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Abstract—This work is part of the EU FP-7 project Support
and describes a system-architecture to enhance port security
by processing sensor data. The goal is to process vast amount
of sensor readings of all types, reduce the noise in the data
stream, cope with heterogeneities, detect patterns, fuse data
streams and provide decision support in near real-time. We
define an ontology to model the domain of sensors and events
in the context of port security. The ontology is used as a
common basis for our envisioned architecture. The architecture
incorporates Sparkwave, a schema-enhanced pattern matcher,
and Impactorium, a decision support system. Finally we present
an evaluation approach for our use case and conclude with on-
going future work.
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I. INTRODUCTION

Ports are crucial for transportation and goods supply in
Europe, providing a reliable and cost efficient infrastructure.
Large ports such as the port of Gothenburg shipped in the
year 2011 about 900k containers, 1.7 million passengers, 22.2
million metric tonnes of oil and 42 million metric tonnes of
freight [1]. There are several ways the supply of goods can be
interrupted, ports can be critical for the whole supply chain and
can cause high economic loss. The most important problem
ports face is theft, e.g., organized crime trying to gain access to
containers. Also not to underestimate is the threat of terrorism,
even though the probability is less for such events to happen,
the potential loss is very high. Smuggling of goods such as
explosives or chemicals is also one of many threats ports face.

The Support project, funded by the European Commission
(EU FP7 Project 242112), and its partners aim to develop ICT-
based support tools to increase the security of ports. The work
presented in this paper focuses on increasing port security
by integrating sensors and fusion services using semantic
technologies. The paper describes a system architecture to
process vast amount of sensor readings in near realtime.
In the Support project we study the use of many different
types of sensors, such as CCTV, IR cameras and different
kinds of intrusion detection systems. The number of different
information sources introduces heterogeneities which we deal
with using an ontology. The ontology is designed in the context
of port security and is based on RDF-S and on a fragment

of OWL. Sensors produce most of the time noisy data due
to the measurement of real world physical phenomena. The
architecture should be able to reduce noise in the data stream.
Filtering irrelevant data in an an early stage of the processing
has the advantage that important data can be processed with
more complex processing techniques in a timely fashion.
Filtering data streams is performed by detecting patterns in the
data stream. In order to help people in their decisions, matched
patterns are combined with other non-sensor information to
give the best possible decision support.

II. USE CASE

A. Sensor-based seaside intrusion detection

The use case focuses on the problem of detecting an
intruder from the sea-side of the port. In a simulated sce-
nario an underwater passive tripwire is placed in the port
of Gothenburg. The models are based on results from real
trials [2]. The tripwire consists of sensors of two types of
technologies, electromagnetic and acoustic, each with their
strengths and weaknesses. The sensors are continously sending
their readings to the stream processor, Sparkwave, which
searches the stream for specific patterns. When a diver crosses
the observed location, an intrusion pattern is activated and
Sparkwave builds and transfers a report including location and
concrete sensor readings.

B. High-level fusion and decision support

As the underwater tripwire is very sensitive and the harbor
is a busy environment, many false alarms are to be expected.
To make sure that the report generated by Sparkwave is not a
false alarm, it is fused with information from other sources. In
the use-case we assume that the port authorities have received
an intelligence report a week before saying that there is an
increased risk of an attack against one of the ships in the port.
The two pieces of information are automatically fused in the
decision support tool Impactorium, resulting in the assessment
that there is an increased risk of an ongoing intrusion from the
sea-side.

III. RELATED WORK

The use of sensors, ontologies and semantic reasoning
as a means for constructing general and flexible systems for
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situation awareness has been recognized by many. In [3], Little
and Rogova describe a general process for how to construct
an ontology for situation and threat assessment for crisis
management. Kokar et al. propose an ontology called Situation
Theory Ontology (STO) for describing general situations [4].
The STO has been applied in the security domain where Fenza
et al. demonstrate how it can be used to describe and reason
specifically about airport security situations [5]. However, none
of the above papers describe actual implementations, where the
whole chain from sensor data to situation awareness is tested.

In [6] Tomic et al. describe a demonstrator system fo-
cussing on energy efficiency, based on ontology-based model-
ing and reasoning on top of sensor networks. In the security
domain, Castro et al. report on an ontology-based system for
intrusion detection using heterogeneous sensors [7]. However,
their ontology is not based on standard semantic technologies,
which in contrast to our work, makes it more difficult to
maintain and integrate with other solutions.

IV. SOLUTION

A. Architecture

The system presented in this paper has three main modules
(Figure 1). The first is the sensing system, which in our case
consists of two underwater sensor arrays, one electromagnetic
and one acoustic. Each array generates a stream of sensor read-
ings. Before the readings are sent to the next module they are
converted to a semantic representation common to all modules.
The second module is the pattern detection, consisting of the
semantic stream processor Sparkwave. Sparkwave processes
both input streams to detect combined patterns, e.g., when both
streams independently indicate detection within a certain time
frame. When a pattern is detected, Sparkwave generates a new
message in the common semantic representation format and
feeds it to the risk assessment module. This module consists
of Impactorium, a decision support tool where a user can
define, model and assess situations or threat events. When a
new message reaches Impactorium, it is automatically queried
for indicators, information that influences the assessments
of the modeled situations. If there is an indicator match,
the corresponding model is updated according to the new
information leading to an updated situation assessment and
a possible alert to the user.

For performance reasons, the components of the solution
are integrated using loosely coupled RESTful web services. In
a real world scenario where numerous sensors are involved,
standard load-balance techniques can then be applied. For
instance, Sparkwave and the calculation services used by
Impactorium could be installed on multiple machines and
process information in parallel. Each service in this setup
would handle a unique subset of detection patterns.

B. Ontolgy

For the specific needs of the use case, a small tailor-
made event ontology has been developed. The ontology was
constructed using RDF-S and a limited set of features from
OWL (transitive and inverse object properties). The ontology
consists of a class hierarchy (e.g., Diver is a sub-class of
Actor which is a sub-class of Object), a number of class
attributes or data properties (e.g., the class Event can have

Fig. 1: Overview of the architecture

the attribute ”event-start-time”), and a number of relations or
object properties (e.g., the service that generated a specific
report can be linked to that report through the relation ”report-
generated-by-service”).

C. Sparkwave

Sparkwave is a scalable solution to perform continuous
schema-enhanced pattern matching over RDF data streams.
More precisely, the goal of Sparkwave is to provide efficient
pattern matching functionalities on RDF streams in a truly
continuous way, enabling the expression of temporal con-
straints in the form of time windows and taking into account
RDF schema entailments [8]. As a component, Sparkwave is
used to filter high-frequency noisy data and heterogeneous
observations produced by sensors. Experiments show already
high throughput on commodity hardware [8], which makes
it predestined to process a high volume of sensor readings
in near real time. The incorporation of heterogeneity e.g.,
the sensor type, sensor properties and locations are tackled
using integrated semantic technologies: RDF and lightweight
reasoning. Existing sensor readings are enhanced by inferring
knowledge using pre-defined ontology expressed in RDF-S
and OWL property “inverseOf”. Additional to entailments also
static data is used to enhance the data stream. Static data
typically does not change over a longer period of time. For
example the exact location of the sensors is static because it is
assumed to not change, therefore can be kept in memory over
longer periods of time. Also possible is to structure location
data in a hierarchical way, e.g., “SensorA” and “SensorB” are
both part of “FacilityX” which itself is part of “AreaY”. This
enables to define more flexible and abstracted queries in the
pattern, for example queries which match all sensors located
in “AreaY” and correspond to certain criteria.

D. Impactorium

Impactorium is a model-based decision support tool that
is used to compute estimated threat levels for a number of
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Fig. 2: Example showing the tree structure of an Analysis
Model in Impactorium. The top node is associated with a
threat hypothesis, which is analyzed and broken down into
components.

pre-defined threats [9], [10]. The idea behind Impactorium
is to make use of the fact that a threat is not an isolated
event. Even if no first-hand information about the threat level
is available, it may be possible to assess the threat level
by combining information about related events and features.
With Impactorium it is possible to make this sort of high-
level information fusion automatically in real-time. This is
especially practical for threats that have to be constantly
monitored.

For each threat that is to be monitored, Impactorium
needs a model that specifies, in terms of logical statements
or mathematical formulas, the dependencies between threat
level and the different types of information that are possible
to obtain. The models in Impactorium are in the form of tree
structures. An example is shown in Figure 2. When a potential
threat has been identified, a threat hypothesis is formulated. A
threat hypothesis could for instance be ”criminal group X is
executing a container theft” or ”organization Y is planning
a sabotage against a shipping of goods to company Z”. The
threat hypothesis defines the root node in a new tree structure.
A subject matter expert then analyzes the threat in order to find
related events or conditions which are formulated as true/false
statements. These make up the second layer of nodes in the
tree structure. A statement such as ”X have access to restricted
information about a shipping” could generate a set of new
nodes in the tree model, representing different ways X could
have gained access to that information. In the end, the model
can consist of many ”branches” and several layers of nodes.
The purpose of the segmentation is to break down every branch
in the tree structure to the level where the true/false statements

associated with the bottom nodes can be answered, based
on information that is obtainable from available information
sources (sensors, intelligence reports, etc.). The states of the
bottom nodes are propagated up through the fusion functions
in the model and are indirectly used to compute the belief
value of the threat node.

V. EVALUATION APPROACH

In the following we describe an evaluation approach. A data
set, consisting of a dynamic and a static part is extracted for
our use case detailed in Section II. Additionally we describe
the Sparkwave stream pattern and the indicator rules for
Impactorium.

A. Data Set

a) Dynamic: The sensor readings used cover the time
span from August 30th, 2011 10:00:05,097 till August 30th,
2011, 10:21:25,943. There are in total 53,368 readings coming
from acoustic sensors and 8,168 readings from electromagnetic
sensors. The readings are bundled in batches of 8 readings per
batch where all readings in a batch are sharing the same time
stamp.

b) Static: A part of the raw sensor readings data
conveys the concrete location about sensor position. Since this
information is static we choose to extract it from the stream
and store it in a separate file. During a Sparkwave instance boot
up such static instances are processed and kept indefinitely in
the networking structures during stream pattern matching.

B. Stream Pattern

The Sparkwave pattern used in the use case searches for an
occurrence of signals coming from two distinctive sensor types
at the same location. After detecting an occurrence the pattern
is packaging related pattern instance data into a report and
sent to Impactorium over a REST-based interface. The pattern
is shown in Listing 1. Note that prefixes, handlers, construct
and literal typing are omitted for readability.

WHERE {
? d e t e c t i o n 1 wp4 : h a s s t a t u s ” t r u e ” .
? d e t e c t i o n 1 wp4 : h a s s e n s o r ? s e n s o r 1 .
? s e n s o r 1 r d f : t y p e wp4 : PETSensor .
? s e n s o r 1 wp4 : s e n s o r h a s l o c a t i o n ? l o c 1 .
? l o c 1 wp4 : l o c a t i o n i s p a r t o f l o c a t i o n wp4 : DockX .
? d e t e c t i o n 2 wp4 : h a s s t a t u s ” t r u e ” .
? d e t e c t i o n 2 wp4 : h a s s e n s o r ? s e n s o r 2 .
? s e n s o r 2 r d f : t y p e wp4 : PATSensor .
? s e n s o r 2 wp4 : s e n s o r h a s l o c a t i o n ? l o c 2 .
? l o c 2 wp4 : l o c a t i o n i s p a r t o f l o c a t i o n wp4 : DockX .
? d e t e c t i o n 1 wp4 : e v e n t r e p o r t e d i n r e p o r t ? s r 1 .
? d e t e c t i o n 2 wp4 : e v e n t r e p o r t e d i n r e p o r t ? s r 2 .
TIMEWINDOW ( 1 0 0 ) }

Listing 1: A Sparkwave pattern to detect electromagnetic and
acoustic sensor in the same location and time-window

C. Indicator rules

When Impactorium receives a report from Sparkwave the
message is examined to determine if it can be associated to any
risk model indicators. In the use case, we only have one model
defining how to fuse manual observations, sensor observations
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and intelligence information to assess the risk of a seaside
intrusion (Figure 3(a)).

The intelligence node defines a context value which repre-
sents the current security level. The values of the intelligence
node and the manual observation node are set manually.
However, what is of interest for this paper is the sensor
detection node, which is set automatically based on rules. Each
rule defines 1) a pattern that determines if the incoming report
is relevant to the indicator 2) a value that the indicator will
take if the report matches the pattern. In our case, the rules
are defined as follows. If Impactorium receives a report based
on simultaneous (or close) detections from both sensor types,
the Sparkwave report is tagged with ”probability high” and
the indicator value is set to a high value, in our case 1. If
only one of the sensor types is behind the detection, another
Sparkwave pattern is triggered and generates a message tagged
with ”probability low”. In this case the indicator value is set to
a lower value, in our case to 0.7. An example of an indicator
pattern is shown in Listing 2.

ASK {
? d e t e c t i o n r d f : t y p e s u p p o r t : D i v e r I n t r u s i o n .
? d e t e c t i o n s u p p o r t : d e t e c t i o n P r o b a b i l i t y ” h ig h ”
? d e t e c t i o n s u p p o r t : l o c a t i o n ? l o c a t i o n .
? l o c a t i o n s u p p o r t : l o c a t i o n i s p a r t o f l o c a t i o n

s u p p o r t : DockXWater .
}

Listing 2: Example of an indicator pattern

Figure 3(b) shows the assessment before detections are
made. The resulting value of 0.3 is the mean value of the
intelligence node and the observation node. When the message
from Sparkwave triggers the rule the sensor detection node is
set to 1, which propagates via a max-rule for the observation
node (it is enough that either a sensor or a manual detection
is made) to give a new value of 0.8 for seaside intrusion
(figure 3(c)).

Fig. 3: A fusion model for seaside intrusion (a). The leaf
nodes are the observable indicators whose values propagate
upwards through simple mean, max and min functions when
new information arrives (b and c).

VI. FUTURE WORK

This paper describes the initial steps of implementing an
end-to-end solution for semantic integration of sensors and
fusion services in a port security setting. The next steps will
be to gradually expand the experimental setting with additional
sensors and signal processing capabilities and include more

stream processing patterns and threat models. The ontology
will be updated to cover the new settings. We also plan
to evaluate the system as a whole, both offline using the
previously mentioned data-sets and online using a live system
with data streams from sensors placed at the port.

VII. CONCLUSION

In this paper we presented an approach to enhance security
of ports by processing vast amount of sensor data provided
as streams. We defined a unifying ontology to model sensors
and events in the context of port security, the model is
considered as basis for the system architecture. The envisioned
architecture consists of Sparkwave and Impactorium. The
architecture aims to reduce noise in the data stream, cope
with heterogeneities, detect patterns, fuse data streams and
provide decision support in near real-time. We sketched an
evaluation approach for our architecture. In the future, we plan
to extend gradually the experimental setting with additional
sensors, patterns and threat models.
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[9] R. Forsgren, L. Kaati, C. Mårtenson, P. Svenson, and E. Tjörnhammar,
“An overview of the impactorium tools 2008,” in Proceedings of the
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