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ABSTRACT

Computer generated forces (CGFs) are autonomous or setairamous actors within military, simulation
based, training and decision support applications. The G&éften used to replace human role-players in
military exercises to, ultimately, improve training effiaty. The modeling and development of CGFs is a
complex, time-consuming and expensive endeavor whetamdiomain expertise and doctrinal knowledge
are interpreted and programmed into the CGF by hand. Furtiene, CGFs often represent human actors
and behaviors (pilots, soldiers, manned systems, etc.)nmékan even more challenging task.

In recent years the Atrtificial Intelligence (Al) researchnomunity achieved some remarkable results
where Intelligent Agents (IA) successfully defeated huchampions in games such as chess and Jeopardy.
Al researchers have demonstrated that Machine Learning) @tjorithms can be used to learn IA behaviors
from recorded observations such as log-files, GPS coorditrates and, more recently, pixels from images
and video.

The ability of the machine learning approach to learn the libeioral rules” of the CGFs, which we
from now on will refer to as Data-Driven Behavior Modeling@BM), has many potential advantages
compared to the traditional CGF modeling approach where "tehavioral rules” are manually hand-
crafted using subject matter experts and doctrines. UsiiBBI the modeling efficiency with respect to
cost and time may improve, in particular, when modeling demgEGFs designed to mimic human actors
and behaviors within complex environments. The DDBM apgroaay also improve behavior realism and
objectiveness resulting in better and more realistic tiajnand decision support tools.

In this work we introduce the concept of DDBM including itsimeomponents in the context of CGF
behavior modeling. We also provide preliminary results)qgfeximents where our DDBM-prototype is used
to generate behaviors using both observational and exptaileearning strategies.
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1 INTRODUCTION

Modern simulation platforms use Al-techniques such as\Wieh#&rees, hierarchical finite state machines,
rule-based systems, etc. to represent and embed behavieedlidefined structures/models that are exe-
cutable, maintainable, reusable and scalable [16]. Tleedmiques are employed to design and implement
behaviors for Computer Generated Forces (CGF) that are atwanced and realistic compared to CGFs
developed using traditional, ad-hoc, scripting technsqui#owever, creating and populating these structures
with content, which ultimately defines the "behavioral giland decision making skills of the CGF, remains
a painstaking, time-consuming and expensive endeavour.

In this work we introduce the concept of Data-Driven Behawtodeling (DDBM) where Machine
Learning (ML) techniques are applied to automatically gateethe "behavioral rules” of CGFs using ob-
servations and recorded data. The idea is to improve magefiitiency by transferring much of the manual
modeling work (i.e. the handcrafting of "behavioral rulextracted from doctrines or domain expertise) to
instead acquiring, editing and labelling datasets thabedied into and automatically processed by machine
learning algorithms. Besides improving modeling efficiettte DDBM-approach may also, potentially, be
used to enhance behavior realism by exploiting the abilitylb algorithms to automatically identify pat-
terns in large datasets.

In an attempt to empirically evaluate the DDBM-approach aeehdeveloped a prototype that imple-
ments and integrates the main components of DDBM to formtaiitive and easy-to-use behavior modeling
tool. In this work we will describe the prototype, includiitg main components, and provide experimental
results where toy-problems are used to demonstrate thetypets capability to imitate and optimize CGF
behaviors using observational- and experiential learstregegies respectively.

Although we are only using toy-problems in this work, thedderm goal of our research is to apply
the DDBM-prototype in real-world military applications farther investigate and gain insight into the
following research questions:

e Is the DDBM approach more efficient, with respect to cost amt compared to the traditional
modeling approach? That is, what can be gained by shiftiagrntdeling work from manually hand-
crafting behavioral rules to acquiring, creating, editiladpelling or pre-processing datasets?

e Can DDBM be used to create behaviors that are too complex tiehuging the traditional modeling
approach? Are ML algorithms able to identify rules, relai@r behavioral patterns in recorded data
or observations that could not be identified by hand?

e Can DDBM be used to create objective behavior models thahies the behavior of its real-world
counterpart? If so:

— Is it possible to analyze the imitated behavior using whatmulation to, for instance, identify
its weaknesses and strengths?

— Is it possible to use models of imitated behavior to improvéitamy training? That is, can
we analyze a trainee’s behavior more efficiently by autoradlyi identifying deviations using
models of imitated experts?

This paper is organized as follows. In Section 2, we presdated works. In Section 3, we introduce
DDBM and its main components. In Section 4, we describe tf@amentation of our DDBM-prototype.
In Section 5, we present experimental results using the DEBdotype. Finally, conclusions and future
works are presented in Section 6.
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2 RELATED WORKS

In recent years the Artificial Intelligence (Al) researchoounity has achieved remarkable results where
Intelligent Agents (IA) successfully defeated human champ in games such as chess [4] and Jeopardy
[6]. Al researchers have demonstrated that machine lgamligorithms [17] can be used to learn and
recognize behaviors from recorded observations such afilésg8, 22], GPS coordinate traces [12] and,
more recently, pixels from images and video [18].

The literature indicates the existence of diverse appmemth learning processes of behavior model-
ing. Several authors have investigatduservational learningn different domains, using a variety of tech-
niques [5, 9, 19, 10]. For instance, Johnson and Gonzale¥Q9present a prototype with the focus on
learning team behavior from observations. The approacans-autonomous and observations are manu-
ally processed to identify domain specific contexts repriasg different states of the observed behavior.
The use of contexts restrains the amount of the observaticaining data to those only relevant within
the context. In the robotic research a slightly differenprajach has been developed and used. In these
methods, a human intentionally demonstrates and teacheslot how to perform a given task (learning
by demonstration) [2, 3].

A quite different approach isxperiential learningn which the agent (with no human supervision or
involvement) explores the environment on its own and leagnattempting to optimize some performance
metrics defined by the modeler [22]. There is a substantidy lmd research using this approach, although
they do not explicitly use the term experiential learningg(esee [1, 14, 25]). Aihe and Gonzalez [1],
propose usindreinforcement learning (R compensate for situations where the domain expert has a
limited knowledge on the subject being modeled. Merrick Btather [14] present motivated reinforcement
learning agents to create non-player game agents thatrexipieir environment and learn new behaviors,
in response to interesting experiences. Teng et al. [25Jauself-organizing neural network that learns
incrementally through real-time interactions with the iemwvment and improves air combat maneuvering
strategies of CGFs.

Several authors have usedhgbrid approach combining observational learning and experiential learn
ing methods [3, 22]. The hybrid approach is similar to exgrial learning, with the main difference that
the agent, instead of random initial solutions, improvdstgms that are obtained by observational learn-
ing. In the work of Bentivegna and Atkeson [3] a robot playaighockey, first observes and learns the
behavior of an expert. Then a reinforcement learning psisegsed to improve the learned behavior. Stein
and Gonzalez [22] use a hybrid method, in which agents leantical skills by observation as well as by
experiments (in different domains). The authors suggesdtttie agents using the hybrid approach are both
human-like and perform better than the original human;nliear by observation makes the agents behave
human-like and during the experimental learning phasepénfrmance of the agent is optimized.

3 DATA-DRIVEN BEHAVIOR MODELING

In the following, we introduce the DDBM concept, its main qoonents and how they relate to each other
emphasizing the work-flow within the main learning stragsgiobservational, experiential and hybrid) iden-
tified in Section 2. Figure 1 provides an overview of DDBM wédhne left part illustrates the work-flow of
the three learning strategies and the right part illussréhavior model application. As mentioned above,
CGFs are typically represented in modular structures sadiehavior trees or finite state machines to en-
sure reuse, scalability, maintainability and executiopatdities. As a result, in Figure 1, tHeehavior
modelmay represent the entire CGF or, perhaps more commonly, avioeal sub-component or module
of the CGF. In the figure we assume that the simulator usedgllgarning and application has an interface
allowing the CGF to register its perceivethteover time and that actions can be injected or invoked by the
CGF to affect or alter the state of the simulation.
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3.1 Observational learning

In observational learning, the goal is to develop the balrawiodel of the CGF bgbservingthe behavior of
the agent whose behavior should be learned (so called aligijent). The data collected from the original
agent performing an activity, in a simulation or in the reairld, is used to train the CGF to act similarly
when attempting to perform the same activity under simitarditions [23].

The input, as illustrated in Figure 1, to the observatioeakting strategy is raw data recorded from
real-world exercises, simulations, etc. The dataset is finecessed by SMEs or modelers to identify and
label behaviors of interest. Next, the dataset is furthecgssed using feature extraction functions capable
of identifying key features in the data that, ultimatelyuees the complexity of the learning task. After
feature extraction the dataset is ready to be used as inpli¢ tearning component where ML algorithms
are employed to automatically generate the behavior model.

Learning by observation is essentially similar to supeditearning in the sense that it learns from the
observed data. However, there are some principal diffeebetween these two. In observational learning,
the input data are trace of human performance with diffelergth, and it is not clear where one example
starts and ends. Furthermore, the labels are implicit rattamn explicit. In traditional supervised learning
the input data are explicitly defined with features and IalfizB].

3.2 Experiential learning

In experiential learning, the main idea is that the CGF caml@and optimize its behavior using a trial-and-
error approach within the target simulator. The desirecbieh is defined by the modeler in an evaluation-,
fitness- or reward function which is used to measure CGF padnce over time. There are several well
known ML techniques that can be used to implement expesielgarning. Perhaps the most commonly
used techniques are genetic algorithms (GA), genetic progring (GP) [11] and reinforcement learning
(RL) [24].

Using GP, for instance, the CGF or behavior model is reptedeny a computer program that, during
learning, iteratively evolves and optimizes its behavieeraiime. Typically, GP is initialized with a ran-
domly generated population of CGFs. The entire populagahen allowed to execute in the simulator and
the fitness function evaluates each individual CGF sepgratethe next iteration, a new population or gen-
eration of CGFs is generated based on the "survival of thesfitprinciple. That is, CGFs with high fitness
values are more likely to be selected and included in the gemeration of CGFs. Diversity is introduced
in the population through the use of mutation and cross-ogerators. The mutation operator is capable of
modifying parameters or variables within the program dtmecof selected CGFs. The cross-over operator
is, by combining the program structures of two parent CG&gable of creating offspring with alternative
program structures. Mutation and cross-over operatorg@se the learning algorithm’s ability to find an
optimal behavior model as opposed to converging towards-aptimal behavior model. The iterative pro-
cess continuous until a CGF with the desired behavior has tmemd (as depicted by the fitness function)
or until a predetermined number of iterations has been atedu

3.3 Hybrid learning

The hybrid approach is similar to experiential learninghia sense that the method optimizes the solution to
improve performance using a trial-and-error approach. él@x the hybrid learning strategy does not use
randomly generated CGFs to represent its initial populatiostead the population of CGFs is generated
using existing datasets following the observational leaystrategy. In Figure 1 the hybrid learning strategy

is represented by a dashed arrow connecting the obserab#ind experiential learning strategies.
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4 |IMPLEMENTATION

Given the above conceptual description of DDBM we have imgleted a prototype that stitches all compo-
nents (e.g. data-acquisition and visualization, featdtigetion, learning strategies and simulation/applaati
together to form an intuitive and easy to use data-driveratien modeling tool that can be adapted for use
in a variety of applications and simulation tools. In thistien we briefly introduce the front-end applica-
tion or authoring tool that we have developed to supportiehanodeling using the DDBM approach. We
also discuss the feature extraction and learning compsn@piemented in the prototype.

4.1 Authoring tool

To the best of our knowledge, there is a lack of software ttaigeting the requirements of the DDBM
approach with respect to data-acquisition, visualizatind pre-processing. Researchers and modelers typ-
ically rely on a mix of general purpose and ad-hoc tools whedeling agents and CGFs using DDBM.
To address this problem, we have developed an authoring etmalior modeling tool that can be used to
visualize, import, edit, create and export datasets.

Figure 2 provides a screen-capture of the authoring toad. vigaw in the top-left lists all data associated
with the agents over time. Each agent is represented by anermertimestamps and each timestamp consists
of multiple data items that represents the agent’s state i&pect to position, heart-rate, role, etc. In the
sequence-view the modeler can tag or label sequences ofibelodserved in the dataset. A behavior
sequence is defined by a time-interval and by the agentsrperig the behavior. The map view is used
to visualize the dataset by superimposing agent data sugbsitions, movement traces on a geographical
map. The map view can also be used to create and edit thegmirsgtiof the agents in the dataset.

In addition to the core functionality described above, théharing tool can be used to pre-view datasets
processed by the feature extraction component (see SecgpnThis allows the modeler or SME to gain
more insight into the behavior and decision making of themed agent even prior to learning the behavior.

4.2 Feature extraction component

The feature extraction component we have implementedsnitbrk is capable of extracting spatial features
such as the agent’s position, velocity and orientatiortikedhe environment as well as agent relative fea-
tures such as the relative positioning between agents e#pect to for instance distance and orientation.
The feature extraction module can be extended to include mdvanced or domain specific feature extrac-
tion functions as well. For instance, in ongoing works we iarplementing terrain analysis capabilities
capable of calculating line-of-sight, area-of-visilyiliand routes given Geographical Information System
(GI1S) databases representing buildings, roads, terrpgstyetc.

4.3 Learning component

We have implemented learning capabilities using openesoimplementations of both observational and
experiential learning algorithms. In this work we have ussgthine learning libraries such as Weka [7],
RapidMiner/YALE [15] and JGAP [13]. The main advantages sing these libraries are that they pro-
vide, in addition to implementations of a wide range of MLaithms, tools that can be used to evaluate
learning performance (classification accuracy, confusiatrices, etc.), tools designed to improve and tune
learning performance using feature selection algoritipasameter optimization techniques, dimensionality
reduction algorithms and so on.
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5 EXPERIMENTS

In this section we present results from two experiments. gimpose of the first experiment is to verify

that the DDBM prototype is able to imitate collaborative &e@brs through observational learning. In the
second experiment we explore the prototype’s ability toresand optimize behaviors using the experiential
learning strategy.

5.1 Observational learning

In this experiment the goal is to imitate the behavior of mplgt collaborative agents performing tasks
of increasing complexity. In this experiment we focus ontating behaviors representing hockey-player
passing exercises as illustrated in Figure 3. In the firstotss@® see Figure 3a, the players are passing the
puck in a clock-wise manner. In the second exercise one oplnyers, RD, passes the puck diagonally
approximately 50% of the time as illustrated in Figure 3btha third exercise the players keeps the puck
within the team by avoiding pass options where teammatesogexed or intercepted by an opponent player
as illustrated in Figure 3c.

- >
100%

100% 100%

a han
\/ u

\100% \100%
) 100% c 1D 100% c
(a) Exercise 1: Clock-wise passing. (b) Exercise 2: Clock-wise and diagonal passing.

RW

L
100%

100%
\ C\—/

(c) Exercise 3: Keep-away passing.

LW

Figure 3: Visual description of the hockey player exercises . In exercise 1 the players are passing the puck
to each other in a clock-wise manner. In exercise 2 the RD-pla  yer passes the puck diagonally to C
approximately 50% of the time. In exercise 3 the players avoi d passing the puck to team members
that are covered or intercepted by an opponent player.
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Given the exercise specifications we created datasetsxihiass the desired behavior for each exercise
using our in-house developed authoring tool (see Figur&gng the datasets we then applied our DDBM
prototype to learn the positioning and passing behavioaohegent using the back-propagation algorithm
[21] for standard neural networks and the ID3 algorithm [fbr]decision trees respectively.

Preliminary results from our experiments are shown in TdbleWe were able to learn the desired
behaviors for all exercises using relatively small dataséte verified the passing behavior of each agent by
visualizing the rules embedded in the generated decist@strTo validate the collaborative behavior of all
agents we developed a simple hockey-simulator capablesoélizing the movement of the players and the
puck given the previously learned behavior models.

The datasets representing the first and second exercisecreated in less than 5 minutes whereas the
third dataset representing the keep-away passing exéotkabout 10 minutes to author.

Table 1: Observational learning results.

Exercise Size of dataset (bytes) Modeling effort (seconds) Learned correct behavior
Clock-wise passing 2347 273 Yes
Clock-wise and diagonal passing 3400 224 Yes
Keep-away passing 4804 578 Yes

5.2 Experiential learning

In this experiment the goal is to optimize the behavior ofrayld agent performing a task using the expe-
riential learning strategy. In experiential learning, ikalobservational learning, a simulator is integrated
within the learning or evaluation phase of DDBM as descriingéligure 1.

In this experiment we have used a predator-pray simulatioergithe predator is represented by a wolf
and the pray is represented by a herd of sheep. The sheedisdibehavior was implemented using the
flocking algorithm presented in [20]. In the experiment wedushe DDBM prototype to generate wolf
behavior using genetic programming [11]. The reward functivas based on the weighted sum of the
number of sheep killed, the wolf’s distance to nearest sheemumber of program nodes used to represent
the behavior as described in Equation 1:

freward = numSheepKilled * w;
— distance(wol f, nearestSheep) * w;

+ numProgramN odes * wy, 1)

wherew;, w; andw;, are weights determining the importance of each componeheineward function.

It took approximately 3 days, running a standard desktoppeder, to learn a wolf behavior capable
of efficiently killing all sheep. The strategy that the wolfemtually learned was to alternate strikes with
circular movement patterns as illustrated in the spatéetplot in Figure 4. Using this strategy the wolf
killed all sheep in 9 minutes and 27 seconds which is sligitlyse than the strategy used by our scripted,
hand-crafted, wolf behavior which completed the task in iutes and 40 seconds.
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Figure 4: Trace-plot of the wolf and sheep behaviors. The red trace represents the wolf's movement in the
simulation and the green traces represent sheep movement. T he strategy that the wolf learned was
to alternate strikes with circular motion patters.
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6 CONCLUSIONS

In this work we have introduced the DDBM concept for CGF bébramodeling in the context of simulation
based military training and decision support applicatighgrototype was developed and used to verify and
evaluate the concept using two different toy-problems arkpd observational- and experiential learning
respectively. Although the DDBM approach appears prorgisimhen applied to our toy-problems, there
are several challenges that need to be addressed wherdappial-world applications:

e Data problems such as insufficient, incomplete and noisy. dat

o \rification and validation problems related to black-begnesentations such as neural networks that
are difficult to visualize and analyze by humans experts.

¢ Real-time simulation problems caused by advanced feattirgotion functions (e.g. terrain analysis,
route planning).

e The need for intuitive and easy-to-use DDBM authoring tamdpable of visualizing, editing and
processing datasets acquired synthetically or from myliéxercises.

In future works we intend to evaluate the DDBM approach in a-veorld application targeting for
example the Military Operations in Urban Terrain (MOUT) daim Using the MOUT application we
will conduct studies to gain insight into DDBM capabilitiesth respect to improving modeling efficiency,
behavior realism and objectiveness.
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