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Summary

Stress intensity factors and stress intensity factor equations for the centre
crack in a sheet of finite dimensions have been analysed. Firstly, an
equation for the case of a uniformly distributed, uniaxial stress along the
edges parallel to the crack line was developed by a polynomial fit to data
presented in graphical and tabular form. The maximum error in the
developed equation is less than 7 % compared to the data that was fitted.
The fitted data is said to have an accuracy better than 1 %. In general the
error in the developed equation is about 2 %.

Secondly, the stress intensity factor for a centre crack in a rectangular
sheet subjected to a symmetrically applied partial crack surface pressure
was obtained by using the approximate weight function technique and the
newly developed stress intensity factor equation as reference solution.

Thirdly, a stress intensity factor equation for a centre cracked strip
subjected to a symmetrically applied partial crack surface pressure was
developed and verified by finite element calculations. The equation is
called “Modified Newman” since it reduces to an equation proposed by
Newman when simplified. The developed equation was compared to an
equation, based on the approximate weight function technique, found in
the literature. Compared to the finite element results the maximum
relative difference in the stress intensity factors obtained using the
developed equation is about 5 %.

Fourthly, three different stress intensity factor equations for the centre
cracked strip subjected to two pairs of symmetrically located splitting
forces were studied and compared to the results of finite element
calculations. It was found that the equation based upon the force-balance
method was less accurate than the other two equations.

The accuracy of the developed equation is generally much better than
20 % for crack lengths of practical interest and in most cases the
accuracy is better than 8 %.

Next the finite element results for a strip with a centre crack subjected to
a non symmetric partial crack surface pressure were used to verify an
equation developed by Chen et. al. using the force balance method. The

partial crack surface pressure was applied from the centre of the crack to
a co-ordinate xyy along the crack surface. The stress intensity factor for

each one of the two crack tips was studied. The comparison shows rather
large relative differences for xy;-values greater than half the crack length

for both stress intensity factors. Furthermore, the same equation by Chen,
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but for a symmetric crack surface pressure from the co-ordinate —xy; to
the co-ordinate xyj, shows relative differences of up to 13 % as compared

to the “Modified Newman” equation.

Finally, two stress intensity factor equations for the centre cracked strip
subjected to a single pair of splitting forces were studied and compared to
finite element results. Again it was found that the stress intensity factor
based upon the force-balance method showed large differences compared
to the finite element results. More surprisingly, the results of the equation
developed through an asymptotic interpolation, by Tada, showed large
differences compared to the finite element results. Particularly, for the
crack tip away from the splitting forces relative differences of more than
75 % were found. The equation is said to have an accuracy better than 1
%. For the splitting forces acting at the centre of the crack a good
correlation was found between the finite element results and the results
obtained using the equation.
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1 Introduction

Very accurate closed form expressions of the stress intensity factor (SIF)
for a centre crack in a sheet of finite width subjected to a remote
uniformly distributed, uniaxial stress acting perpendicular to the crack
line exist. In the case of both finite width and finite height solutions for
the SIF exist, but to the author’s knowledge, only in tabular or graphical
form, Ref.[1-2]. Thus, the first objective of this investigation is to
develop an equation for the SIF in the case of a centre cracked
rectangular sheet.

For a centre crack in a sheet of finite width subjected to a uniformly
distributed and symmetrically applied partial crack surface pressure some
closed form expressions have been suggested but generally without
presenting their accuracy, Ref.[3-6]. Hence, the second objective is to
investigate the accuracy of some proposed closed form expressions and
to develop an equation for the SIF together with a good estimation of its
accuracy.

As an extension of the second objective the same geometry is
investigated for a loading consisting of two pairs of splitting forces acting
symmetrically with respect to the centre of the crack. Again, some closed
form expressions can be found in the literature, Ref.[7-8], but in general
without any verification of their accuracy.

For the case of a centre crack in a sheet of finite width subjected to a non
symmetric, uniformly distributed, partial crack surface pressure only one
closed form expression is known to the author and its accuracy is
unknown, Ref.[6]. Thus, the third objective is to investigate the accuracy
of this formula.

Finally, a centre cracked strip with the crack subjected to a single pair of
splitting forces is investigated. This is an important stress intensity factor
solution since it may be used directly as a weight function. Closed form
expressions exists and the objective is to verify their accuracy.
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2 A SlIF-Equation for a Centre Crack in a Rec-
tangular Sheet Subjected to a Uniform Uniaxial
Stress

The stress intensity factor for a centre crack in a sheet of finite width and
height subjected to a uniformly distributed uniaxial stress, ¢, acting on
the sheet edges parallel to the crack line can be written,

K, = o/, f, (1

The crack length is 2a from tip to tip, By is the boundary correction
factor for the finite width and fy is the correction factor for finite height.
In particular, according to Ref.[7], By can be expressed as,

_ 1.0-0.0250.* + 0.060.*

Bw = (n ] (2)
cos| — 0.
2
where
a
o= E 3)

is the normalised crack length and E is the distance from the centre of the
crack to the edge of the sheet (2E=W, is the total width of the sheet in
this case), see Figure 1. The accuracy of Eq.(2) is better than 0.1% for
any o according to the reference.

A finite height correction function, fi;, can be obtained from Ref.[1] or

Ref.[2] as the ratio between [3(0(,7) (Figure 1 of Ref.[1] or problem 2.5.1
of Ref.[2]) and By according to Eq.(2). That is,

Blo.v)
fulo,y)= “4)
+05 w)
where the parameter
E
== 5
Y=g )

is the dimensional ratio E/H, and H is the total height of the sheet. The
accuracy of P(o.,y) is better than 1 % according to Ref.[2], where the
function is presented in tabular form for o <0.7and 0 <y <1.25.

11



FOI-R--0091--SE

12

Assume that the finite height correction function can be written,
w =1.0+B,a+B,0 (6)
where the coefficients B; are functions of y according to,

B, = Y(Cl +CzY)
B, = Y(Cs +C4Y)

The method of least squares fit then yields the coefficients C; according

(7

to,

Cy =0.170398, C, = 0.43604,
C3 =-0.55270, C,=1.68076 (8)

The maximum absolute relative difference in the product B f,; with
respect to B(c,y) is less than 7 % for the ranges @.<0.7 and ¥<1.25.

The average of the absolute relative differences, based on 88 compared
values, is 2.05 %. A comparison between the product B, f, and B(c.7)

is shown in Figure 2.
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3 The SIF for a Centre Crack in a Rectangular
Sheet Subjected to a Symmetric Partial Crack
Surface Pressure

The stress intensity factor for a centre crack subjected to a symmetrically
applied crack surface pressure acting over a part of the crack surfaces can
be obtained from the solution above using the approximate weight
function technique.

A Cartesian co-ordinate system with its origin at the centre of the crack
and its x-direction parallel to the crack is introduced. Furthermore, it is
assumed that the crack surfaces are subjected to a uniform pressure, p,
acting over the range [-Xy , Xy], see Figure 3. Then the stress intensity

factor can be written,

K, =pnaBy, ©
where By =PBry (o, 7,%) is the load and boundary correction function
and,

K = x,/E (10)

is the normalised boundary of the crack surface pressure. ¥ is given by
Eq.(5).

The particular weight function technique used herein is the approximate
method according to Fett, Ref.[8], in which the crack surface
displacement, for the reference solution, is expressed as,

v+1/2

u(p, o) = «/g%]?aﬁwfﬂiDv(l—p) (11)
v=0

where

p=x/a (12)

and E' is the generalised modulus of elasticity. By and fy are given by
Egs.(2) and (6), respectively. The coefficients D, are determined from

the requirement of self consistency and from crack surface boundary
conditions. The approximate weight function, h(p,o) is obtained as,

13
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E' du
h(p,a) = =
(P ) EK, da
2 & 200 a(Bwa) oD v+/2
= SUD, |1+ WL gy | 20— M1 -
nocEVZ_:S{ ( +ﬁwa do, A i ™ (1=p)™+ (13)

ii D, (2v+1)1-p) ™"
noE {3

The stress intensity factor for a symmetric partial crack surface loading
with a uniform pressure, p, acting over the interval [-xy; , Xyj] is given by

the integral,
K, =p f” h(x,a)dx (14)
Xy

Combining Eqgs.(9), (13) and (14) gives the load and boundary correction
function Bgy according to,

1 o
Ben(cu 1o)== [ hlx.a)ix (15)

The function Bgy has been computed as function of o for a few values of

A and x and the result is shown in Figure 4 and Table 1. The accuracy of
By is assessed for A=0 in the next section.



FOI-R--0091--SE

4  SlF-Equation for a Centre Cracked Strip Sub-
jected to a Symmetric Partial Crack Surface
Pressure

In order to evaluate the accuracy of the stress intensity factor derived in
previous section a slightly alternative approach is presented below. Also,
the objective is to obtain a closed form expression for the stress intensity
factor in the case of y=0.

For a centre crack in a sheet of finite width a closed form expression for
the weight function, developed by Tada, is given in Ref.[7] in terms of

the stress intensity factor for the centre crack loaded by a single pair of
splitting forces acting at the location x; along the crack surfaces.

A

KP (o) = f 1toct (naj
4 '

1+

(16)

where o is given by Eq.(3), p is given by Eq.(12) and

o ool fon(F)e(3)

(Y5 (3)

The plus and minus signs refer to crack tips A and B, respectively. x is
given by Eq.(10). In the case of a symmetric loading (two pairs of
splitting forces) with respect to x=0 the factor f becomes,

2cos( m()
\/ sin? (E) —sin? (E)
2 2

by superposition. The error in the stress intensity factor is less than 1%
for any crack length, o, and location p of the splitting forces P according
to Ref.[7].

Based on Eq.(16) the weight function can be written directly as,

15
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19)

The integration in Eq.(15) has been carried out using both the
approximate weight function (Eq.(13)) with y = O and the closed form
weight function according to Eq.(19) for a few selected ranges [-xy , Xyl
of the partial uniform crack surface pressure. The results of the
integrations have been compared and the relative difference between the
two solutions is shown in Figure 5. For o less than 0.9 the largest
absolute relative difference found is less than 4.5%.

The first term in Eq.(19), for symmetric loading, can be written,

oL K
tan(—z—) COS[?)
{noc
h,(x,a)=.—
: E o IE AL (20)
sin“| — |—sin“| —
2 2 2
The second square root, in Eq.(20), can be identified as a finite width
correction factor for a strip of infinite height having a centre crack
subjected to a remote uniform, uniaxial stress. According to Ref.[7] the

accuracy of this finite width correction is better than 5% for any o less
than 0.5.

Integrating Eq.(20) with respect to x for a crack surface pressure, p,
acting over the range [-xy , Xy] yields,

1904 . | TK
2 tan(Tj SIH(TJ
K, == S N VA N [ A
I T p\/ﬁ o Sin . ( TC(X) (2 1 )
‘2— sin

The contribution from the second term in the weight function, Eq.(19), is
in general relatively small. Only for large a-values combined with small
p-values the contribution from the second term may reach 30 % of the
first term in the weight function. Egs.(1), (2) and (21) suggest that the
stress intensity factor for a partially loaded (symmetric) crack in a strip of
infinite height can be expressed as,
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S

- (o (22)
cos| — sinf —
(2 ) ( 2 )

A, = —0.025+B1(1—E)
o

sin| —

1.0+A 0> + A0 ( )

K, =gpm o 1O 2
i

where

. 23)
A, =O.06+B2(1——)
o

A least squares fit of Eq.(22) with respect to the solution obtained using
the approximate weight function (Eqs.(13-15)) gives the coefficients B,

and B,. The numerical values obtained are,
B;=0.321549 ; B»=-0.324864 24)

The maximum absolute error in the fit is less than 3.3 % for a-values less
than 0.9 as compared to the weight function solution. Eq.(22) is reduced
to Eq.(1) for y=0 when the crack surface pressure extends over the entire
crack length, x=0L.

Furthermore, Eq.(22), with A;=A,=0, is identical to the equation

suggested by Newman, Jr, Ref.[3]. For that reason the equation is called
the “Modified Newman” equation herein.

The same approach, fitting an equation to the results obtained using the
approximate weight function technique, was taken by Jiam-Zhong and
Wu, Ref.[5]. They derived the following expression for the stress
intensity factor,

K,=—pvma| -——| —— sin —7
TP 2 1|2 (na) (25)
sin| —
2
where
r, =1+0.24%? (26)

and By is identical to Eq.(2).

Eq.(25) is said to have a high accuracy because of the high accuracy in
the weight function used (better than 2 % for 0<0.85). Compared to the
results obtained with the approximate weight function used herein
(Egs.(13-15) the maximum relative difference found for 0<0.85 is 3.6 %.

17
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4.1 Finite Element Analysis

The finite element (FE) code STRIPE, which uses the hp-version of
adaptive technique, has been used to assess the accuracy of some stress
intensity factor expressions. Only volume elements are included in the
STRIPE code but they may have rather extreme ratios between the side
lengths without any practical loss in accuracy. Thus, the elements can be
used to model a relatively thin sheet. However, as a result of using
volume elements a complete 3-dimensional analysis is obtained. This
means that the stress intensity factor varies across the sheet thickness. In
the STRIPE model the stress intensity factor is computed for a number of
locations along the crack front. Even in the case of a through the
thickness crack in a model using only one layer of elements for the
thickness direction several stress intensity factor values are obtained for
the thickness direction. This causes some difficulties when comparing the
results to 2-dimensional analytical solutions. Also, the comparison
between the results of the 3-dimensional model and the results of the 2-
dimensional analytical solutions becomes less relevant when the length
of the crack is close to the thickness of the sheet or the crack surface load
is close to the crack front.

Firstly, the accuracy of the FE-model was assessed by computing the
stress intensity factor for a centre cracked rectangular plate loaded with a
uniformly distributed stress acting on the edges parallel to the crack
surfaces. The width to height ratio of the FE-model was 0.25 and the
thickness to width ratio was 0.01. The width itself was 100 mm. Totally,
the model included 140 20-noded volume elements representing the
upper half of the rectangular sheet. The number of elements in the crack
plane was 40. It was assumed that Eq.(1) would be a good reference for
comparisons since the height correction is almost negligible for y=0.25
(less than 1.5 %).

Figure 6 shows the result of the STRIPE computation as a relative
comparison to Eq.(1). For each crack length investigated, three different
values of the stress intensity factor, from the STRIPE computation, were
considered. The comparison shows that the value obtained for the plate
surfaces gives the best correlation with the equation. The largest relative
difference, 0.93 %, occurs for the normalised crack length, a/E, of 0.95.
The average values (root mean squared) and the centre values obtained in
the STRIPE computation are consistently higher than the corresponding
values from the equation, as can be seen in the figure.

Secondly, to further assess the accuracy of the FE model the same centre
cracked plate was considered but now subjected to a symmetrically
applied partial crack surface pressure extending from x=-x to

X = Xy . The normalised stress intensity factor in this case is obtained as,
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K
B=2" @7
0

where Kjj is the exact solution for the infinite plate given by,

K, = —ZPM sin” (X—U)

. a (28)

Kj is given by Eq.(22) or Eq.(25). For the plate of finite width the
combination of Egs.(22), (27), and (28) yields,

K 21 .2 . [ TK
1-— (B, +B,a sin| —
( 00)( L )a B (2)

Bw + sin” | ——=%
T sin(E oc)
cos 5 o 2
.o ( K) (29)
sin”'| —
o

where, as before, o0 and k are given by Eqgs.(3) and (10), respectively.

B=

By is the finite width correction for the remotely loaded centre cracked
plate according to Eq.(2). The coefficients By and B, are given by
Eq.(24).

Similarly, the combination of Egs.(25), (27) and (28) yields,

. [ TK
e ale G
=|=--=|=- sin”' LA
P=12"112 .(na) (Kj (30)
Sin 7 Sin —

(0

where rq is given by Eq.(26).

Figure 7 shows the normalised stress intensity factor as function of the
normalised loading position, k/o, as obtained using the STRIPE model
and Eq.(28) for four different crack lengths. Again, it is the values on the
plate surface obtained by the STRIPE model that have been used. The
normalised loading position, in the figure, represents the boundaries of
the partial crack surface pressure. In Figures 8 and 9 comparisons are
made between the normalised stress intensity factors computed using
STRIPE and those calculated using Eqgs.(29) and (30), respectively.

The maximum absolute relative difference in the STRIPE solution is
about 5 % as compared to the equations. The curves of relative
differences, in figures 8 and 9, show some unevenness. This is due to
several factors. Firstly, the STRIPE solution was obtained by applying

19
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the crack surface pressure over the range from x=0 to x=xy and
computing K} and K} separately. These two stress intensity factors
were then superposed to obtain the total solution. Secondly, in order to
obtain a sufficiently large number of loading positions for each crack
length with the rather coarse mesh used, the computations had to be
repeated with small changes of the finite element mesh in between.
Changing the mesh also changes the results of the computations to some
extent. In some cases this resulted in several different stress intensity
factor values for the same loading position, as can be seen in the figures.
However, this gives an indication of the relative errors in the STRIPE
solution due to mesh variations.

The comparison above was made to verify the STRIPE model but it also
confirms the accuracy of the approximate weight function technique. It
seems as the approximate weight function technique gives stress intensity
factors with an accuracy better than 5 % for 0:<0.9 and y<0.25.

4.2 Finite Height Correction

In section 3 a load and boundary correction factor, By, for the centre

cracked rectangular sheet with the crack surfaces partially subjected to a
symmetrically applied uniform pressure was obtained in tabular form. In
the previous section a closed form expression for the case of the height
being greater than two times the width of the sheet was developed. Using
this closed form expression as a base a correction factor for the case
where the height is smaller than two times the width can be obtained.

A study of By, presented in Table 1, suggests a correction factor of the

following form,

(o -x)
1-x

fy = 1+¢(D1 +D,y+ (D, +D4y)) 31D

to be applied to the normalised stress intensity factor according to
Eq.(29). o, k and v are given by Egs.(3), (9) and (5), respectively. The D,

coefficients are functions of x according to,
D, =0.0894194(1 - 4.330e045%/x )

D, =-0.111202(1— 21.01e™0518/% )

D, =-0.499953(1 - 0.352¢ 0633/

D, =3.024540(1—1.262¢ 756/ )

(32)

where the numerical values have been obtained by using the method of
least squares. The complete stress intensity factor may now be written,
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KI:

29 G (e (33)
T

where P is given by Eq.(29).

Relative comparisons are made in Figures 10 to 13 between the stress
intensity factor according to Eq.(33) above and the stress intensity factor
obtained by the approximate weight function method, Eq.(14). The
comparison is made for five selected values of y and four selected values
of k¥ as shown by the figure captions. In general the relative differences
are small, a few percent, but increases rapidly for normalised crack
lengths above 0.9. The latter is due to numerical difficulties associated
with the approximate weight function technique for large crack lengths.
Furthermore, for the plate having y=1 and loaded with x=0.1 relative
differences of up to 8.6 % are obtained for short crack lengths, as can be
seen in figure 10.

21
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5 SIF-Equations for a Centre Cracked Strip Sub-
jected to Two Pairs of Splitting

The same centre cracked plate as a in previous sections was subjected to
two pairs of splitting forces, symmetrically located with respect to the
centre of the crack, see Figure 14. In this case Eq.(16) by Tada applies,
which, in the symmetric case, may be written,

140.297+/1-p? 1—cos(ﬂ]
2P [ma (noc) 2
— _|—tan| —

CJma\ 2 2 (34)

where p =K/o has been introduced and the approximate value 0.297 is

used instead of TC/ \NRP -4 -1,

A second solution, based on the Force-Balance Method, is suggested by
Chen et.al., Ref.[9], which reads,

K 2P T ;
177 2.2 (35)
Ta WCOS_I(ZGI K2 1)
- K

The stress intensity factor, K, for an infinite plate where the crack is
subjected to two pairs of splitting forces is exactly,

Ky =t — 36
0 \/ﬁ 1_p2 ( )

The normalised stress intensity factor, K, / K, , as function of the
normalised loading position, Xy / a, for four different normalised crack

lengths has been compared for the two equations above in Figure 15. The
maximum relative difference is 11.6 %. The formula by Chen et. al.
results in larger values than the formula by Tada except for the largest
crack length where the two solutions intersect each other at a normalised
loading position of p=0.4.
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5.1 Finite Element comparison

In order to find out which one is the most accurate of the two equations,
studied in the previous section, a finite element analysis was carried out.
The same STRIPE model as used in section 4.1 was modified for this
task.

In the STRIPE model it is not possible to apply the four point forces
representing the two pairs of splitting forces. Instead a concentrated
uniform crack surface pressure, acting over 1/2000 of the specimen width
and the complete thickness, was applied, see Figure 16. Two approaches,
a direct one and one based upon a polynomial fit followed by a
superposition were used to obtain the stress intensity factor.

In the direct approach the concentrated crack surface pressure was
actually applied in the STRIPE model. This approach has a drawback in
difficulties to obtain reliable values for loading positions close to the
centre of the crack and close to the crack tip because of the sizes of the
finite elements.

The superposition approach made use of the already computed solutions
for the uniform crack surface pressure acting over the entire range [O,
xyl. These solutions were fitted very accurately with polynomials, the

maximum absolute relative errors being less than 2.7 %, in the range 0.1
<x(y/a<0.9. In particular, the average of the absolute relative errors for

crack tip A was less than 0.65 %. The maximum relative error for crack
tip B was less than 0.53 % in the range 0.025< xy/a <0.95.

Using the polynomials the stress intensity factor for a concentrated crack
surface pressure was obtained as the difference in polynomial value for ¥

= xt and ¥ = x~, where,

_ X 1 X 1
=Y ——; '="t4

(37)

N =

E 2000 E 2000

In addition to the two equations in section 4.1, Egs.(29) and (30), and in
order to obtain a direct comparison to the STRIPE model results the
modified Newman equation, Eq.(22), was used. Superposition of Eq.(22)

with itself for k= x* and K = K" yields,
.| K™
sin| —
1 ( 2 ) -

. ( ) f (38)
Sin (04

sin K
_ ZPN/E . -1 2

s

T (m
sinf — O
(2 )

K, fy —sin”

oA
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(1—502—](13, +B,0 o>

(TC ) ; S=4, - (39)
cos| — O
2

where By according to Eq.(2) has been introduced.

f\jv =Bw+

The exact stress intensity factor for an infinite plate with two pairs of
symmetrically located concentrated crack surface pressures is obtained
as,

K, = 2pma {sin‘l (K—] —sin”! (K—)] (40)
T o o

by superposing Eq.(28) with itself for k = xtand k = x".

A study was made regarding the effect of applying the load as a
concentrated crack surface pressure instead of as point forces.
Substituting the point force P in Eq.(36) by the force created of the
concentrated crack surface pressures gives,

K. = 2p(K+—K‘)J1Ta 1
b=

yv0 ) 1._p2

(41)

The relative difference between Eq.(40) and Eq.(41), as shown in Figure
17 for some specific crack lengths, indicates that the error made by using

concentrated crack surface pressures instead of point forces is very small
for loading positions xy/a < 0.9.

Figure 18 shows the normalised stress intensity factor as function of
normalised loading position for four different crack lengths as obtained
using STRIPE and Eq.(40). The results of both approaches to obtain the
stress intensity factor are included in the figure. The results obtained
using the polynomial fit and superposition approach have been fitted with
new polynomials with coefficients according to the figure caption. Due to
the waviness of the curves obtained by the initial polynomial fit and
superposition approach the relative errors for the new polynomials are as
high as 14.5 %, but the average of the absolute relative errors is less than
4 %. Also, compared to the direct approach the new polynomials have
relative errors less than 4.5 %.

Figures 19 to 22 show the relative difference between the results of the
three equations (Egs. 34, 35 and 38) above and the STRIPE results. The
results from the formula by Tada and the “Modified Newman” equation
are all within 5 % of the STRIPE results. The results obtained using the
formula by Chen et. al. show relative differences of up to 14.7 %.
Obviously, the equation by Chen et. al. is less accurate than the other two
equations.
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6 The SIF and a SIF-Equation for a Centre
Cracked Strip Subjected to a Non Symmetric
Crack Surface Pressure

In section 4.1 the stress intensity factor for a centre cracked strip
subjected to a crack surface pressure extending from x=0 to x=x; was
computed using STRIPE. The solutions for crack tips A and B were fitted
very accurately with polynomials in section 5.1 before they were
superposed. In this section the results before superposing the polynomials
are compared to a closed form solution by Chen et. al., Ref.[6], obtained
using the force balance method.

The polynomials for the STRIPE solution are written,

A A
PP (xy/a)=Y qf(xy/a)” 5 i=1234 42)

j=0

where the coefficients q are presented in Table 2. The upper limit of the
summation index j was variable depending on the accuracy of the fit. It
should be observed that the polynomials give the stress intensity factor
based upon a crack surface pressure of 100 MPa and that they have the

same unit as the stress intensity factor (MPa+~/ mm ).

The closed form solution by Chen et. al. is rather lengthy as can be seen
in the following. The stress intensity factor is written,

a
K =p 25 B )58,

kP =, (-5,

where the parts in front of the B-factors are the exact stress intensity
factors for an infinitely large plate. The functions F, and F, are given by,

(43)

F, =sin"'(xy /a)—sin~!(x, /a)
F, =\/1—(XL/3)2 —\/1-—(xU/a)2

where x; and xy; represents the lower and upper boundaries of the crack

(44)

surface pressure, respectively. In the present case x; is equal to zero. The

boundary correction factors f are given by,
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A ——
BB _ (Fs "Qx)(FlFs + 2()‘1:21:3)i 2(F, -2Q, )(F1F3 + 0‘F2F4) (45)
W F,(F?F - 20°F2F, )
where
E, =/1-a?
1+F (462)
F, =ln( il 3)
o
F, =F, +0’F,
T (XU _XL)
F=—+ —=£ 46b
6= B (46b)
(XU + XL)
E = F
7 B 6
and
Xy L
Q] _ E(nxu +(DXU )_E(T]XL +(DXL)—
6xU +ﬁxL _\IIXU +\|IxL
2 2 (46¢)
X
(oo
Q2= EEFE 1
_%i‘_(ﬂxu _ﬂxL Wiy +\|!xL)
with
1. =tan‘1( K ’a+xuj
I+a\a—-xy
(46d)
n. = tan_l( E a+xL]
I+a\a—xg
o, = tan_l( 5 [a=Xy J
I+o\a+xy
(46e)
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By, = tan ™"

-1
Y, =tan

Yy = tan™"
Yy, = tan ™!

1-+/1-(xy/a)* = (xy/E)
(xu/a)E;

1- 1“(XL/3)2 —(XL/E)
(XL/a)F3

1-1-(xy/a)" +(xu/E)

(X u/ a)F3

1=1-(x./a)’ +(x./E)

(XL/a)F3

(46f)

(46g)

Figures 23 and 24 show the relative difference between the polynomial
solution, Eq.(42), and the solution by Chen et. al., Eq.(43), for crack tips
A and B, respectively. The relative differences are rather large for both
crack tips in combination with normalized loading positions greater than

0.5.

If x; = -Xyy is introduced in Eq.(43) then an equation corresponding to the

“Modified Newman” equation is obtained. In Figure 25 a comparison is
shown for this case. The relative difference between the two equations
increases with increasing crack length. Also, the equation by Chen et. al.
results in stress intensity factors smaller than those obtained with the
Modified Newman equation.
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7 The SIF for a Centre Cracked Strip Subjected
to a Single Pair of Splitting Forces

Finally, the centre cracked strip was subjected to a single pair of splitting
forces acting at the position xyy along the crack surfaces. Again the

equation by Tada, Eq.(16), is directly applicable.

In addition to Eq.(16) a second solution, based upon the force-balance
method, by Chen et. al., Ref.[10], is included in the comparison. The
solution by Chen et. al. can be written,

KA = P m(l+p)

ma «/1—p2 tan ! l 1-o
o 1—p2

47

(b P {1 -p) “n

D=

i J1-p® tan’l(l 1-o?
a\1-p?
p

The exact stress intensity factor for an infinite plate loaded by a single
pair of point forces acting at the position xy; along the crack surfaces is,

KA = P at+Xxy
0 Ama \a—Xy 4
B P a_XU ( )
Ky =

Jma \a+x,

It is easily verified that the normalised stress intensity factor, K;/K,

based upon Eqs.(47) and (48) becomes identical for crack tip A and crack
tip B if E in o becomes infinite.

The normalised stress intensity factor as function of the normalised
loading position for four different crack lengths as obtained using
Eqgs.(16), (47) and (48) is shown in Figures 26 and 27. The relative
differences between the results of the two equations are within 11.5 % for
crack tip A but goes up to 157 % for crack tip B.
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7.1 STRIPE Solution for the Single Force

Pair
The STRIPE model results, already obtained in section 4.1, were used to

evaluate the stress intensity factors Kf* and K7 for a concentrated crack

surface pressure applied over the range ¥ = ¥ to K = k™. The evaluation
made use of the polynomial fit described in sections 5.1 and 6 and the
principle of superposition.

The exact stress intensity factor for an infinitely large sheet subjected to a

concentrated crack surface pressure applied between k™ and x* becomes,

i + - +\2 _ 27
K2 _pima sin‘l(—&]—sin“‘(ij—\/l—(](—] +J1—[K—J
T i (04 (0 (04 o
Kg =—~p\/a sin"l(ﬁj—sin‘l(](—_j+\/l~(]<—+] —\/1—(](——) 49)
n o o o o

The STRIPE model results from sections 4.1, 5.1 and 6 can be written

A

A

(30

K2, (o), %)= P (0, %) j=1234

Subscript U has been added to the stress intensity factors to indicate that
they correspond to a uniform crack surface pressure applied over the

range x=0 to x=xy;. P; are the fitted polynomials with coefficients

according to Table 2.. For the concentrated crack surface pressure the
superposition of Eq.(50) with itself results in,

A A A

K/ (O‘j’K)zKfu(aj’K+)_KfU(0‘jsK_) i=12,34 (51)

The normalised stress intensity factor, Ky/Kq, as function of the

normalised loading position as obtained using Eq.(51) and Eq.(49) is
shown in Figures 28 and 29 for four different crack lengths. Also shown
in the figures are the results for a pair of splitting forces acting at the
centre of the crack as obtained by Tada, Ref.[7]. Furthermore, some
results obtained directly using the STRIPE-model with the concentrated
crack surface pressure actually applied are shown (thus not involving the
polynomial fit). Finally, the figures show solid lines representing new

polynomials for the normalised stress intensity factors K‘I/ Ki0 . These

polynomials were obtained by the method of least squares. Also, the
polynomial orders and their coefficients are given in the figures.
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The maximum relative difference in the new polynomial fits with respect
to Eq.(51) is considerably different for crack tip A and crack tip B. For
crack tip A the maximum relative difference is 27.2 % whereas for crack
tip B the maximum relative difference is 4.8 %. The rather large relative
error for crack tip A is due to the waviness of the curves obtained using
Eq.(51). This waviness is partly artificial and due to the evaluation
procedure. Comparing the new polynomials to the results obtained using
the direct approach gives a maximum relative difference, for crack tip A,
of 4.4 %.

From figures 28 and 29 it is clear that the finite width correction (the
normalised stress intensity factor) is different for the two crack tips.
Thus, the proposed equation by Chen et. al. cannot be correct.

Figures 30 and 31 show the relative difference between the stress
intensity factors according to Tada and those obtained using the STRIPE
results combined with polynomial fits for crack tips A and B,
respectively. For crack tip A the relative difference is less than 15 %,
whereas, for crack tip B the relative difference becomes greater than
75 % for long cracks and loading positions close to the crack tip.

Figures 32 and 33 show the comparison between the results of Chen et.
al. and STRIPE. In this case the relative differences are within 23 % for
crack tip A and exceed 40 % for crack tip B.

Asymptotically, the equation by Tada gives the exact stress intensity
factor as the width of the plate becomes infinite. Also, for the splitting
forces acting in the centre of the crack the equation results in the formula
proposed for this case in Ref.[7]. The first term in Eq.(16) represents the
exact solution to a periodic array of collinear cracks, each one subjected
to a single pair of splitting forces. Thus, Eq.(16) is obtained as an
interpolation between the exact solution for collinear cracks and the
solution for a splitting force in the centre of the crack. This interpolation
does not seem to consider crack tip B correctly.

The normalised stress intensity factors obtained using STRIPE show a
good correlation with the results obtained using the formula for the
splitting forces acting in the centre of the crack.
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8 Conclusion

A stress intensity factor equation has been developed for the centre
cracked rectangular sheet subjected to a uniformly distributed stress
acting on the edges parallel to the crack line. In general, the equation has
an accuracy better than 4 %.

A stress intensity factor equation has been developed for the centre
cracked strip having a crack subjected to a symmetrically applied and
uniformly distributed partial crack surface pressure. The equation
represents a least squares fit with respect to results obtained using the
approximate weight function technique. Furthermore, the results of the
equation correlated very well with some finite element results obtained
using the STRIPE code. The accuracy of the formula is estimated to be
better than 5 %. Since, the formula has many similarities with an
equation proposed by Newman it was called the “Modified Newman”
equation.

A finite height correction factor for the centre cracked strip subjected to a
partial crack surface pressure has been developed. Stress intensity factors
obtained using the approximate weight function technique were in
general fitted very well using the equation for the centre cracked strip
multiplied with the finite height correction factor. The accuracy is
assumed to be better than 5 % for a very large range of width to height
ratios. However, for ratios greater than 1.5 the accuracy is not so good in
combination with small cracks.

Two stress intensity factor equations, found in the literature, for a centre
cracked strip subjected to two pairs of splitting forces applied
symmetrically with respect to the centre of the strip were verified using
the finite element code STRIPE. Because of point forces not being
possible to apply in the finite element model two pairs of concentrated
crack surface pressures were used instead. The technique of using
concentrated crack surface pressures was verified by comparing the exact
solutions for an infinite plate with a crack subjected to the two loading
alternatives. Also, the STRIPE result was compared to the result of the
Modified Newman equation. The latter was achieved by using the
principle of superposition. It was found that the equation proposed by
Tada, which is said to have an accuracy better than 1 %, yielded results
within 5 % of the finite element results. Also, the Modified Newman
equation gave results within 5 % of the finite element results. The third
equation, proposed by Chen et. al., based on the force balance method
was less accurate and showed relative differences of up to 14.7 % as
compared to the finite element results.
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Non symmetric loading with respect to the centre of the strip has been

studied in two cases. Firstly, a uniformly distributed crack surface
pressure acting from the centre of the crack to a co-ordinate x; on the

crack surface was investigated. A rather lengthy formula, based upon the
force balance method, was compared to some results obtained using the
finite element model developed. Rather large relative differences were
found for both crack tips. Using the principle of superposition stress
intensity factors calculated from the formula were compared to
corresponding factors obtained by the Modified Newman equation. Also
in this case rather large relative differences were found.

The second non symmetric loading condition studied was a single pair of
splitting forces acting at the position xy; on the crack surfaces. Firstly,

two equations from the literature were compared for this loading case.
For the crack tip nearest the point forces the relative difference in stress
intensity factors for the two equations was less than 11.5 %. However,
for the crack tip away from the point forces relative differences of more
than 150 % were found.
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a/E

0.11
0.128
0.146
0.163
0.181
0.199
0.217
0.235
0.252

0.27
0.288
0.306
0.324
0.341
0.359
0.377
0.395
0413

043
0.448
0.466
0.484
0.502
0.519
0.537
0.555
0.573
0.591
0.608
0.626
0.644
0.662

0.68
0.697
0.715
0.733
0.751
0.769
0.786
0.804
0.822

0.84
0.858
0.875
0.893
0.911
0.929

E/H=0

0.733
0.5799
0.4911
0.4299
0.3843
0.3489
0.3205
0.2973
0.2779
0.2616
0.2477
0.2358
0.2254
0.2165
0.2087
0.2019

0.196
0.1908
0.1863
0.1825
0.1792
0.1764
0.1741
0.1722
0.1708
0.1698
0.1691
0.1689
0.1691
0.1696
0.1706

0.172
0.1738
0.1761
0.1789
0.1823
0.1863

0.191
0.1965
0.2029
0.2104
0.2192
0.2294
0.2414
0.2553
0.2705
0.2898

E/H=0.25 E/H=0.5 E/H=0.75 E/H=1.0

0.7401
0.5872
0.4987
0.4375
0.392
0.3566
0.3282
0.305
0.2856
0.2693
0.2554
0.2434
0.2331
0.2242
0.2164
0.2096
0.2037
0.1986
0.1941
0.1903
0.187
0.1843
0.182
0.1802
0.1788
0.1779
0.1774
0.1772
0.1775
0.1782
0.1792
0.1808
0.1828
0.1853
0.1883
0.1919
0.1962
0.2012
0.2071
0.2139
0.2219
0.2313
0.2422
0.2551
0.27
0.2866
0.3078

0.7554
0.6039
0.5162
0.4558
0411
0.3762
0.3485
0.3258
0.3071
0.2914
0.2782
0.2669
0.2573
0.249
0.242
0.2359
0.2308
0.2265
0.2229
0.22
0.2177
0.2159
0.2147
0.214
0.2138
0.2141
0.2149
0.2161
0.2179
0.2202
0.223
0.2264
0.2304
0.2351
0.2406
0.2469
0.2541
0.2624
0.272
0.2831
0.2959
0.3109
0.3284
0.3493
0.374
0.4028
0.4408

0.7791
0.6297
0.5437
0.4848
0.4413
0.4078
0.3814
0.3601
0.3426
0.3283
0.3164
0.3065
0.2982
0.2915
0.2859
0.2815

0.278
0.2754
0.2735
0.2724

0.272
0.2723
0.2732
0.2747
0.2769
0.2797
0.2831
0.2872
0.2919
0.2974
0.3037
0.3108
0.3189
0.3279
0.3381
0.3497
0.3627
0.3774
0.3942
0.4135
0.4356
0.4615
0.4918

0.528
0.5715
0.6235
0.6936

0.8111
0.6648
0.5813
0.5245
0.4831
0.4517
0.4272
0.4079
0.3925
0.3802
0.3704
0.3626
0.3566
0.3521
0.3489
0.3469
0.3459
0.3459
0.3468
0.3485
0.3511
0.3545
0.3586
0.3636
0.3693
0.3759
0.3833
0.3917

0.401
0.4114
0.4228
0.4355
0.4496
0.4653
0.4826

0.502
0.5237
0.5481
0.5757
0.6071
0.6432
0.6852
0.7345
0.7934
0.8646

0.951
1.0682

Table 1. Normalized stress intensity factor K;/K;, for a centre crack in a

rectangular sheet subjected to a partial crack surface pressure applied

over -0.1=<x/E=<0.1. K, =p+ma .
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a/E E/H=0.0 E/H=0.25 E/H=0.5 E/H=0.75 E/H=1.00
0.26 0.8645 0.881 0.9267 1.0018 1.1062
0.275 0.7731 0.79 0.8381 0.9176 1.0285
0.29 0.7127 0.7299 0.7802 0.8637 0.9806
0.304 0.6668 0.6843 0.7366 0.8239 0.9465
0.319 0.63 0.6477 0.7019 0.7929 0.9211
0.334 0.5995 0.6173 0.6734 0.7681 0.9018
0.349 0.5738 0.5917 0.6496 0.7479 0.8871
0.364 0.5517 0.5698 0.6295 0.7314 0.8761
0.378 0.5326 0.5508 0.6124 0.7179 0.8682
0.393 0.516 0.5344 0.5977 0.707 0.8629
0.408 0.5015 0.52 0.5852 0.6982 0.8599
0.423 0.4889 0.5074 0.5746 0.6914 0.8589
0.438 0.4778 0.4964 0.5655 0.6862 0.8598
0.452 0.4681 0.4868 0.5579 0.6827 0.8625
0.467 0.4596 0.4785 0.5516 0.6806 0.8667
0.482 0.4523 0.4713 0.5466 0.6798 0.8725
0.497 0.446 0.4651 0.5426 0.6803 0.8799
0.512 0.4407 0.4599 0.5397 0.682 0.8887
0.526 0.4363 0.4556 0.5379 0.685 0.899
0.541 0.4327 0.4522 0.5369 0.6891 0.9107
0.556 0.4299 0.4496 0.5369 0.6943 0.9239
0.571 0.4279 0.4478 0.5379 0.7007 0.9387
0.586 0.4267 0.4468 0.5397 0.7083 0.9551
0.6 0.4262 0.4465 0.5425 0.7172 0.9731
0.615 0.4265 0.447 0.5462 0.7272 0.9929
0.63 0.4275 0.4483 0.5508 0.7386 1.0145
0.645 0.4292 0.4503 0.5565 0.7514 1.0381
0.66 0.4317 0.4531 0.5631 0.7657 1.0638
0.674 0.435 0.4568 0.5709 0.7815 1.0919
0.689 0.4392 0.4613 0.5798 0.7991 1.1226
0.704 0.4443 0.4668 0.59 0.8186 1.156
0.719 0.4502 0.4732 0.6015 0.8401 1.1925
0.734 0.4573 0.4808 0.6146 0.864 1.2326
0.748 0.4654 0.4895 0.6293 0.8904 1.2766
0.763 0.4747 0.4994 0.6458 0.9197 1.3251
0.778 0.4854 0.5108 0.6644 0.9524 1.3787
0.793 0.4977 0.5239 0.6855 0.9889 1.4384

0.808 0.5117 0.5388 0.7093 1.03 1.5052
0.822 0.5276 0.5557 0.7362 1.0762 1.5801
0.837 0.5458 0.5751 0.7668 1.1286 1.665
0.852 0.5668 0.5975 0.8022 1.189 1.7625

0.867 0.5912 0.6235 0.8433 1.2592 1.8758
0.882 0.6182 0.6524 0.8897 1.3392 2.0056
0.896 0.6481 0.6846 0.9427 1.4319 2.1572
0.911 0.6816 0.7208 1.0043 1.5417 2.3382
0.926 0.7187 0.7613 1.0768 1.675 2.561

Table 1. Normalized stress intensity factor K;/K, for a centre crack in a

rectangular sheet subjected to a partial crack surface pressure applied
over —0.25=<x/E=<0.25. K, =p-/ma .
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a/E E/H=0.0 E/H=0.25 E/H=0.5 E/H=0.75 E/H=1.00
0.343 0.9225 0.944 1.012 1.1266 1.2879
0.356 0.8513 0.8733 0.9443 1.0644 1.2337

0.37 0.8028 0.8252 0.8989 1.0242 1.2013
0.383 0.7655 0.7881 0.8645 0.9948 1.1794
0.396 0.7351 0.758 0.837 0.9723 1.1643
0.409 0.7097 0.7329 0.8144 0.9546 1.1541
0.422 0.6881 0.7115 0.7955 0.9407 1.1477
0.435 0.6695 0.6931 0.7797 0.9298 1.1444
0.448 0.6534 0.6773 0.7663 0.9215 1.1437
0.462 0.6394 0.6635 0.7551 0.9154 1.1454
0.475 0.6273 0.6515 0.7458 0.9113 1.1493

0.488 0.6167 0.6411 0.7381 0.909 1.155
0.501 0.6075 0.6322 0.7319 0.9082 1.1627
0514 0.5997 0.6245 0.7271 0.909 1.1721
0.527 0.593 0.618 0.7235 0.9113 1.1832

0.54 0.5874 0.6126 0.7211 0.9149 1.196

0.553 0.5828 0.6083 0.7199 0.9199 1.2104
0.567 0.5792 0.6049 0.7198 0.9263 1.2266

0.58 0.5766 0.6025 0.7207 0.9339 1.2444
0.593 0.5748 0.601 0.7227 0.9429 1.2641
0.606 0.5738 0.6003 0.7257 0.9533 1.2855
0.619 0.5738 0.6006 0.7298 0.965 1.3089
0.632 0.5746 0.6017 0.735 0.9782 1.3343
0.645 0.5762 0.6037 0.7413 0.9929 1.3617
0.659 0.5787 0.6065 0.7486 1.0092 1.3915
0.672 0.5821 0.6103 0.7572 1.0272 1.4236
0.685 0.5865 0.6151 0.767 1.0469 1.4584
0.698 0.5917 0.6208 0.7781 1.0686 1.496
0.711 0.598 0.6276 0.7907 1.0924 1.5367
0.724 0.6053 0.6355 0.8047 1.1185 1.5809

0.737 0.6138 0.6446 0.8204 1.147 1.6288

0.75 0.6236 0.655 0.8379 1.1785 1.681
0.764 0.6346 0.6668 0.8573 1.2129 1.7379
0.777 0.6471 0.6801 0.879 1.2508 1.8002

0.79 0.6613 0.6953 0.9033 1.2929 1.8688
0.803 0.6772 0.7121 0.9302 1.3392 1.9441
0.816 0.6952 0.7313 0.9604 1.3909 2.0277
0.829 0.7158 0.7532 0.9947 1.4491 2.1215
0.842 0.7386 0.7774 1.0327 1.5137 2.2256
0.856 0.7645 0.805 1.0759 1.5869 2.3434
0.869 0.7952 0.8376 1.1266 1.6724 2.4805
0.882 0.8276 0.8722 1.1817 1.7666 2.6328
0.895 0.8639 09111 1.2444 1.8749 2.8085
0.908 0.9119 0.9624 1.3257 2.0135 3.0317
0.921 0.94 0.9936 1.3877 2.1341 3.2384

Table 1. Normalized stress intensity factor K;/K;, for a centre crack in a

rectangular sheet subjected to a partial crack surface pressure applied
over —0.333=<x/E=<0.333 K, =p+/7a .
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a/E E/H=0.00 E/H=0.25 E/H=0.50 E/H=0.75 E/H=1.00
0.51 1.0686 1.1008 1.2312 1.46 1.7872
0.52 1.0271 1.0598 1.1942 1.4305 1.7688
0.53 0.998 1.0311 1.1695 1.4133 1.7627

0.539 0.9756 1.0092 1.1514 1.4026 1.7631
0.549 0.9576 0.9916 1.1377 1.3964 1.7682
0.559 0.9428 0.9772 1.1272 1.3936 1.7767
0.569 0.9305 0.9653 1.1194 1.3934 1.7881
0.579 0.9204 0.9556 1.1136 1.3955 1.802
0.588 0.912 0.9476 1.1098 1.3997 1.8183
0.598 0.9052 0.9412 1.1076 1.4057 1.8366
0.608 0.8998 0.9361 1.1069 1.4134 1.857
0.618 0.8956 0.9324 1.1075 1.4227 1.8793
0.628 0.8927 0.9298 1.1096 1.4336 1.9036
0.637 0.8908 0.9284 1.1128 1.4461 1.9299

0.647 0.89 0.9281 1.1173 1.4601 1.9582
0.657 0.8902 0.9287 1.123 1.4756 1.9885
0.667 0.8915 0.9304 1.1299 1.4927 2.021
0.677 0.8937 0.9331 1.138 1.5114 2.0556
0.686 0.8969 0.9368 1.1474 1.5318 2.0925
0.696 0.901 0.9415 1.158 1.5538 2.1319
0.706 0.9062 0.9473 1.1698 1.5778 2.1738
0.716 0.9124 0.9541 1.183 1.6035 2.2185

0.726 0.9196 0.9619 1.1977 1.6313 2.2661
0.735 0.9279 0.9709 1.2137 1.6613 2.3168
0.745 0.9374 0.9811 1.2314 1.6935 2.3709

0.755 0.948 0.9925 1.2507 1.7283 2.4287
0.765 0.96 1.0052 1.2719 1.7657 2.4905
0.775 0.9732 1.0193 1.2949 1.806 2.5567
0.784 0.9879 1.035 1.3201 1.8496 2.6278

0.794 1.0042 1.0523 1.3475 1.8967 2.7042
0.804 1.0222 1.0714 1.3774 1.9477 2.7866
0.814 1.0421 1.0924 1.4102 2.003 2.8756
0.824 1.064 1.1156 1.446 2.0633 2.9722
0.833 1.0881 1.1412 1.4853 2.1289 3.0772
0.843 1.1149 1.1695 1.5285 2.2009 3.1919

0.853 1.1443 1.2006 1.576 2.2798 3.3175
0.863 1.177 1.2353 1.6287 2.3672 3.4563
0.873 1.213 1.2735 1.6868 2.4634 3.6091
0.882 1.2532 1.316 1.7516 2.5709 3.7799

0.892 1.2967 1.3622 1.8226 2.6895 3.9687
0.902 1.3448 1.4133 1.9019 2.8226 4.1815
0.912 1.3918 1.4636 1.9832 2.9628 4.4087
0.922 1.4379 1.5134 2.0681 3.1146 4.6588

Table 1. Normalized stress intensity factor K;/K;, for a centre crack in a

rectangular sheet subjected to a partial crack surface pressure applied
over —0.5=<x/E=<0.5. K, =p+/ma .
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Crack tip A Lj
j= i=1 i=2 i=3 i=4
1 -0.1753 -1.6049 0.6798 -0.6096
244.8888 523.9402 211.1279 1006.5613
3 -992.4958 | -4322.8127 7243.6957 -2502.2250
4 7192.9019( 30157.8244| -62689.9077 21476.5445
5 -23463.1345| -94590.7155| 265855.5007 | -73311.0860
6 40570.4335| 151252.2765|-605033.3511| 125922.8715
7 -35158.9224 | -119446.0956 | 759579.7803 | -105866.5806
8 12028.8495| 37064.5296 | -495885.9895 34706.1028
9 131619.5600
Crack tip B
Jj= i=1 i=2 i=3 i=4
1 0.0250 0.0482 0.0885 0.1103
2 181.3532 297.3493 477.8228 874.5063
3 -76.8574 -93.4088 -141.7923 -270.5775
4 -7.7603 -93.8718 -135.7170 -258.1570
5 33.2575 151.0280 199.5988 335.0025
6 -24.1625 -81.6333 -109.0848 -168.1017

Table 2. Polynomial coefficients for the stress intensity factor at crack
tips A and B of a strip subjected to a uniform crack surface pressure
between 0<x<Xxyj
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Figure 1.

Dimensions and loading of centre cracked rectangular plate.



FOI-R--0091--SE

4
a E/H=1.25, Ref.[2] 3
< E/H=1.0, Ref.[2]
o
o E/H=0.83333, Ref.[2]
3.5 A E/H=0.625, Ref.[2]
B E/H=0S5,Ref[2] g
® E/H=0.3333, Ref.[2]
& E/H=0, Ref.[2]
3 - v E/H=1.25, Fitted equation 9
S s
S r E/H=1.0, Fitted equation
(2] (m] Q
« . .
= % E/H=0.83333, Fitted equation
g b 3 E/H=0.625, Fitted equation
s ¥ 7 o
§ 95 > E/H=0.5, Fitted equation
S < (
8 E/H=0.3333, Fitted equation
g v
tz & E/H=0, Fitted equation -
'g g
P o]
= 4
£ 2 = o 4 A e
i4
u
o / 4
v r A m
o o
O A /
1.5 ) A P
- )’ ’ A >
1 T T T
0 0.5 0.6 0.7

Normalized Crack Length a/E

Figure 2. Comparison of boundary correction factors for a centre cracked plate
of finite width and height subjected to a uniformly distributed stress
acting on the edges parallel to the crack line.
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Figure 3. Centre cracked rectangular plate subjected to a symmetrically applied
uniform partial crack surface pressure.
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Figure 4. The load and boundary correction factor for a centre cracked
rectangular plate subjected to a symmetrically applied uniformly
distributed partial crack surface pressure.
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Figure 5. Relative difference between the stress intensity factors obtained using
the approximate weight function method and the integration of the
weight function proposed by Tada.
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Figure 6. Comparison of the fully 3D solution by STRIPE to the proposed SIF-
equation for a centre cracked rectangular plate subjected to a uniformly
distributed stress on the edges parallel to the crack.
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Figure 10. Relative differences between the stress intensity factors according to
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Figure 12. Relative differences between the stress intensity factors according to
the proposed equation and the results of the weight function solution

for a rectangular sheet subjected to a partial crack surface pressure.
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Figure 14. Geometry and loading for a centre cracked strip subjected to two pairs
of splitting forces.
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Figure 16. Geometry and loading for a centre cracked strip subjected to two
concentrated crack surface pressures.
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Figure 18. The normalised stress intensity factor for a centre cracked strip
subjected to two concentrated crack surface pressures, as obtained
using the FE method.
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Figure 19. The results of three equations with respect to the results of a finite
element analysis for a centre cracked strip subjected to two pairs of
splitting forces. Normalized crack length a/E = 0.2.
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Figure 20. The results of three equations with respect to the results of a finite

element analysis for a centre cracked strip subjected to two pairs of

splitting forces. Normalized crack length a/E = 0.4.
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Figure 21. The results of three equations with respect to the results of a finite
element analysis for a centre cracked strip subjected to two pairs of
splitting forces. Normalized crack length a/E = 0.6.
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Figure 22. The results of three equations with respéct to the results of a finite
element analysis for a centre cracked strip subjected to two pairs of
splitting forces. Normalized crack length a/E = 0.8.
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Figure 23. Relative difference between the results, for crack tip A, calculated
using the equation by Chen et. al. and the results obtained using the

finite element model for a centre cracked strip subjected to a crack
surface pressure from 0 to xy.
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Figure 24. Relative difference between the results, for crack tip B, calculated
using the equation by Chen et. al. and the results obtained using the
finite element model for a centre cracked strip subjected to a crack
surface pressure from 0 to xy.
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Figure 25. Relative difference between the results calculated using the equation by

Chen et. al. and the results obtained using the modified Newman
equation for a crack surface pressure from - xy to Xy;.
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Figure 26. The normalized stress intensity factor at crack tip A for a centre
cracked strip subjected to a single pair of splitting forces acting in
position xy. Comparison between the results of the equations by Tada
and Chen et.al.
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Figure 27. The normalized stress intensity factor at crack tip B for a centre

cracked strip subjected to a single pair of splitting forces acting in
position xy;. Comparison between the results of the equations by Tada
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Figure 28. The normalized stress intensity factor at crack tip A for a centre

cracked strip subjected to a single pair of splitting forces acting in
position Xy;. Results obtained using the finite element model.
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Figure 29. The normalized stress intensity factor at crack tip B for a centre
cracked strip subjected to a single pair of splitting forces acting in
position xy;. Results obtained using the finite element model.
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Figure 30. Relative difference in stress intensity factor for crack tip A between the
equation by Tada and the solution by STRIPE.
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Figure 31. Relative difference in stress intensity factor for crack tip B between the
equation by Tada and the solution by STRIPE.
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Figure 32. Relative difference in stress intensity factor for crack tip A between the
equation by Chen et. al. and the solution by STRIPE.
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Figure 33. Relative difference in stress intensity factor for crack tip B between the
equation by Chen et. al. and the solution by STRIPE.
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