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Abstract

The unstructured node centered finite volume method is analyzed and it is shown
that it can be interpreted in the framework of summation by parts operators. It is
also shown that introducing boundary conditions weakly produces strictly stable
formulations.
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1

Introduction

In computational fluid dynamics as well as computational electromagnetics, fi-
nite volume methods (FVM) formulated on unstructured grids are widely used to
handle complex geometries. In [4], it is shown that strictly stable finite volume
methods on structured grids can be constructed from so called summation by parts
operators (SBP-operators). These operators satisfy a discrete summation by part
rule which mimic the integration by parts rule in the continuous case.

In this work it is shown that one particular node centered FVM, for unstruc-
tured grids, can be incorporated in the terminology of SBP—operators. A weak
procedure to introduce boundary conditions is shown to produce energy estimates
that lead to strict stability. This method is equivalent to the standard penalty pro-
cedure, called SAT (simultaneous approximation term) [2], often used for high
order finite difference operators of SBP—character.



FOI-R-0121-SE




FOI-R-0121-SE

2 Analysis

2.1 The model problem

The model equation considered in this paper is of the form:
ut + Aug + Buy =0, (z,v) eQCR (D

with suitable boundary and initial conditions. In (1), u is the vector of unknowns
and A and B are constant, symmetric, square matrices.

The energy method (see for example [3]) will be used to investigate stability.
For the scalar equation u; + uz = 0,0 < z < 1,u(0,t) = g(¢), this gives

1
i 2 _i 2 2 2 _ 2 2
& [ o= GlP = u0? - u(1)? = ¢ - u(1)? @
0

The boundary condition keep the potential growth under control, i.e there is an
upper limit for the growth rate.
For equation (1), the energy method gives

d 2 _ 4y e T T _
pm //u dzdy = dt”ull = %u Audy+]{u Budzx =
Q

onN 0N

3
= —j[uT(AﬁerBg)u-ﬁds
onN

with the use of Greens formula and the symmetry of A and B. In (3), 7 is the
outward pointing unit normal to 0f2, £ and § are the unit vectors in the x— and y—
directions and ds is the infinitesimal arc length element counted counter clockwise
around 2.

The number of boundary conditions at any point on the boundary is the least
number that make (A% + BY) - 7 positive semidefinite. When referring to the
model problem in this report it is assumed that the boundary conditions in (1) are
such that this is true. In the examples in section 3 this will be explicitly shown to
hold.

2.2 SBP operators

First consider the scalar equation u; +u; = 0 and its semi discrete approximation
u+Dyu=0, Dy=P'Qs @

where P is symmetric and positive definite and Q, + Q2 = diag[-1,0,--- ,0,1].
D, is said to be a summation—-by—parts (SBP) operator. With SBP operators it is
possible to mimic the energy estimate (2) in the semi discrete case. Multiplying
(4) by uT P, transposing and adding gives

d o d
Z(uTPu)= =
i ¥ = g
The symmetry and positive definiteness of P guarantees that it can be used as a
norm. The result (5) should be compared to (2).

lullp = uf — u}. ®)
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Next we discretize (1) in space by introducing the vector « of length N = dn
where d is the number of unknowns in (1) and 7 is the number of grid-points. The
elements of u are organized such that the first n elements are the discretization
of the first variable in u, the elements n + 1...2n are the discretization of the
second variable and so on. Furthermore we introduce discrete x— and y— derivative
operators D, and D,,. Equation (1) can now formally be written

u;+ (A® Dy)u+ (B Dy)u =0 (6)

where ® is the Kronecker product.
For 2D-equations on unstructured grids, a generalized SBP-concept will be
used. We aim for (), and @), to be such that

UW%+QQu%fﬁ@,uW%+Q@uz—fﬁm. )

o on

If (7) holds, the discrete energy method will lead to an approximation that corre-
sponds to equation (3).

2.3 The finite volume method

In anode centered FVM on an unstructured grid, the unknowns are associated with
the nodes in the grid. The control-volumes that constitute the dual grid are defined
as follows. Each control-volume is a polygon with its vertices at the centers of
gravity of the surrounding triangles (or quadrilaterals) and at the midpoints of the
grid-sides, see figure 1.

The FVM is obtained by integrating the equation over the control volumes.
Start with the scalar equation u; + u, = 0 and integrate over a control volume,
Q¢ , to get:

// udxdy + // Ugdxrdy = // urdzdy + }( udy = 0. 8
Qo Qo

Q¢ 1219761

The semi discrete approximation of equation (8) can be written

Pu; 4+ Qu =0 9)

where P is a diagonal matrix with the control volumes on the diagonal and @, as-
sociates with each node an approximation to the line integral of w around the
boundary of the control volume. The approximation to this line integral, the
fluxes, are computed as follows.

Consider a node in the interior of the mesh with index C. The flux is the
integral

flux = % udy (10)
N

where Q¢ is the dual grid cell that belongs to the node C'. The node C' has neigh-
bours which indices NNV;, see figure 1. Note that each of the neighbours can be
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Figure 1. Part of the grid and the
dual grid.

<
m

associated in a one-to—one manner with the two sides of the polygon 9€2¢ that
have a common vertex at the side connecting the neighbour to the node C. Each
neighbour will contribute to the flux with one term. This term is the mean value
of uc and uy;, times Ay over the corresponding dual grid side. This can formally
be written:

ﬂux:ZMA Y =

i

ZAyz (i1

where the sum goes over all neighbours to the point C'. Not considering the bound-
ary of the domain, (11) leads to

Qcc = ZZ 5t =0 (closed loop) 12
{QCN,- =%h=—QNc (12)

i.e the matrix () is skew symmetric in the interior.

Let us consider the case where no boundary condition (b.c) is necessary. The
flux through the boundary edge is calculated as the node value at the boundary
node, u g, times the corresponding Ayp, see figure 2. Formally:

flux = Z %@QA% +uglAyp =

7
(13)
U
Nz Ay;.

Note that the first sum is not over a closed loop. From figure 2 we obtain

> Ay = -Aysp. (14)

Thus we have

A A
flux = ZuNl Y +u B% (15)

11
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Figure 2. The geometry at the

boundary.

which leads to

{ Qe = (16)

QBN, =

ez

=—-QnN;B

Let us now consider the case with b.c, u; = g; at the boundary. Even though
we know the u-values at the boundary a priori from the b.c we do not remove
those points from the scheme. Instead we impose the b.c weakly. The fluxes,
using (14), become:

up + upn; Ay; A
flux = Y BNy 4 gpAys = Y un = — up=o2 + gpAyp.
7

- 2 2 2
a7
Clearly the elements in () become
Qe =-—%4
. (18)
{ Qpy, =3¢ =-Qnp
The results (12), (16) and (18) yield
Pu; +Qu+b=0. (19)
In (19) we have introduced
~__J giAy; atthe boundary with b.c
bi = { 0 otherwise ' (20)

2.4 Generalization to the full problem

The generalization of (19) in the interior is straight forward. The discretisation of
(1) leads to equation (6). In (6) we use D, = P~'Q, and D, = P~1Q, where
P, Q. and Q) are derived as in the previous section. The generalization of (19)
becomes

I®@Pus+(A®Qz)u+ (BR®Qy)u+b=0 (21)
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where b is a vector of the same length as u, i.e of length N = nd where d is the
number of unknowns and n is the number of grid points. (u is organized as in
section 2.2). The energy method applied to (21) gives

d | 2 —
g7 lulligp = 22)
= -u"(A® (Q: +Q7))u —u' (B® (Qy +Qy))u” +2u’b

where the symmetry of A and B has been used. Note that the energy depends only
on the symmetric part of ) and @), and the boundary data. As seen in section 2.3
the symmetric parts are zero in the interior of the grid; the symmetric elements
are introduced at the boundary.

For each row of A ® @, (and B ® @) that corresponds to a boundary point,
the boundary flux must be calculated. In a typical time stepping procedure with
no b.c, we calculate the flux using the local value of the variable exactly as in the
previous section. This will produce a symmetric element as in equation (16) in
Qz (or Q) and thus in A ® Q; (or B ® (). With boundary conditions in the
form u; = ¢;,% = 1..n we use the boundary data to calculate the flux as described
above. This will also produce a symmetric element (see equation (18)) in A ® Q)
with the boundary data in the b—vector.

If a combination of boundary data and local values are used to calculate the
flux, it must lead to an energy estimate for the discrete problem. There is not
always a unique way to do this. One method that always work is to substitute
boundary data for the ingoing characteristic variables and use local data for the
outgoing ones. This method is illustrated in the examples below.

There is a standard penalty procedure to introduce b.c in a stable way when
working with SBP—operators called SAT (Simultaneous Approximation Term),
see for example [2]. In the present case, when the matrix P is diagonal, the SAT
procedure is equivalent to the weak procedure described above. Equation (17) can
be written

Ay, Ayp
flux = : —= — Ayp. 2
ux % un, =~ +us—— + (95 — up)Ayp (23)
bp

The relation (23) is a penalty formulation, where the matrix elements in () are
given by (16).

2.5 Observations

There are other methods to introduce b.c than the weak method described in the
previous paragraph. One can, for example, remove the boundary points from the
scheme altogether and satisfy the b.c exactly. This reduces the size of the system
(19), but sometimes introduces stability problems, see [4], [1].

The relation (19) (or (21)) is a linear system of ordinary differential equations.
If the vector b contains known boundary data, i.e not the unknowns of the system,
the solution can be written

t
u=—e FTQ f- /eP_Ith(t)dt (24)
0

13
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which is stable when P~1(Q is negative semidefinite, independently of b.

The FVM discussed here can be shown to be equivalent to a finite element
method (FEM) in the interior of the grid if the grid consist of triangles only. The
FEM is a modification of the classical variant obtained by using piecewise linear
’tent-functions’. The FEM can be written in the form (9) where

0
Py = [ didsdody, Qs = [ di5t,dady. ©3)
Q Q

Here ¢; is the piecewise linear function that is 1 in node ¢ and 0 in all other nodes.
The (Q—matrix above can be shown to be identical to the ()-matrix from the FVM.
To make also the P-matrix identical, the FEM has to be lumped, i.e the P in (25)
must be changed to Pll] =00 j P;;. (where §;; is the Kronecker J—symbol).
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3 Examples

The following definitions will be used in all examples below. The domain of
computation will be & C R2. The boundary of  will be denoted 52. Define I’y
and I'y to be such that I'y UT'y = 92 and I'; is the part of OS2 where Z - 72 < 0
where 7 is the outward pointing unit normal to 0€2. This of course implies that
% -7 > 0 on I'y. Moreover if dl = (dz, dy) is the infinitesimal tangent vector to
09} counted counter clockwise around {2 we have that dy < 0 on I'; and dy > 0
onI's.

3.1  The one way wave equation

Let us start with
u+ue =0, (z,9) €QCR, ulr, =g (26)

Equation (3) for this problem reduces to

%// wldzdy = — 7{U2dy = —/gzdy - /uzdy. 27
Q o0N I T2

The definition of I'y implies that we have an energy estimate.
We obtain the discrete energy rate by multiplying equation (19) by w7, trans-
posing and adding. The result is

£ (" Pu) = ~u"(Q + QT)u — 2u". (28)

By using the expressions (16) and (18) for the matrix elements of () we have

uwT(Q+ QN u=> ulldy; - Y uilAy (29)

I‘z I‘1

where I'; is the boundary with b.c. Furthermore, we have

2uTb =2 " uigiAy. (30)
I8}

The relations (29), (30) inserted in (28) leads to

d
%(UTP’U) = (97 — (ui — )| Al = > uf|Ayil (31)
Iy I's

where we have used that Ay; < 0 on I'y and Ay; > 0 on I's. This is com-
pletely similar to (27) (plus a negative definite term). With use of the definition of
strict stability introduced in [4], the approximation (19) of problem (26) is strictly
stable.

As mentioned in section 2.5 above, the b.c could be introduced by injection,
i.e by removing the boundary-points from the scheme. This technique results in a
reduced system with a b—vector containing boundary-data and a ()—matrix where
rows and columns corresponding to the points on the inflow boundary (I';) are

15
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Figure 3. The spectrum of % T T T T T T
P~1Q using weak formulation, .
on an unstructured mesh with 49 i x ** |
nodes.
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removed. Denote the vector w and matrix P of this new system with @ and P
respectively. In this case the energy estimate becomes

d, p=_
E(UTPu) = -2 E uigi| Ays| — E u;?|Ayi| (32)
fl PZ

where T'; is the set of points that are neighbours to the points in I';. That is,
points ’one layer in’ from the boundary now couples to boundary data. With this
technique there is no way to show strict stability in the sense used in [4]. However,
stability is given by (32) and (24). In figures 3 - 6 the spectra for both the injection
method and the weak method are shown on two grids with different number of
nodes. In both cases all eigenvalues have positive real parts which confirms that
both methods are stable.

16
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Figure 5. The spectrum of
P~1Q using weak formulation,
on an unstructured mesh with
105 nodes.

Figure 6. The spectrum of
P~1Q using injection, on an un-
structured mesh with 105 nodes.
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3.2 A system of equations

Consider the 1D Maxwell equations

E 0 1 EY\ _ 2
(H)t+<1 0)(H)w_0, (z,y) e QCR (33)

with b.c
Elsq = 0. 34)
The energy rate becomes
d 2 2
T E*+ Hdxdy = — ¢ 2EHdy = 0. (35)
Q i)

We introduce discrete representations F and H for the unknowns F and H. If
we first consider the system without b.c we get

EHEGDE-

Where ()5 uses the matrix elements (16). By introducing the b.c in £ we get

(2@ o Va)- @

where () uses the matrix elements (18). The b—vector will be zero because the
boundary data is zero.
The discrete energy rate becomes

%(ETPE + HTPH) = —~ET(Q; + QV)H — HT(Q, + QD)E =

(33)
= — Z E;H;Ay; + Z H,E;Ay; =0
a0 a0
Thus we have
d
a(HEII%HIHH%) =0 (39)

which means that the discrete energy rate corresponds exactly to the continuous
case, i.e the approximation is strictly stable, see [4].

Also in this case the method of injection of b.c works fine. Removing the
boundary points means that all symmetric elements of the ()-matrix disappear
leaving a pure skew symmetric (). With zero boundary data, the b—vector will
also be zero. Therefore, the energy growth rate is exactly zero in this case too.

3.2.1 Characteristic boundary conditions
Again, consider equation (33) with characteristic b.c

E—H|r2:g
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The energy equation (3) can, after some algebra, be written
‘gi/ E2+H2dy=—f2Ede=
1 1 (41)
= [3( - @)y - [ (E+m? - ) ay
I Ty

where the definitions of I'; and I'; show that we have an energy estimate. The
discrete approximation without b.c becomes

(0 2)&) e V)@ @

where ()5 uses the matrix elements (16). An arbitrary point at the boundary is
updated according to

d Hp + Hy,
Pgp—FEp + HgA ————’A =0
BB ;B + liBAYB + Z
(43)
d B + EN,
Ppp o Hp + EpAyp + Z — 5 Au=
Now we have to decide how to use the b.c to calculate the boundary flux.
Note that the b.c are in the characteristic variables u and v, defined as
p=E+H u+v)=E
{V:E—H ‘:’{g(u—u):ﬂ' “)

To find a suitable linear combination of boundary data and local data (see sec-
tion 2.4), we introduce the b.c in terms of the ingoing characteristic variable and
transform back to F and H to get

=3(f+v) =

{ 3 (f+E-H)
H=3(f-v)=

(f - (E - H)) )

[N =

onI'; and
{E’=%(u+g)=%1(E+H+g) 46)
H=3(n-9g)=3E+H-g)
on I'y. The boundary fluxes using (45), (46) becomes
1

A

d 1 Hg + Hy.
- Hg)A E__— =
thB + 2(fB Ep + Hp) yB+ 5 Ay; =0

d 1 Epg + Ey.
— ——1 —_—
PBB——dtHBJr 2(fB+EB Hp Ay3+§ Ay; =0

Ppp
47)

2
onI'; and
3

95+ Ep + Hp)Ayp + Z

-~

d 1
Ppp—E
55 g e+ 5=

d. 1
Pop—H
B8 g e+ 500

H
——-——BJ;HN’A =0

(48)
g5+ Ep + Hp AyB—i-Z——"Ayi =

-~

4

19
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on I'y. The formulations (47), (48) are obtained if one uses the matrix elements
(18) and introduce a right hand side vector b containing the expressions 1, 2, 3
and 4 at the corresponding boundary points.

The energy method applied to the equation

EDEE D@ o

leads to (@p uses the matrix elements (18))

diag. elements from (18)

d(ETPE+HTPH) +> 2EH Ay -~
dt
o0
1
—2;E2(f E+H)Ayz—2;H (fi + E; — Hy) Ay; —
1 1

1
—2;&5(& + H; — gi)Ay; — 2;1[1 (E; + H; + g;)Ay; =
2 2

=-> ((Bi+ H)fi — B} — HY) Ay; — (50)

I
=Y (~(Bi— Hi)gi + E} + H}) Ay; =
T
1 1
T Z {5 (Ff = (B — H)?) - 5 (fi— (Bi + Hz'))2} Ay; —
—Z{ (B + Hy) _g§)+%((Ei_Hi)_gi)2}Ayi

which should be compared to the continuous energy estimate (41). The definitions
of I'y and I'y show that (50) gives an energy estimate. As in section 3.1 there are
small dissipative terms but no terms that could lead to instability. The approxima-
tion (49) of (33) and (40) is strictly stable in the sense introduced in [4]. Note also
that (49) is a penalty formualtion.

The method of injection of boundary data could be used here too in a straight
forward way.

3.2.2 The weak formulation in penalty form

The diagonalized form of the problem in section 3.2 reads

("j) +<(1) _01>(5) =0, (z,y)€eQCR (51)
t T

(k= v)laa = 0. (52)

The energy equation (3) becomes

%// p? 4+ v2dzdy = —f}ﬂ —vidy =0. (53)
Q oN
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The discrete approximation without b.c becomes

(0 2) ), (Vo) ()=0 o

where @ uses the matrix elements (16). This means that an arbitrary point, B ,
on the boundary is updated according to

d +
MB+MBA3/B+ZMA ;=0

P
BB

d v +v (55)
Pgp—vp —vplAyp — Y i Ay, = 0.
BB ;VB ~ VBAYB Z; 5 =0
Again we have to find a way to calculate the boundary flux. One way is to di-
vide the boundary in a left part I'y and a right part I’y and update the boundary
according to

1
d —_— LB + pN,
Ppp 1B +VBAyB+Z — Au=0
d + (6)
vp UN;
Pgp— A ——2LAy;
BB VB _VBOYB ~ ; 5 =0
2
on I'; and
d —"— KB + KN,
PBBdtuB +IJ'BAyB+Z'—A v, =0 -

d vp + VN,
Ppp— A ——tAy; =
BB VB _HBAYB — EZ: 5 ¥ =0

4

on I's. Since y propagates in the Z—direction and v in the —Z—direction this means
that we prescribe the ingoing characteristic variable. Putting the expressions 1, 2,
3 and 4 in the b—vector at the corresponding points and using the matrix elements
(18) gives the discrete energy rate

d
ZUlslB + lE) =+ (uF - v2)Ayi -

o0
- 22 iV — V )Ay; — 22 — vipy) Ay = (58)
== Z ; — ;)| Ay;| — Z (ui — v3)?| Ay|.
T2

We see that this method gives small dissipative terms. The b.c could also be
handled by updating all boundary points according to

d +
Pep kB + 5 (NB+VB)A?JB+ZMA ;=0

(39)
d 1 VB + VN;
Ppp vp — 5 (hB +vB) Ayp — > 5 Ay =0

i

21
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Proceeding as before this gives

d
S (lmllE +11v]3) = +ZN2A% ZViZAyi_
(60)
_22 :u'sz"I'll'z Ayz+2z v; +,U/i1/i)Ayi=0

Now the discrete energy corresponds exactly to the continuous one.
The two methods above can be viewed as penalty procedures. To see this write
equation (59) as

1
A
7z Y

d 1
Pgp 7 MB + - (MB +vB) Ayp — upAyp +upAyp +
KB+ M
EBTENi Ny —
+ XZ: 2 Y 0

d 1
Pgpp ZiVB "5 (uB +vB) Ayp + vpAyp —vpAyp —

(61)

-~

2

—EVB+VN =0

If we now put the expressions 1 and 2 in the right hand side vector, b, this means
that we are again using the matrix elements (16). This procedure corresponds to
the usual way of introducing b.c by penalty. The scheme now looks like

EHOE LB

1 ( :
— pp) atboundary points
b= { 0 otherwise ' ©3)

where

The boundary method in equations (56) and (57) can be rewritten in the same way
resulting in

b= { vp — up for py—points on I'; and v—points on I'y

0 otherwise (64)

To use the method of injection, take the p—points on I'; and the v—points on
I's out of the system and inject v on I'; and p on I'y. This gives

d
Z 1+ 11117 =

!
_ (“/T V/T) (%f _..%’f) (5:) +2 (”/T I/IT) b= (65)
==Y WEAu+ Y VPAG =Y pveAyi+ > vipy Ay
Fz l—‘1 fz fl

where I'; and I, are the sets of points that are neigbours to the points in I'; and
"y respectively and 7’ is the index of the node on the boundary that is a neigbour

22
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Figure 7. An unstructured mesh 05

with 23 nodes. 04

0.3
02

0.1

Figure 8. The spectrum of 5 T ! ! T ; !
the method defined by equa- : ' : : :
tions (56) and (57), on an un-
structured mesh with 23 nodes.
min(Re(};))=0

to the node with index 1 (if such a node exists). p', ', P' and Q' are the vectors
and matrices where the points mentioned above are removed.

The energy rate contains indefinite cross-terms which means that we cannot
show strict stability [4]. The spectrum using injection is given in figures 9 and
12. We see that on one grid the method of injection gives some eigenvalues with
negative real part and thus an unstable scheme. The mesh with 23 nodes is shown
in figure 7. The mesh with 169 nodes is of the same type as the mesh in figure 14.
In figures 8 and 11 the spectrum of the method defined by the equations (56) and
(57) is shown. The spectrum for the method (59) is shown in figures 10 and 13.
The last two spectra are purely imaginary because the energy rate is zero.

3.2.3 Convergence

It can be shown that the spectrum of the continuous problem (51), (52) consists of
the points 0, £7i, +274, . . . . The discrete spectra in section 3.2.2 should converge
to the continuous spectrum when the number of nodes in the mesh increases.
To investigate this, the unit square was discretized as in figures 14 and 15 and
the smallest distance to the points 77 and 27¢ was plotted against the number of

23
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Figure 9. The spectrum of N
P~1Q with the method of '
injection, on an unstruc- : :
tured mesh with 23 nodes. ] T * .............. .............. .............. ,,,,,,,,,,,,,, .............. ............ 4
min(Re()\;))=—0.105 : : : :

Figure 10. The spectrum of 20 g T ! ; T ! ! T !

P~1Q with the method defined : : ‘ : _
by equation (59), on an un- EL] SERRRRE. ......... .......... .......... ......... * ........ .......... .......... ........ .
structured grid with 23 nodes. : : : : : : : : :

min(Re(A,-)):O W0k ......... .......... ......... .1.

Figure 11. The eigenspec-
trum of P—1Q with the method
defined by equations (56) and
(57) , computed on an unstruc-
tured mesh with 169 nodes.
min(Re(A;))=0

15 ; ! ;
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Figure 12. The spectrum of the
method of injection, on an un-
structured mesh with 169 nodes.
min(Re();))=0

Figure 13. The spectrum of
the method defined by equation
(59), on an unstructured mesh
with 169 nodes. min(Re()\;))=0
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Figure 14. The mesh, more 05

points in x—direction than in y—
direction.
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Figure 15. The mesh, more 05
points in y—direction than in x— 04
direction.
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nodes, see figures 16-19. (The point 0 was omitted because it is contained in
all spectra). Two cases were tested; the convergence when the new nodes were
introduced in the x—direction only, and the convergence when new nodes were
introduced in the y—direction only. The plots 16-19 show that we have a second
order accurate scheme. The refinement in the y—direction does not lead to more
accurate solutions since the problem (33) contains x—derivatives only. (In figures
16 and 17 two points deviate a lot from the others. The reason for that deviation
is the degenerated meshes obtained from Matlab.)

3.2.4 The most general case

Consider the following problem, which contains all previous examples

(5)t+<(1) Pl)(fj)w:(l (z,y) €QCR

{ (b—av)lr, =9
(V_:B/l')lfz =f

(66)

26



FOI-R-0121-SE

Figure 16. Convergence against
the point 7i. New nodes are in-
troduced in the x—direction only.
The dashed line is a reference
line with slope -2.

Figure 17. Convergence against
the point 27ri. New nodes are in-
troduced in the x—direction only.
The dased line is a reference
line with slope -2.

Figure 18. Convergence against
the point 7i. New nodes are in-
troduced in the y—direction only.

max(abs(eig(D)-pi*i))

max(abs(eig(D)-2"pi*i))

max(abs(eig(D)-pi*i))

[

)

Convergence against i, x-refinment

Number of Nodes

Convergence against 2ri, x-refinment

Number of Nodes

Convergence against 7i, y-refinment

Number of nodes

10’
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C

Figure 19. Convergence against o gence against 2ri, y
the point 27i. New nodes are in-
troduced in the y—direction only.

28

max(abs(eig(D)-2*pi*i))

Number of nodes

where « and [ are fixed parameters. The energy equation (3) becomes

//u2+1/2da:dy=—]{u2—y2dy:
Q onN
2 2 o 2 o’ 2
=+/g + (o= 1) (V_a2_19> _mg |dy| — (67)
I;
2 2 ,B 2 ﬁQ 2
_F/_f +(1—:8)(<u_1_182f> _( ﬂg)zf)ldyl

where the definitions of I'; and I's have again been used (|dy| denotes the absolute
value of the differential dy). This gives an energy estimate if |o| < 1 and |3| <
1. (In fact, by changing the norm one can show that an energy estimate exists
whenever |af] < 1, see [1]).

OnI'; we update p by g + av and on I's we update v by f + Su. This gives
the following discrete energy rate:

d
Z (ImllE +11vI[7) =

= Z { (g + o)) +

2 2 @ 2 o? 2 A
g + (" =1) | (u+ 2_1%) ~ mgi |Ays| — (68)

_Z{ fz‘l‘ﬁﬂ'z)) -

(- ((w ioh) - g fz) } g
: T irEh) Ty 1

which is the continuous energy rate plus a negative definite term, i.e the approxi-
mation is strictly stable in the sense defined in [4].
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If weseta = 8 =1and f = g = 0 we have the method defined by equations
(56) and (57) again.
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4 Conclusions

It has been shown that it is possible to generalize the concept of SBP—operators to
two space dimensions and FVM on unstructured grids.

The method analyzed in this work with boundary conditions imposed weakly
lead to energy estimates and strict stability if one specifies the ingoing character-
istic variable. Furthermore the method of injection of boundary conditions does
not always lead to energy estimates and sometimes results in an unstable scheme.

To introduce boundary conditions weakly is shown to be equivalent to the
standard penalty procedure(SAT) for boundary conditions used together with SBP—-
operators.
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