intelligence. The
software (Figure 5b) has been configured to recognize a single
specific threat, of which no relevant observations has been
made yet.

In Figure 6a, the scout has done several observations,
namely, the three units needed to produce the threat the
software is configured to recognize. The series of observations
now parses correctly as a possible threat, so the user is alerted
with a warning in the notification area of the software.

VI. FUTURE WORK

Future work should include a comparison of the descriptive
power of plan trees using the proposed plan operators, with
that of various kinds of temporal logics. We would also like
to investigate how to find the right level of approximation,
so as balance computational efficiency with precision, and
to further investigate how a single filtering automaton can
be converted into an equivalent cascade of simpler automata.
Finally, the work on our prototype should continue and reflect
the improvements made in the theoretical framework.
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(a) (b)

Figure 5: A scouting unit. No relevant observations have been made at this point, so warnings are yet to be emitted.

(a) (b)

Figure 6: Three more observations, now parsing correctly as a possible threat.
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