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ABSTRACT 

Models constitute an important component in decision support functions of C4I systems. They improve the 
military commander’s abilities to create situation awareness, analyse threats and make proper decisions. 
Computerized models can be exploited for the purpose of simulation, which enables us to cover a much 
wider range of options and go deeper in impact assessments. In this paper we describe decision support 
and simulation techniques to facilitate Effects-Based Planning (EBP). In our approach, by using a 
decision support tool, a decision maker is able to test a number of feasible plans against possible courses 
of events and decide which of those plans is capable of achieving the desired military end-state. The 
purpose is to evaluate plans and understand their consequences through simulating the events and 
producing outcomes which result from making alternative decisions. Plans are described in the Effects-
Based Approach to Operations (EBAO) concept as a set of effects and activities that together will lead to 
a desired military end-state. For each activity we may have several different alternatives. Together they 
make up all alternative plans, as an activity tree that may be simulated. The simulation of plans is 
designed to deliver results, indicating the (so far) best sequence, at each point of time. Hence, we have 
chosen to use the A*-search algorithm for traversing through the activity tree and choosing the next 
activity to be simulated. This method helps us to decide at any point of time which sequence of activities 
has the best result so far, i.e., has resulted in a system state that is “closest” to our end-state. The paper 
also includes a description of our model, different objects, their relations, and the structure of our 
simulation kernel. The system is still under development hence there are no experimental results obtained 
so far. 

1.0 INTRODUCTION 

Models constitute an important component in decision support functions of C4I systems. The work of 
military commanders was previously mainly based on using mental models and maps for creating situation 
awareness, analysing threats, investigating different actions and making decision based on those. The 
development of computers has meant opportunities for a radical increase in capacity for these activities. 
By leveraging databases with information about the enemy, environment and past experience, we are 
strengthening our models and thereby our understanding. By further formulating our models in 
computerized form we also increase our ability to exploit them for simulations, by which we can both 
cover a much wider range of options and go deeper in impact assessments [1]. 

With regard to information interpretation, i.e., creation of situation awareness and situation understanding 
and threat analysis, models play a central role when it comes to assimilate large amounts of complex 
information from various sensors (including humans). One application is Information Fusion, which can 
be seen as a real-time simulation of the real course of events. Information Fusion gives the commander 
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and his staff better ability to quickly discern which reports are linked and what is going on. It also 
improves the commander’s ability to control its sensory resources to achieve desired situational awareness 
[2]. 

Another way to use models in information interpretation is the so-called indicator modelling [3]. Here we 
assume a case database where situations from previous missions are stored together with a set of events 
that follow that situation, and a final event, such as a riot. With an appropriate situation model, we can 
then compare a current situation with the database situations, and select those that are most similar. The 
decision-maker is thus made aware of the similar corollary events, which indicate that the corresponding 
end event can occur even now. 

As for evaluating the impact of alternative decisions, it is possible to use expert systems - models which 
simulate experts’ way of drawing conclusions [4]. They allow for “faster” decision-making for the 
experienced, and “safer” decisions for the less experienced, by ensuring that “no” relevant aspects are 
forgotten. The disadvantage is that they can easily lead to a stereotyped and predictable behaviour, which 
might be partly handled by making the system self-learning. 

However, a more flexible decision support can be achieved with a tool that in addition to an expert system 
also includes a model with which we can simulate the events and produce outcomes resulting from making 
alternative decisions [5]. Such a tool should not only simulate a single thread of activities, but rather 
calculate statistical values of outcomes of different threads. It must also have a high credibility, and be fast 
to allow many simulations. Hence, the model may not be too detailed. Nevertheless, large plans with many 
alternative activities may take a long time to execute. A more practical simulation system should be able 
to, at any moment in time, suggest an alternative that best suits the commander’s criteria of a successful 
plan. Furthermore, it must have a flexible and easy to use interface, which enables us to quickly and easily 
define different alternatives and modify the model as our knowledge of other actors’ 
characteristics/capabilities grows. 

 “Real-time Simulation for Supporting Effects-Based Planning” is an ongoing research project at the 
Swedish Defence Research Agency, which was initiated in 2008 with the goal of designing and 
developing a simulation-based decision support system for supporting the planning process of the Effects-
Based Approach to Operations (EBAO) [6, 7]. In this paper we present the approach employed in the 
project to achieve the above goal. The decision support system enables a decision maker to test a number 
of feasible plans against possible courses of events and decide which of these plans is capable of achieving 
the desired military end-state. The purpose is to evaluate plans and understand their consequence through 
simulating the events and producing outcomes which result from making alternative decisions. The 
simulation of plans with a sequence of alternative activities is designed to deliver results, indicating the (so 
far) best sequence, at each point of time. Hence, we have chosen to use the A*-search algorithm [8, 9] for 
traversing through the activity tree and choosing the next activity to be simulated. This method helps us to 
decide at each point of time which sequence of activities has the best result so far, i.e., has resulted in a 
system state that is “closest” to our end-state. 

The remainder of the paper is structured as follows. In Sec. 2 we describe the overall Decision Support 
System giving support on operational planning by testing and evaluating alternative operational plans. In 
Sec. 3 we present our model, different concepts, and their relations. Sec. 4 gives an introduction to our 
simulation and its structure. Finally, Sec. 5 concludes the paper with current status of the project, general 
conclusions and future work. 
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2.0 DECISION SUPPORT 

In EBAO as in any other planning process, there is a need to assess possible plans before execution 
(Effects-Based Execution (EBE) in the context of EBAO) and to perform re-planning when necessary. The 
aim is to evaluate the plans, including discovering its weaknesses and understanding its implications. An 
important prerequisite for good planning is to find and use appropriate indicators so that intelligence 
questions can be asked. 

2.1. Analyzing the operational plan 
Analyzing and simulating the operation plan can be made at any time. When an operation begins to take 
shape one should be able to analyze and simulate several alternative plans that are in the main direction of 
interest. This task uses large numbers of simulations with different alternative plans against various 
possible scenarios. The goal is to find robust groups of plans that have similar implications. 

We assume the plans and let them control the evaluation process. All activities of the plans are to be 
simulated against all events in the chain of events. The operational plan is simulated by providing a wide 
range of simulation tasks to the simulator. Any such assignment is made up of a particular alternative for a 
particular activity. This simulation task has a specific location in a tree of plans, where each level 
represents a new activity, and each branch one of the different options available for this activity. 

The decision maker can prioritize between different plans by letting the simulator know his current area of 
interest, times of interest, and through an activity clustering choose groups of prioritized activities, see 
figure 1. 

 

Figure 1: Through an input interface the user may select which part of the plan the simulator 
should focus on such as, an area in a map, start and end time in a Gantt schema, or clusters 

where activities that strongly influence each other are grouped together. These inputs are fused 
in the lower right area using the function μ (see below). 
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This guidance will allow the simulator to focus on alternatives that are of interest to the decision maker. 
The function μ is showing decision-maker current interest in a particular activity. We have, 

 

where {μj} is drawn from all the views that the decision-maker uses for his prioritization of simulation 
tasks to the simulator. 

An event’s overall significance from an effects-based approach is obtained by the a priori information 
given by the function ω. This information is retrieved from a cross-impact matrix (CIM) [10]. We have, 

 

An assessment is made of how well each activity is managed by its mission. All such estimates based on 
various simulation tasks are stored in order to rapidly be re-used by future simulation and is transferred to 
decision support system so that a consolidated assessment can be made. The compilation of partial results 
from all simulation activities can be made by the statistical method developed for subjective Effects-Based 
Assessment (EBA) [11], where each assessment activity takes place separately, and are then fused 
statically to an overall assessment of entire operation plan. Plans are judged by their robustness. This is 
measured, not by the score the plan receives itself, but rather by the minimum score of all other plans that 
are structurally close, as well close in their consequences. 

We use an information measure to measure the structural distance between two plans Pi and Pj, or between 
two events Hi and Hj. We choose the Hamming distance [12] 

Hamming_distance Pi Pj,( )
0 Pi.Ak Pj.Ak=,

1 Pi.Ak Pj.Ak≠,
⎩
⎪
⎨
⎪
⎧

k
∑=

 

Using this measure, we compare each activity in two different plans to calculate the distance between the 
plans. For each activity we observe the alternative chosen in both plans. 

2.2. Finding indicators 
We can support the intelligence service by finding key indicators through a range of simulations. The 
hypothesis is that there are families of plans with family of events that have similar consequences. 

We seek to find indicators that intelligence at a later stage can use to determine if a turn of events belongs 
to one or other family of events. These indicators describe the dividing line between groups of different 
plans with similar consequences. The idea is that for all events in the group, all have similar consequences. 

μ Ai 1+ y i 1 + y i 1+( ), [ ] μ j Ai 1+ yi 1+ yi 1+( ),[ ]
j

∏=

ω Ai 1+ y i 1 + y i 1 + ( ) , [ ] max q CIM Ai 1+ yi 1+ yi 1+( ), SEq,[ ] 
⎩ ⎭ 
⎨ ⎬ 
⎧ ⎫ 

=
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Figure 2: In the output interface, decision support is given regarding the most robust operational 
plans, with explanations on potential problems to avoid (left side). A second output is on 

indicators found by the systems. These are events boundaries between events that lead to 
drastic consequences if plans cross them (right side). 

We use the Hamming distance to measure the structural distance between the plans and add to this an 
absolute distance of its consequences. 

Finally, all plans are clustered with their consequences [13]. The difference of the event parts in between 
clusters are the indicators (see figure 2, right side). They can be found using a support vector machine [14, 
15]. 

3.0 MODELLING ACTORS AND ACTIVITIES 

In order to develop the simulation system which is the heart of our decision support tool, two main 
questions have to be answered; 

• How should the reality be modelled and what aspects to be captured? 

• How should the simulation engine be designed? 

How we model a phenomenon depends on the purpose of the model and the questions we want to be 
answered. Obviously, since our simulation system aims to support decision-making within EBAO the 
modelling has to be done based on EBAO and the concepts used within it, such as plan, activity, effect, 
end-state, etc. 

3.1 Plan and activities 
A plan as it has been defined in the context of EBAO is a sequence of activities that together lead to a 
desired end-state which is set by a military force. These activities, which can be considered as events 
initiated by own forces, require different types of resources in order to be executed. They can affect each 
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other and be affected by external events. These external events can either be initiated by other actors or be 
spontaneous/natural events. The former could be planned, i.e., an actor’s action according to its agenda 
and regardless of our activities, or responsive (dependent on our activities), such as the enemy force’s 
response to an attack, or the local population’s reaction to an operation. The spontaneous/natural events 
are unpredicted incidents, such as weather conditions, natural catastrophes, an unprovoked attack or an 
accident. 

Based on the above discussion there are three different types of events in our model: the launch of an 
activity (our own action or any other actor’s action) observations and reactions made by an actor, external 
events. Each event is interpreted by each actor as more or less hostile or friendly. It depends on the state of 
the actors and their relations, such as degree of aversion. It is graded along a hostility scale from 1 
(exposed to attack) to -1 (friendship strengthening initiative). Similarly, every event has a certain effect on 
one or several environmental objects (discussed in Sec. 3.3), e.g., lowers their functionality with 2 units. 

3.2 Actors 
An actor is defined as an entity with resources, an action repertoire, an agenda and an internal state. 
Entities can be groups of people, who somehow have a common identity and purpose [16]. They may be 
more or less clearly defined and organized, everything from police forces, relief agencies, well-organized 
militia units, and state administrative bodies to loosely coupled groups and social clusters, which are only 
held together by one common interest (which at the moment is in the focus). In exceptional cases, the 
actor might even be a single individual, such as a prominent opinion maker, a political leaders or a 
financial potentate. A special actor is “we”, i.e., the group that is to use this simulation. 

The action repertoire is a set of possible actions that an entity is capable of performing. It is determined 
by its resources and knowledge, and what is ideologically desirable but not yet possible for the actor to 
achieve. Depending on the ideology and strategy many of the possible actions are extremely unlikely 
because they would for instance be counterproductive and not good for the actor’s image. However, as the 
state of the actor changes based on the events and other actors’ activities, certain actions in its action 
repertoire become more probable and others less. The agenda is the plan that an actor is supposed to 
follow in order to achieve its goals. The state can be defined as a combination of resources, mood, 
solidarity, short-term agenda, etc. The states of the actors changes as a response to the activities and 
events, together with the probability of performing different actions. Hence, each action has a probability 
associated with, which are changed according to some functions. Actor attributes can be seen in table 1. 

Table 1: Actor attributes divided into resources and internal state 

Resources: Weapon Strength: firepower, movement 

 Crew: number capable of bearing arms, no of sympathizers, location 

 Economy : scale, stability, spatial dominance 

 Logistical capacity to use resources optimally: infrastructure, propaganda channels 

 Soft power: contacts, reputation 

  

Internal state: discontent - perceived distance to the ideal desired end-state 

 relationships - the degree of aversion to each of the other players 

  teamwork - cohesion 

 ideological conviction 

 purposefulness 

 cunning - wisdom 
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Probabilities of performing actions and the agenda are not directly affected by the other actors’ actions or 
external events. It is rather through changes in the actor’s internal (mental) state. The suggested attributes 
are graded fairly coarse, 0, 1, 2 and 3. For instance, in the case of “discontent”, this could be interpreted as 
appalling, bad, hopeful respectively good. However, here long-term goals and short-term goals have to be 
considered. And in the case of “relationships” a similar interpretation would be that another actor is 
perceived as hostile, extraneous, temporarily on the same line as oneself or ally. 

How a suitable action repertoire should look like is obviously dependent on the scenario at hand. The 
following table presents an example of possible actions for two types of actions, military actions and 
guerrilla. 

Table 2: Military and Guerrilla type of actions as represented in an action repertoire 

Military Guerrilla 
Bomb plants Destroy infrastructure 

Bomb transports  Mass kidnapping 

Insulate and tie the opponent’s resources  Attack on authority outposts 

Regroup  Destroy crops 

Eliminate opponents positions Hijack transports 

Secure transport corridor Destroy depots  

Secure storage area  
Secure area  
Search an area  
Prevent view   
Sniper  
Capitulation   

 

3.3 Scenario and Environment 
The simulation scenario consists of participating actors, their initial state and probability distribution for 
different actions, environmental data, as well as the plan that is to be evaluated. Furthermore the scenario 
contains an event list which consists of actions derived from the other actors’ agendas, and 
spontaneous/natural events. The list is dynamic and changes during the course of the simulation. 

The environment consists of various facilities and sites with symbolic value. The facilities may consist of: 

• Functional buildings, such as hospitals, schools, housing, and management centres, etc. 

• Transportation routes and transfer points, such as roads, bridges, pipelines, ports, airports, etc. 

• Utilities such as natural resources like arable land, mines, etc. and processing facilities such as 
power plants, factories, warehouses, etc. 

• information channels such as radio and TV stations, networks, transmission masts, etc. 

• The symbolical sites can be geographical areas, statues or other memorials, religious buildings, 
etc. 
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Environmental objects have different significance and value to different actors. Moreover, they have 
various levels of vulnerabilities. The impairment is graded on the scale 0, 1, 2 and 3. 

4 SIMULATION 

As described in the previous section our model consists of actors which are groups of people that can be 
understood in terms of sociological models. These actors do not exist in a vacuum, but in an environment 
with perhaps passive object but yet with symbolic or functional value. The system state, Sn can therefore 
be described by all actors’ state parameters and all environment parameters. 

Now consider the activity An. It transforms the system state Sn according to Sn = f (Sn-1, An), in the time 
interval (tn-1, tn). The implementation of An is rarely instantaneous. Instead, it is an interaction between our 
own activity, other actors’ agendas and response operations, and other external events, which is rather 
complicated. Hence, our function f (Sn-1, An) is designed as an event-driven simulation model in order to 
manage the complex interactions in a transparent manner. The events in this case are; launching of 
activities (our own or any other actors’), an actor’s observations of initiated activities, and occurrence of 
an external event. 

Furthermore the outcome of An can vary depending on the circumstances (the operation may even fail), 
which is addressed by making the simulation stochastic, where the outcome of an activity depends on a 
number of random variables drawn according to some given distributions. The disadvantage of this is that 
we can obtain a per se reasonable, but rather unlikely outcome, which would mean that we might 
needlessly throw a mostly good plan. In order to avoid this we use Monte Carlo simulations, thereby 
obtaining a frequency function of the entire outcome space. 

A consequence of implementing the function f (S, A) as an event-driven stochastic simulation model is 
that, although the state parameters from the beginning are absolute values, after a completed action will be 
represented by statistical distributions. Hence, we choose to represent the initial states by statistical 
distributions. Similarly, the external events can be listed from the beginning with typical probabilities for 
the actual operational theatre, season, etc. 

The goal of the simulation is to execute different plans and identify those plans that result in system state 
that are “closest” to our end-state, i.e., has the shortest distance. Given the above approach the distance to 
the end-state will be stochastic. By calculating the distance value in each Monte Carlo loop we create the 
distribution of this distance in the form of a histogram (which approximates the frequency function). This 
requires the A*- algorithm (described in the next section) to evaluate not only a single distance value, but 
also the importance of the spread in the given situation. A large spread around a little average value 
indicates that we are on track, but that path is very unstable and could easily lead to failure. 

During this actual time interval (tn-1, tn) our activity An is initiated. It is observed (via an information 
channel) by the other actors immediately or eventually. Directly, or after a period of analysis (which may 
be biased or coloured by the information channel), respective actor’s state is changed, which can lead to a 
new set of probabilities in the action repertoire. An action from each actor’s action repertoire is randomly 
chosen and placed in the event list. 

Probable external events are in the same way chosen and placed in the event list according to their given 
distributions. As the simulation proceeds and actions/events in the event list are executed new 
actions/events are added in the list (as the result of observations and reactions) until the end of the time 
interval is reached. Our Monte Carlo simulation is therefore structured as follows: 
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For each round of the Monte Carlo loop: 
  Initialize event list with our action A 
  Randomly draw the external events and add them to the event list 
  Randomly draw a starting state for each state parameter from resp. distribution 
  For each actor: 
   Randomly draw the next action from the current agenda and add to the event list. 

For each event in the event list as long as time is less than tn: 
   Environmental parameters may change (which could generate new events). 

For each actor (including “our own” operator “): 
Note directly or indirectly through filtered or biased information 
Analyse the information → internal state and resources are changing 
Action repertoire is updated with new probabilities 
Randomly generate the next action 
Add a new action to the event list. 

Save the results for each state parameter. 
Create a summary of results for each state parameter in the form of a histogram, which serves as an 
approximation for resp. output distribution. 
 

4.1 A*-search 
One of the main requirements of our simulation system is to be able to, at any moment in time, suggest an 
alternative sequence of activities that best suits the decision maker’s desired end-state. Such a simulation 
system can neither be designed according to the principle of “breadth first search” nor “depth first search”. 
In the former case it will take probably a long time before we reach a reasonably correct prediction. In the 
latter case we get stuck in a subset of plan options (alternative activities), and probably will not have a 
general view when we are asked to forecast the best approach. Instead, we are applying the combination, 
known as A*-search [8, 9]. It means that we on the basis of a given system state simulate the effect of each 
relevant option in our plan, but only one step at the time. Doing so, for every option we get a new system 
state, whose “distance” to the desired end-state is then calculated. Given the option that is best, i.e., 
“closest” to our end-state, we simulate possible subsequent options provided, but again only one step 
ahead in our activity/event list. One of these options leads to a condition that is “closer” than the others. 
However, it is possible that all the options actually lead away from the target as seen by figure 3. 
Therefore, we must also compare the new “distance” with the best of the “distances” that have been 
(simulated and) recorded in the previous simulation steps, but then had opted out in favour of a better 
option. The best option now becomes the basis for the next simulation step. At any time the user can then 
ask for the option, which at that time seems to be the best, i.e., the option that leads to a simulated state, 
which is “closest” desired end-state. Activity lists in the investigated plans are obviously not infinite, 
which means that they will gradually terminate. Consequently the simulation program continues to 
execute the options that follow the “second best” system state. Given enough execution time all options 
will eventually be investigated. For the tool to function in this way the simulation system stores a list of all 
executed activities, the corresponding system state, and the “distance value”. Simulation kernel provides 
therefore services to store all this information in a dynamic list and also be able to restart the simulation 
from a previously stored state. 

4.1.1 Functions of distance calculations in A* 

A central problem in applying A*-search algorithm is to find a proper distance function. In our model the 
states of the actors and the environment are described by a large amount of parameters with varying 
resolution and weight, which complicates the task of the defining a credible distance function. The 
solution chosen in this case is to define a function that calculates the distance based on the difference 
between parameter values of a given state and the parameter values of the end-state. These differences are 
absolute values and are weighted according to the importance of the parameters and their impact on the 
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success of the plan. As described earlier, our parameters are not represented as real numbers rather as 
histograms.  

S0 100

S11 84 S12 79 S13 103

A13A12A11

S0 100

S11 84 S12 79 S13 103

A13A12A11

S221 88 S222 71

A221 A222

S0 100

S11 84 S12 79 S13 103

A13A12A11

S221 88 S222 71

A221 A222

S3221 98 S3222 112 S3223 87

A3223A3222A3221

S0 100

S11 84 S12 79 S13 103

A13A12A11

S221 88 S222 71

A221 A222

S3221 98 S3222 112 S3223 87

A3223A3222A3221

S211 108 S212 59

A211 A212

Step 4: Activities following S11 are now simulated and S212 is 
the “closest” and next to simulate.  

Step 2: After execution of alternative activities that follow 
S12, S222 is the “closest” to the target. 

Step 4: From S222 all the alternative activities 
that are presented are executed. S11, which was 
calculated earlier appears to be “closest” now.

Step 1: From the initial state all 
available alternatives are simulated. S12 
appears to be “closest” to the target. 

 

Figure 3: An example illustrating the four first steps in a simulation of a plan starting with initial 
system state S0 with the distance of 100 to the desired end-state. The available activity 
alternatives Ax are executed successively in the currently most favourable plan option. 

A state 
Si yi,  is a vector of length n with different sub-states

Si yi j, , , where 
Si yi j, ,  is a distribution 

over 0 1 2 3, , ,{ } , e.g., 
Si yi j, , 0.2 0.5 0.2 0.1, , ,( )=

 where the first 0.2 is the frequency of “0”, and 0.5 
the frequency of “1”, etc., 

Si yi, Si yi 1, , Si yi 2, , … Si yi n, ,, , ,( )=
, 

where yi is the current sequence of choices made for all activities A1 to Ai. The initial stated is called S0,0, 
and the end-state is called Se. 
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S0,0

A1,2

S1,1 S1,2

A1,1

A2,2

S2,21 S1,22

A2,1

A3,2

S3,211 S3,212

A3,1

 

The distance 
Δ Si yi, Si 1+ yi 1+,,( )

 between two successive states 
Si yi,  and 

Si 1+ yi 1+,  is calculated as 

Δ Si yi, Si 1+ yi 1+,,( ) 1
μ Ai 1+ yi 1+ yi 1+( ),[ ]ω Ai 1+ yi 1+ yi 1+( ),[ ]------------------------------------------------------------------------------------ wjDS Si yi j, , Si 1+ yi 1+ j, ,,( )

j 1=

n

∑=

 

where the distance DS is calculated as 

DS Si yi j, , Si 1+ yi 1+ j, ,,( ) k l– Si yi j, , k( ) Si 1+ yi 1+ j, , l( )⋅ ⋅
l 0=

3

∑
k 0=

3

∑=

 

and where w is a vector of length n with elements wj, where 
wj 0 1[ , ]∈

 are weights assigned during 

modeling to address the relative importance between different
Si yi j, ,{ }j 1=

n

. The distance from the 

starting state S0,0 to a current state 
Sx yx, . 

g yx( ) Δ Si yi, Si 1+ yi 1+,,( )
i 0=

x 1–

∑=

 

h yx( ) Δ Sx yx, Se,( )=
 

where the total distance is 

f yx( ) g yx( ) h yx( )+=
. 
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5 CONCLUSIONS 

In this paper we present our design of a simulation-based decision support methodology with which we 
can test operational plans as to their robustness. Primarily, this methodology highlights the dangerous 
options in an operational plan, leaving the decision maker free to focus his attention on the set of 
remaining robust plans. Furthermore, we have suggested a methodology that can find important indicators, 
towards which the intelligence service may put intelligence questions. Results of these questions should 
work as early warnings if plans start to go wrong, leaving some time for re-planning. The system is still 
under development hence there are no experimental results obtained so far. We are currently testing the 
first version of the system. Our results are preliminary and no precise conclusions can be drawn about 
adapted design choices. Future work includes testing the system with actual operational plans, a more 
precise actor profiles, and detailed functions for calculating probabilities of actions in the action 
repertoires. 

6 REFERENCES 

[1] Zeigler, B.P., Praehofer, H., Kim, T.G. (2000), Theory of Modeling and Simulation, Second Edition. 
Academic Press, Inc., Orlando, FL. 

[2] Hall, D.L., Llinas, J. (Eds.) (2001), Handbook of Multisensor Data Fusion. CRC Press, Boca Raton, 
FL. 

[3] Kolodner, J. (1993), Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA. 

[4] Hayes-Roth, F. (Ed.) (1983), Building Expert Systems. Addison-Wesley, Reding, MA. 

[5] Schubert, J., Ferrara, L., Hörling, P., Walter, J. (2008), A decision support system for crowd control, 
in Proceedings of the 13th International Command and Control Research Technology Symposium, 
Seattle, USA, 17–19 June 2008, pp. 1−19. 

[6] Smith, E.A. (2006), Complexity, Networking, and Effects-Based Approaches to Operations. U.S. 
Department of Defense CCRP, Washington, DC. 

[7] Effects-Based Approach to Multinational Operations, Concept of Operations (CONOPS) with 
Implementing Procedures, Version 1.0 (for comment) (2006). United States Joint Forces Command, 
Joint Experimentation Directorate, Suffolk, VA. 

[8] Dijkstra E.W. (1959), A note on two problems in connexion with graphs, Numerische Mathematik, 
1(1):269–271. 

[9] Hart, P.E., Nilsson, N.J, Raphael, B. (1968), A formal basis for the heuristic determination of 
minimum cost paths, IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107. 

[10] Schubert, J. (2008), Subjective Effects-Based Assessment, in Proceedings of the Eleventh 
International Conference on Information Fusion, Cologne, Germany. ISIF, Mountain View, CA, pp. 
987–994. 

[11] Schubert, J., Wallén, M., Walter, J. (2008), Morphological refinement of Effect-Based Planning, in 
M. Norsell (Ed.), Stockholm Contributions to Military-Technology 2007. Swedish National Defence 
College, Stockholm, pp. 207–220. 



Modelling a Simulation-Based Decision Support 
System for Effects-Based Planning 

RTO-MP-MSG-069 11 - 13 

 

 

[12] Hamming, R.W. (1950), Error detecting and error correcting codes, Bell System Technical Journal, 
29(2):147–160. 

[13] Schubert, J., Sidenbladh, H. (2005), Sequential clustering with particle filters - Estimating the 
number of clusters from data, in Proceedings of the Eighth International Conference on Information 
Fusion, Philadelphia, USA. IEEE, Piscataway, NJ, Paper A4-3, pp. 1−8. 

[14] Vapnik, V., Lerner A. (1963), Pattern recognition using generalized portrait method, Automation and 
Remote Control, 24:774–780. 

[15] Boser, B.E., Guyon, I.M., Vapnik, V.N. (1992), A training algorithm for optimal margin classifiers, 
in D. Haussler, (Ed.), in Proceedings of the Fifth Annual ACM Workshop on COLT, Pittsburgh, PA. 
ACM Press, New York, NY, pp. 144–152. 

[16] Hudlicka, E., Zacharias, G., Rouse, W., and Boff, K. (Eds.) (2005), Requirements and Approaches 
for Modeling Individuals within Organizational Simulations. John Wiley & Sons, Inc., Hoboken, NJ. 



Modelling a Simulation-Based Decision Support 
System for Effects-Based Planning  

11 - 14 RTO-MP-MSG-069 

 

 

 


